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Introduction
Lung cancer is among the most common malignancies worldwide 
and is the leading cause of cancer-related deaths.1 The incidence of 
lung cancer has declined in the last century; however, mortality 
rates remain high. Non-small-cell lung cancer (NSCLC) accounts 
for approximately 80% to 85% of all lung cancer cases.2 Lung ade-
nocarcinoma (LUAD) is the predominant subtype of NSCLC 

worldwide and is a highly heterogeneous tumor.3 Many patients 
with LUAD have similar pathologies, gene mutations, and disease 
stages; however, their prognoses differ considerably depending on 
the location and time of the gene mutation and the tumor micro-
environment (TME).4,5

The TME negatively influences the efficacy of immunother-
apy because it suppresses immune cell function and promotes 
cancer cell survival, local invasion, and metastatic dissemina-
tion.6-8 The TME of LUAD is mainly composed of various 
highly heterogeneous cell types, including tumor cells, 
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ABSTRACT

Background: Lung adenocarcinoma (LUAD) is a common type of malignant tumor with therapeutic challenges. Cancer-associated fibro-
blasts (CAFs) promote LUAD growth and metastasis, regulate the tumor immune response, and influence tumor treatment responses and 
drug resistance. However, the molecular mechanisms through which CAFs control LUAD progression are largely unknown. In this study, we 
aimed to determine the correlations between CAF-related genes and overall survival (OS) in patients with LUAD.

Methods: We acquired the gene expression data and clinical information of 522 patients with LUAD patients from The Cancer Genome 
Atlas (TCGA) and 442 patients with LUAD from the Gene Expression Omnibus (GEO) databases. CAF infiltration levels were assessed using 
the Microenvironment Cell Population (MCP) counter, the Estimating the Proportions of Immune and Cancer cells (EPIC) algorithm, and 
Tumor Immune Dysfunction and Exclusion (TIDE) scores. A CAF-related gene network was constructed using the Weighted gene co-expres-
sion network analysis (WGCNA). Based on the CAF-related genes, univariate Cox regression and Least Absolute Shrinkage and Selection 
Operator (LASSO) Cox regression analyses were performed to identify prognostic genes. Gene expression levels within the prognostic 
model were validated using the Cancer Cell Line Encyclopedia (CCLE) databases and Western blotting.

Results: Our results demonstrated that high CAF scores were associated with lower survival rates in patients with LUAD. Gene modules 
that were highly correlated with high CAF scores were closely associated with tissue characteristics and extracellular matrix structures in 
LUAD. In addition, correlations between CAF scores and responses to immunotherapy and chemotherapy were observed. Finally, we found 
that SNAI2 expression was higher in lung cancer tissues than in normal tissues.

Conclusion: Deepening our understanding of the influence of CAFs on tumor progression and treatment response at the molecular level 
can aid the development of more effective therapeutic strategies. This study provides important insights into the functional mechanisms of 
action of CAFs in LUAD and highlights their clinical implications.
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fibroblasts, endothelial cells, immune cells, vasculature, and the 
extracellular matrix (ECM).8-10 Fibroblasts found in tumor tis-
sues, termed cancer-associated fibroblasts (CAFs), are one of the 
major types of stromal cells that influence homeostasis.11 CAFs 
promote tumor progression by secreting factors that stimulate 
angiogenesis, invasion, and cancer cell proliferation.12 Moreover, 
they enhance the formation of an immunosuppressive network 
during antitumor therapy by secreting growth factors and 
cytokines, paracrine signaling, and ECM remodeling.13-15 
Therefore, the use of CAFs as candidate targets for targeted 
molecular therapy is an appealing and emerging strategy.

Snail family transcriptional repressor 2 (SNAI2) is a classi-
cal epithelial-mesenchymal transition (EMT)-related tran-
scriptional inhibitor with an N-terminal SNAG domain and a 
C-terminal DNA-binding domain.16 SNAI2 plays an impor-
tant role in the progression of several cancers. Reprogramming 
of mesenchymal fibroblasts by SNAI2 contributes to tumor 
fibrous tissue proliferation and promotes progression and inva-
sive metastasis of ovarian cancer by regulating EMT through 
the lncRNA AC005224.4/miR-140-3p/SNAI2 axis.17,18 
FBXO28 can inhibit hepatocellular carcinoma invasion and 
metastasis by promoting protein kinase A (PKA)-dependent 
phosphorylation-mediated degradation of SNAI2.19 SNAI2 
can significantly influence the TME by reactivating the tumor 
stroma and generating an immunosuppressive microenviron-
ment in prostate cancer.20 In breast cancer, ASB13 inhibits 
metastasis by promoting SNAI2 degradation.21 However, 
whether SNAI2 is a CAF-related gene requires further 
investigation.

Furthermore, the clinical relevance of and molecular mech-
anisms by which CAFs regulate tumor progression remain 
unclear. In this study, we aimed to construct a model to deter-
mine the correlations between CAF-related genes and overall 
survival (OS) in patients with LUAD. CAF infiltration scores 
were calculated using the Estimating the Proportions of 
Immune and Cancer cells (EPIC) method, Microenvironment 
Cell Population (MCP) counter, and Tumor Immune 
Dysfunction and Exclusion (TIDE) scoring to determine the 
relationship between the CAF scores and OS in patients with 
LUAD based on data from the publicly available Gene 
Expression Omnibus (GEO) and The Cancer Genome Atlas 
(TCGA) databases. Weighted gene co-expression network 
analysis (WGCNA) was used to identify the hub modules that 
were most strongly correlated with CAF infiltration.

Material and Methods
Data of patients with LUAD

The gene expression profiles of 522 patients with LUAD and cor-
responding patient clinical characteristics, including outcome, age, 
and survival time, were downloaded from TCGA (https://gdc.nci.
nih.gov/). The batch effects were revised using the sva R package. 
The fragments per kilobase of transcript per million mapped reads 
(FPKM) format was used for the RNA-seq data from TCGA 
datasets. The normalized FPKM values were converted to 

transcripts per million (TPM) and log2(TPM + 1) transformed. 
In addition, we included the normalized gene expression profiles 
of 442 patients with LUAD from the GSE72094 dataset from the 
GEO database (https://www.ncbi.nlm.nih.gov/geo/), with com-
plete information regarding OS-related transcriptomics, in the 
validation dataset.

Assessment of CAF scores

CAF infiltration scores were evaluated using three methods—
estimation of the marker gene expression–based MCP coun-
ter,22 the EPIC algorithm,23 and TIDE scores downloaded 
from the TIDE database (http://tide.dfci.harvard.edu). Tumor 
sample data obtained from TCGA and the GEO databases 
were divided into high- and low-CAF-score groups according 
to the cutoff value of the CAF score. Then, we analyzed the 
relationship between CAF scores and survival using the 
Survival R package, and samples were screened based on 
P-values < .05.

CAF co-expression network construction and hub 
gene selection

Gene co-expression network analysis and the selection of hub 
genes that target CAF infiltration were performed using the 
WGCNA R package,24 and the genes with the top 5000 
median absolute deviations (MADs) in both the TCGA and 
GSE72094 datasets were chosen for WGCNA analysis. 
Thereafter, the appropriate soft-thresholding power β for adja-
cency computation was graphically confirmed. Subsequently, 
the adjacency matrix was clustered using a topological overlap 
matrix (TOM) and the corresponding dissimilarity matrix (1–
TOM); a hierarchical clustering dendrogram was constructed, 
and genes with similar expressions were divided into different 
modules. The first principal component of each module expres-
sion was summarized by the module eigengene (ME). Pearson’s 
correlations between the ME and clinical features were calcu-
lated, and the module with the strongest correlation was 
selected for subsequent analyses. Next, we evaluated module 
membership (MM) and gene significance (GS) for the traits of 
individual genes in the hub module, and hub genes with 
GS > 0.4 and MM > 0.6 were selected. Finally, the overlap-
ping hub genes between the TCGA and GSE72094 datasets 
constituted the final set of hub genes.

Establishment and validation of the CAF-related 
prognostic signature

CAF-related hub genes from TCGA were subjected to uni-
variate Cox regression analysis to screen for prognosis-related 
hallmark genes using the Survival R package, with P < .05. To 
construct a prognostic correlation model, we performed Least 
Absolute Shrinkage and Selection Operator (LASSO)25 Cox 
regression analysis. CAF-related prognostic genes from TCGA 
were used as the training set, and CAF-related hub genes from 
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the GEO dataset were used as the testing set. Patients in the 
two datasets were divided into high- and low-risk groups based 
on their median risk score. Risk scores were calculated using 
the following formula:

Risk score  coef  gene expr gene   coef  gene 
e

� � �

�
� � � � � �� � �

xxpr gene    coef  gene n expr gene n ,
where coef

�� � � � � �� � �..
  gene n  represents the coefficient of CAF- related

genes 
� �

ccorrelated with survival and expr gene n
represents the 

� �
eexpression of  CAF - related genes.

Gene set enrichment analysis and single-sample 
gene set enrichment analysis of TCGA cohort

To explore unique Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways and hallmark gene sets in the high- and 
low-risk groups, gene set enrichment analysis (GSEA) was 
performed based on the hallmark gene sets, using the cluster-
Profiler package in R, and pathways with P < .05 were consid-
ered to be significantly enriched. Single-sample GSEA 
(ssGSEA) was performed on several of the enriched pathways 
using the GSVA R package.

Cancer cell line encyclopedia and HPA datasets

To verify the expression levels of genes involved in the con-
struction of prognostic models, we downloaded mRNA expres-
sion data from the Cancer Cell Line Encyclopedia (CCLE) 
database (https://portals.broadinstitute.org/ccle)26 and com-
pared the expression levels of these genes between fibroblasts 
and lung cell lines using the plyr R package and the Wilcoxon 
test. In addition, the protein expression of CAF-related genes 
in lung tissues was determined using immunohistochemical 
(IHC) images from the HPA online database (https://www.
proteinatlas.org/).27

Chemotherapeutic sensitivity predictions

To predict chemosensitivity in the high- and low-risk groups, 
we downloaded drug sensitivity and data representation files 
from the largest publicly available pharmacogenomics data-
base, Genomics of Drug Sensitivity in Cancer (GDSC; https://
www.Cancerrxgene.org/),28 and performed chemosensitivity 
analysis using the oncoPredict R package.

Genetic somatic mutation analysis

Genetic somatic mutation data for the LUAD samples were 
downloaded from TCGA. The maftools R package was used 
for the recognition and visualization of somatic variants in 
both the low- and high-risk groups. The tumor mutational 
burden (TMB), a sum of the nonsynonymous mutations per 
million bases in coding regions, has been proposed as a bio-
marker of immunotherapy efficacy.29

Cell culture

The human LUAD cell lines H1573, H1975, HCC827, A549, 
and SPC-A-1 were purchased from the Kunming Institute of 
Zoology. These cell lines were cultured in RPMI 1640 medium 
supplemented with 10% v/v fetal bovine serum (FBS), 10 000 
units of penicillin, and 10 mg/mL streptomycin, at 37°C in an 
incubator with 5% CO2. The human bronchial epithelial cells 
BESA-2b, obtained from iCell, China, were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) supplemented 
with 10% v/v FBS, 10 000 units of penicillin, and 10 mg/mL of 
streptomycin at 37°C in an incubator with 5% CO2.

Western blot analysis

A total of 1 × 106 cells were collected and lysed in radioimmuno-
precipitation assay (RIPA) lysis buffer (Beyotime, Shanghai, 
China). The cell lysate was centrifuged to isolate proteins (30 or 
35 μg), which were collected, resolved using Sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a 
10% resolving gel, and electroblotted onto Polyvinylidene fluo-
ride (PVDF) membranes (Millipore, Carrigtwohill, Germany). 
The membranes were blocked with 5% (w/v) dry skimmed milk 
in Tris buffered saline (TBS) and incubated overnight at 4°C 
with primary antibodies against SNAI2 (Proteintech, Cat#12129-
1-AP, USA). The membranes were then washed with TBS con-
taining 0.1% (v/v) Tween-20 and incubated with a horseradish 
peroxidase–conjugated secondary antibody (Proteintech, USA).

Statistical analysis

All statistical analyses were performed using the R software. 
The Wilcoxon test was used for pairwise comparisons. The 
Survival and Survminer R packages were used for OS analysis 
using the Kaplan–Meier curve with the log-rank test. P < .05 
was considered statistically significant.

Results
Survival analysis of CAF scores in patients with 
LUAD

We calculated CAF infiltration scores using the EPIC, MCP 
counter, and TIDE methods. OS analysis using the Kaplan–
Meier curve with the log-rank test demonstrated that the 
high-CAF-score group exhibited worse OS than the low-
CAF-score group in both the GSE72094 (Figure 1A) and 
TCGA (Figure 1B) cohorts of patients with LUAD. This 
highlights the importance of further research on CAF in 
LUAD.

Construction of CAF-related modules and selection 
of hub genes

To construct a co-expression network of CAF scores, we per-
formed WGCNA in the GSE72094 and TCGA cohorts. 
Regarding the TCGA cohort, the CAF scores had the strongest 
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positive correlation with the green module (Figure 2A, R = 0.76, 
P < .001). For the GSE72094 cohort, the CAF scores had the 
strongest positive correlation with the yellow module (Figure 2B, 
R = 0.84, P < .001). Accordingly, we further explored the genes in 
these two modules and screened 91 genes of the 204 genes in the 
green module of TCGA dataset and 159 genes in the yellow 
module of GSE72094 as hub genes, which were visualized using 
a Venn diagram (Figure 2C).

Then, we performed gene ontology (GO) and KEGG 
analyses of the 91 hub genes. ECM and extracellular structure 
organization in the biological process (BP) category, collagen-
containing ECM in the cellular component (CC) category, 
and ECM structural constituents in the molecular function 
(MF) category were the main significantly enriched GO 
terms. These are key components of ECM processes in the 
TME (Figure 2D). The enriched KEGG pathways were 
mainly involved in desmoplastic and proliferation processes, 
such as focal adhesion, ECM–receptor interaction, the 
PI3 K-Akt signaling pathway, and the TGF-beta signaling 
pathway (Figure 2E). These enrichment terms are associated 
with the prognosis of patients with LUAD.

Prognostic risk model based on CAF-related genes

We screened 28 OS-related genes (ITGA5, MN1, SNAI2, 
COL6A1, FRMD6, NID2, GFPT2, COL5A3, COL6A2, 
MMP14, LOX, CLMP, TMEM158, TNFAIP6, CPXM1, 
LOXL2, PXDN, COL5A1, COL5A2, GPC6, MXRA5, 
CTHRC1, VCAN, ADAM12, SPOCK1, COL12A1, GREM1, 
and COL11A1) with P < .05 from the 91 common hub 
genes to establish a prognostic risk model based on CAF-
related genes in patients with LUAD using LASSO-
penalized Cox analysis (Figure 2F). Initially, 522 samples 
from TCGA were used as the training group, and 442 sam-
ples from GSE72094 were used as the testing group; a 
cross-validation method was used to optimize the prognos-
tic model (Figure 2G). Subsequently, patients with  
LUAD were divided into low- and high-risk groups accord-
ing to the median cutoff values. Kaplan–Meier curves 
revealed that the OS of patients with LUAD in the low-risk 
group was longer than that of the patients in the  
high-risk group in both the TCGA and GSE72094 datasets 
(Figure 3A and B).

Figure 1.  Survival analysis of patients with lung adenocarcinoma (LUAD) using cancer-associated fibroblast (CAF) scores. (A) Patients with LUAD and 

increased CAF infiltration had worse overall survival (OS), as revealed by Kaplan–Meier analysis of The Cancer Genome Atlas (TCGA) data. (B) Patients 

with LUAD and increased CAF infiltration had worse OS, as revealed by Kaplan–Meier analysis of the GSE72094 data.
*P < .05, **P < .01, ***P < .001.
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Moreover, three CAF-related genes (SNAI2, FRMD6, and 
LOXL2) were highly expressed in the high-risk group in both 
the TCGA and GSE72094 datasets, which is consistent with 
the results obtained using various CAF markers (Figure 3C 
and D). GSEA was performed on the TCGA dataset between 
the high- and low-risk groups, and the essential KEGG signal-
ing pathways were involved in the cell cycle, cytokine–cytokine 
receptor interactions, and ECM–receptor interactions in the 
high-risk group (Figure 3E). Genes in the low-risk group were 
mainly enriched in drug metabolism, cytochrome P450, lin-
oleic acid metabolism, and the metabolism of xenobiotics by 
cytochromes (Figure 3F). The ssGSEA results also showed 
that CAF risk scores were positively correlated with ECM–
receptor interaction (Figure 3G).

Comparison of the TMB and the eff icacy of 
immunotherapy and chemotherapy between the 
high- and low-risk groups

Immunotherapy has become a powerful clinical treatment 
strategy for patients with cancer.30 Using the TIDE method, 
we investigated the potential clinical efficacy of immunother-
apy in patients with LUAD. We found that the low-risk group 

displayed significantly lower TIDE scores than the high-risk 
group in both the TCGA and GSE72094 datasets (Figure 4A 
and D), which implied that patients in the low-risk group had 
lower potential for immune evasion and were more likely to 
benefit from immune checkpoint inhibitor (ICI) therapy than 
those in the high-risk group. In the TCGA dataset, the low-
risk group had similar proportions of responders (56%) and 
non-responders (44%); however, the proportion of non-
responders was significantly higher than that of responders 
(81% vs 19%) in the high-risk group (Figure 4B). Similar 
results were obtained for the GSE72094 cohort (Figure 4E). 
These findings suggested that the low-risk group exhibited 
higher sensitivity to immunotherapy. Moreover, the Area under 
the curve (AUC) values were 0.77 and 0.794 in the TCGA 
(Figure 4C) and GSE72094 cohorts, respectively (Figure 4F), 
indicating the excellent sensitivity and specificity of our CAF 
prognostic model for immunotherapy response prediction.

The top 20 genes with the highest mutational frequencies 
were identified in the low- and high-risk subgroups. 
Surprisingly, the genes (TP53, TTN, MUC16, CSMD3, RYR2, 
LRP1B, ZFHX4, USH2A, KRAS, XIRP2, FLG, SPTA1, NAV3, 
ZNF536, COL11A1, FAT3, ANK2, PCLO, CSMD1, and 
APOB; Figure 4G) and frequencies of mutations were highly 

Figure 2.  Cancer-associated fibroblast (CAF)-related modules constructed using weighted gene co-expression network analysis (WGCNA). (A, B) 

Module–trait relationships showing correlations between each gene module eigengene and phenotype in The Cancer Genome Atlas [TCGA] (A) and 

GSE72094 cohorts (B). (C) Venn diagram presenting overlapping TCGA and GSE72094 module genes. (D) Gene ontology (GO) analysis of 91 genes and 

the enriched biological process (BP), cellular component (CC), and molecular function (MF) terms. (E) Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway analysis of the enriched pathways of the 91 genes. (F) Forest diagram showing overall survival (OS)-associated genes, as revealed by 

univariate Cox analysis of TCGA data. (G) Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression was conducted to construct the 

prognostic model.
*P < .05, **P < .01, ***P < .001.
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Figure 4.  (A-F) Tumor Immune Dysfunction and Exclusion (TIDE) immunotherapy prediction analyses. (A, D) TIDE cancer-associated fibroblast (CAF) 

risk scores were higher in the high-risk groups than those in the low-risk groups in the GSE72094 and The Cancer Genome Atlas (TCGA) cohorts. (B, E) 

Proportions of responders and non-responders in the high- and low-risk groups in the GSE72094 and TCGA cohorts. (C, F) Receiver operating 

characteristic (ROC) curves of the risk signatures in the GSE72094 and TCGA cohorts. (G, H) Oncoplots showing the top 20 mutational genes in the 

high- and low-CAF-risk groups of the TCGA cohort. (I) Boxplot displaying the tumor mutation burden (TMB) values of the high- and low-risk groups. (J) 

CAF risk scores were significantly positively correlated with TMB values.
*P < .05, **P < .01, ***P < .001.

Figure 3.  Differences in pathways between the two groups. (A, B) Kaplan–Meier survival curves for patients with lung adenocarcinoma (LUAD) in the 

high- and low-risk groups from The Cancer Genome Atlas (TCGA) and GSE72094 cohorts. (C, D) Heat map revealing the expression patterns of the three 

identified cancer-associated fibroblast (CAF) genes and the CAF risk scores in TCGA and GSE72094. (E, F) GSEA of KEGG gene sets in the high- and 

low-risk groups. (G) Single sample gene set enrichment analysis (ssGSEA) results and the positive correlation between CAF risk scores and extracellular 

matrix (ECM)–receptor interaction-related genes in the TCGA cohort.
*P < .05, **P < .01, ***P < .001.
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similar between the two groups. In addition, we found that the 
high-risk group had higher TMB values than the low-risk 
group (Figure 4H), and the CAF risk score was significantly 
positively correlated with the TMB value (Figure 4I).

Chemotherapy is the standard approach for treating LUAD. 
Low-risk patients with LUAD exhibited increased sensitivity 
to cisplatin, crizotinib, docetaxel, gemcitabine, savolitinib, 
trametinib, and paclitaxel. In contrast, the high-risk group was 
estimated to be more sensitive to vinorelbine in the TCGA 
cohort (Figure 5).

Validation of CAF-related genes

Through analysis of the CCLE database, we found that the 
mRNA expression of SNAI2, FRMD6, and LOXL2 was high 
in fibroblast cell lines (Figure 6A). In addition, IHC data con-
firmed that SNAI2 expression was high in both cancerous and 
normal lung tissues (Figure 6B). However, we found that SNAI2 
was not expressed in CAF cells (Supplemental Figure 1). The 
Western blot results showed that SNAI2 expression was higher 
in lung cancer cells (H1975, HCC827, A549, SPC-A-1, and 
H1573) than that in Beas-2b pulmonary epithelial cells (Figure 
6B). Moreover, we found that the percentage of cells in the S 
phase significantly increased, while the proportion of those in 
the G2/M phase and G1 phase significantly decreased after 
knocking down SNAI2 in LUAD cells, indicating that the cell 
cycle of LUAD cells was halted in the S phase. Thus, these 
results suggest that knocking down SNAI2 may significantly 
inhibit the proliferation of LUAD cells via cell cycle arrest in the 
S phase (Supplemental Figure 2). These results suggest that 
SNAI2 is a CAF-specific marker.

Discussion
CAFs have long been considered to play a crucial role in the 
development and prognosis of LUAD. Our results revealed 
that CAF infiltration was associated with poor prognosis in 
patients with LUAD in two independent cohorts (GSE72094 
and TCGA). Patients with high CAF scores had lower survival 
rates than those with low CAF scores, which highlights the 
significant role of CAF in the TME.

CAF-related genes in multiple cancer types have been an 
important focus of research to identify critical molecular path-
ways in CAF subtypes that may be associated with clinical out-
comes, disease progression, and immunotherapy resistance.31-34 
Recently, there has been a decline in the incidence of lung can-
cer owing to improved cancer screening and treatment in clini-
cal practice.35 This implies that targeted cancer control, 
interventions, early detection, and treatment can help reduce 
cancer-related mortality.36 Some studies have demonstrated 
several roles of CAFs in LUAD; however, the molecular mark-
ers of CAF need to be elucidated to better classify tumor sub-
types and facilitate the establishment of CAF-specific targeted 
therapies. Furthermore, the Heterogeneous nuclear ribonu-
cleoprotein K (HNRNPK)/Chloride channel 3 (CLCN3) axis 
promotes the progression of LUAD through CAF–tumor 
interactions,37 and CAF activation can facilitate the invasion of 
breast cancer cells by CAFs.38

Cancer progression, recurrence, and metastasis are strongly 
associated with the TME, of which the ECM is a key compo-
nent.39 The ECM regulates cell differentiation, proliferation, 
migration, death, and survival and plays a crucial role in main-
taining cellular homeostasis.40 Disruption of the ECM compo-
sition and structure is linked to carcinogenesis and cancer 

Figure 5.  (A-H) Boxplot showing a comparison of the sensitivities of the high- and low-risk groups to several chemotherapy drugs.
*P < .05, **P < .01, ***P < .001.
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progression.41 By constructing a co-expression network of 
CAF-related genes and screening for hub genes, we identified 
gene modules that were highly correlated with CAF scores, as 
well as functionally enriched GO and KEGG pathways. 
Specifically, GO analysis revealed that CAF-related genes were 
mainly associated with the ECM structure and tissues, which 

is consistent with the findings of previous research, indicating 
that CAF-related genes play important roles in ECM remod-
eling, tumor development, and metastasis.38 In addition, 
KEGG analysis revealed that the enriched pathways of CAF-
related genes, such as ECM–receptor interactions, were related 
to cancer development. The mechanical remodeling of the 

Figure 6.  Analysis of the expression of cancer-associated fibroblast (CAF)-related genes. (A) mRNA expression levels of the three CAF-related genes in 

CAFs and lung adenocarcinoma (LUAD) cell lines. (B) Protein expression of SNAI2 in LUAD tissues from the Human Protein Atlas database. (C) Western 

blotting demonstrated the protein expression of SNAI2 in LUAD cell lines.
*P < .05, **P < .01, ***P < .001.
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ECM by CAF is crucial for tumor cell migration and inva-
sion.42 Changes in these enrichment pathways have been 
implicated in the development and metastasis of LUAD, which 
further supports the association between CAF and LUAD. A 
total of 28 genes that were significantly associated with the 
survival of patients with LUAD were identified using univari-
ate Cox regression analysis, and a prognostic risk model based 
on CAF-related genes was established using the LASSO anal-
ysis. The training and testing groups in the TCGA and 
GSE72094 cohorts were divided into low- and high-risk sub-
groups based on the median. Kaplan–Meier curves showed 
that the OS of the low-risk group was better than that of the 
high-risk group, confirming that CAF-related genes may serve 
as predictive biomarkers for LUAD. Furthermore, our results 
showed that three CAF-related genes (SNAI2, FRMD6, and 
LOXL2) were highly expressed in the high-risk group, which is 
consistent with the panel of CAF markers collected from the 
TCGA and GSE72094 datasets. Additional experiments con-
firmed the high mRNA expression of SNAI2, FRMD6, and 
LOXL2 in fibroblast cell lines in the CCLE database. In addi-
tion, Western blotting validated the higher expression of 
SNAI2 in lung cancer cell lines compared with that in normal 
tissues. Moreover, we found that knocking down SNAI2 can 
significantly inhibit the proliferation of LUAD cells.

SNAI2 (SLUG) is a C2H2 zinc-finger transcriptional 
repressor belonging to a three-member family of SNAIL pro-
teins (SNAIL, SNAI2, and SMUC).43 SNAI2 is known for its 
role in orchestrating EMT, during which tumor cells lose their 
epithelial characteristics and acquire a fibroblast-like cell phe-
notype and enhanced migratory abilities.18 Recent studies have 
revealed additional roles of SNAI2 in cancer progression, 
including in the activation of tumor-initiating cells, and cell 
cycle regulation, invasion, and metastasis.44-46 In addition, 
SNAI2 is a key transcription factor in the regulation of squa-
mous cell differentiation, which is a hallmark histopathological 
feature of lung squamous cell carcinoma.31 Our findings sug-
gest that SNAI2 may serve as a specific marker for CAFs.

CAFs can regulate the formation of an immunosuppressive 
network to weaken antitumor immunity.47,48 Our study also 
explored the differences between the low- and high-CAF 
groups in terms of TMB and response to immunotherapy and 
chemotherapy. The results showed that in both the TCGA and 
GSE72094 cohorts, the low-risk group had significantly lower 
TIDE scores than the high-risk group, suggesting that patients 
in the low-risk group had a lower potential for immune escape 
and were more likely to benefit from ICI therapy than those in 
the high-risk group. Furthermore, our findings revealed a sig-
nificant positive correlation between CAF risk scores and 
TMB values. Regarding chemotherapy, the low-risk group 
exhibited higher sensitivity to drugs such as cisplatin, crizo-
tinib, docetaxel, gemcitabine, sunitinib, and paclitaxel, whereas 
the high-risk group exhibited higher sensitivity to etoposide. 

Thus, further exploration of correlations between CAF-related 
genes and OS in patients with LUAD is needed, including 
more basic experiments and clinical samples, which we will 
address in our future studies.

Furthermore, there may have been sample bias in the public 
database used. In addition, confounding factors, such as patient 
clinical characteristics, may have affected the results. Future 
studies should focus on investigating the function of SNAI2 in 
LUAD and the underlying molecular mechanisms, as well as 
designing clinical trials to study the potential of CAFs as a ther-
apeutic target.

Conclusions
Overall, our findings enhance our understanding of the role of 
CAFs in LUAD progression and provide a foundation for 
future research and clinical applications. We will further study 
the potential of the CAF marker SNAI2 in clinical trials in the 
future. SNAI2 has potential as a CAF therapeutic target and 
could be combined with existing treatment options, such as 
chemotherapy and immunotherapy, to reduce the development 
of drug resistance. In addition, the CAF marker SNAI2 has 
possible applications in prognosis assessment and treatment 
response monitoring of patients with LUAD to help clinicians 
better manage the disease and optimize treatment plans.
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