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ABSTRACT

Gap closing is considered one of the most challen-
ging and time-consuming tasks in bacterial genome
sequencing projects, especially with the emergence
of new sequencing technologies, such as pyrose-
quencing, which may result in large amounts of data
without the benefit of large insert libraries for contig
scaffolding. We propose a novel algorithm to align
contigs with more than one reference genome at a
time. This approach can successfully overcome the
limitations of low degrees of conserved gene order
for the reference and target genomes. A pheromone
trail-based genetic algorithm (PGA) was used to
search globally for the optimal placement for each
contig. Extensive testing on simulated and real data
sets shows that PGA significantly outperforms
previous methods, especially when assembling
genomes that are only moderately related. An
extended version of PGA can predict additional
candidate connections for each contig and can thus
increase the likelihood of identifying the correct
arrangement of each contig. The software and test
data sets can be accessed at http://sourceforge.
net/projects/pgadgenomics/.

INTRODUCTION

Despite the fact that the assembly of bacterial genomes
has become a routine task and multiple assemblers have
been developed, the assembly problem is far from being
solved. Gap closure is still considered the most challeng-
ing, time-consuming and laborious phase in finishing the
sequence of a genome, especially with the emergence of
new sequencing technologies. Pyrosequencing, which does
not require any DNA cloning or library construction, can
generate enormous amounts of data and can greatly
reduce the cost of sequencing whole genomes. Such
characteristics, however, may also increase the difficulty
of subsequent contig assembly. After initial assembly from

reads to contigs has occurred, traditional sequencing
approaches usually take advantage of the linking informa-
tion from paired-end reads of large-insert (e.g. fosmids)
genomic libraries to create supercontigs (scaffolds). Please
note that the term ‘assembly’ in the text subsequently
refers to the assembly of contigs into scaffolds and not
the assembly of reads into contigs, unless otherwise
specified. In the absence of libraries, sequences of related
organisms can also provide scaffolding information.
Several software packages have been developed to
handle this problem. Projector2 (1) provides a web inter-
face to order prokaryotic assemblies by genome mapping.
AMOScmp (2) applies a modified MUMmer algorithm to
a newly sequenced genome by mapping it onto a reference
genome. OSLay (3) is based on maximum weight match-
ing to arrange the contigs of a target assembly, and this
software also provides an interactive visualization of
the computed layout. These methods are limited to
the assembly of contigs derived from different strains
of the same species, which may share nearly identical
or highly conserved gene arrangements. For distinct
species, however, assembly accuracy typically decreases
dramatically.

One potential reason for reduced accuracy in contig
assembly prediction is that currently used approaches
cannot distinguish the optimal connections for contigs
from a list of candidates. Currently employed methods
usually use local information at each step, and the
assembler can easily be confused by complex repeats or
rearrangements, which leads to incorrect assemblies. In
addition, previous methodologies also suffer from limita-
tions with respect to reference genomes, because no gene
arrangement information can provide correct and mean-
ingful information to the assembly of a target genome.
In the method described here, a novel scoring system was
developed to evaluate the distance between two contigs in
the target genome, and global search heuristics were used
to predict the most probable pairwise connections for all
contigs. Additionally, more than one genome was used as
a reference to arrange the contigs. This can significantly
improve the performance of predicting contig assembly
for more distantly related genomes.
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Genetic algorithms (GAs) are effective stochastic global
search algorithms inspired by the evolutionary features
of biological systems (4). They start from a random
population of individuals and iterate until some pre-
defined stopping criterion is satisfied. Each individual is
evaluated in each iteration (generation) based on its fitness
function. GAs generally consist of three operators: selec-
tion, crossover and mutation. The selection operator is
used to select the fittest individuals from the current
population to serve as parents of the next generation.
The crossover operator is used to generate offspring by
exchanging genetic information between the two parents.
The mutation operator randomly modifies individuals
to prevent the search process from stagnation within a
local optimum. After many generations, the population
increases in average fitness and thus tends to give a better
solution. Because they employ robust search methods that
require little information to search efficiently in a large or
poorly understood search space, GAs are particularly
well-suited for solving complex optimization problems.
In bioinformatics, they have been applied to align multiple
sequences (5), to model genetic networks (6), to select
regulatory structures (7), to analyze gene expression data
(8) and to estimate phylogenetic inference (9) and
recombination events (10). The ant colony optimization
(ACO) metaheuristic method is a population-based
approach that is used to solve combinatorial optimization
problems (11). ACO mimics the way the real ants find the
shortest route between a food source and their nest. Ants
communicate with one another through pheromone trails
and exchange information about which path should be
followed. Such autocatalytic and positive feedback char-
acteristics make ACO algorithms efficient methods for
finding nearly optimal solutions to combinatorial optimi-
zation problems.

In this article, we describe a novel assembly algorithm
(pheromone trail-based genetic algorithm, PGA), which
consists of two major phases: calculation of the pairwise
distance of the contigs to reference genomes and a global
heuristic search for optimal contig connections. In the
global heuristic search phase, we used a pheromone trail-
based crossover to improve the performance of the GA.
When generating offspring, it can obtain global informa-
tion from pheromone trails, just as artificial ants do in
ACO algorithms (12). Based on simulation studies, we
demonstrate that PGA is a powerful and accurate method
to assemble closely and moderately related genomes. We
have successfully applied this algorithm to real incomplete
genome data sets produced by Sanger DNA sequencing
and pyrosequencing and compared the predictions of the
program to the known assembly outcomes.

METHODS
Distance

Let A and B be a reference (complete) and a target
(incomplete) genome, respectively, in which B is a
collection of contigs {bi,...,b,}. These contigs were
then aligned to reference genome A using BLAST,
and each contig b; may have a set of matches

M; = {my,...,m;}, which results in M = {M,,....M,}.
Each match m has two mapped positions along genome
A (x;,x). If two matches (m;m;) overlap with
£,>0.2xMin {¢,¢;, where ¢, ¢, {; are the lengths
of the overlapping regions, m; and m;, respectively, the
match with lower BLAST score will be removed from M.
Likewise, the matches with £ <200 bp were also removed.
After the removal of repeats and short matches, a revised
={Mj, ..., M)} was then used to evaluate the distance
between pairs of contigs.
For two given contigs b; and b;, their revised matching

position sets are M} = {mj,mp,...,mp} and ]Z; =
{I’}’Zjl ,Mp, o, leq}, respectlvely. Let d,']ﬁj] s dil,jZ, < dil g
be the distance between my and my, mp, ..., mj,, and

dy j=minid, ;. dll P dy j,1 be the minimal distance
between m; and b Slmllarly, the minimal distances
between myp, mg, .. m,,, and b; are dpj, dij, ..., dp,
and as such D}, {d,l jo dijs ... dy ;} represents the set
of match dlsta.nces between b; and b;. Different contigs,
however, may have various cardlnahtles \D; ;|, which may
bias the average distance between contigs. Hence we only
used the five smallest leues in D} ; to form a new set of
match distances D; ;. If |D \< 5 weset D, ;= D’J We
then use a weighted method to evaluate each set of match
distances D, which may possess five or fewer values. Let
{x1, x2,...,x,} represent the set of match distances, then
the weighted-average distance d" = ), x;w;, where

v [1/]x = 1/n(X7, x)|]
s [/ = ym (3 )]

O0O<n<)).

We then use the rank of pairwise weighted-average
distances to evaluate its fitness. For a given contig b;, the
weighted-average distance set between b; and other contigs
bi,bs, .. .by is DY ={dy, d,....d}}. D'is divided into
three subsets based on the actual distance, D‘”(d“ < 8 kb),
D¥*(8 Kb < @ < 15kb), D!*(d" > 15kb). The fitness

between contig b; and b; is defined as follows:

|D;¥"l| if d;} c D}”
fi= D} | + | D} if & € D
' 10 if D! =0andj <2 1
20 if d;jt c D;_v} ori :]

Fg 4 = (fij),xn, represents the fitness matrix of the
contigs in genome B, when mapped onto the reference
genome A. If two genomes were used as the reference at a
time, Fg 4142 = (f7)yxn» Where

(fin +1ip)/2 if fin, fip < 20
7= fiy fin+4 %fﬁ/l <20 and fjp =20
T fip +4 if fiz <20 and f;; =20 2
20 otherwise

If three or more reference genomes are used, a weighted
combination of fitness matrix Fz 4, ... 4, can be obtained
in a similar way as shown in formula Equation (2).
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Figure 1. The flow chart of the pheromone trail-based genetic
algorithm developed for genome assembly of contigs into scaffolds by
comparison to one or more reference genome(s).

Pheromone trail-based genetic algorithm

After initialization of the parameters used in the
algorithm, the GA begins by generating some feasible
solutions (individuals) to constitute an initial population
and then evaluating each of them with the objective
(fitness) function. As long as the terminal condition is not
satisfied, the GA is iterated. In each iteration (generation),
individuals are probabilistically selected from the popula-
tion according to the rule of roulette wheel selection. The
selected individuals are then recombined and mutated to
generate offspring. If a generated offspring is not the same
as any individual in the population, it enters the
population, and the worst individual in the population is
removed to keep the population size constant. After the
operators mentioned above, the pheromone trails are
updated. A flow chart of the PGA is shown in Figure 1.

We use an integer string of length n as the representa-
tion of the chromosome (the possible connections of the
contigs or solution), where 7 is the number of contigs. The
fitness of a chromosome is derived from its solution
quality. In the GA we use the rank of each chromosome in
the population to evaluate its fitness (13). All chromo-
somes are first ordered according to their total lengths,
and the chromosome with the minimum length gets rank
1. With these ranks, the fitness of a chromosome of rank i
is calculated as follows: fitness; = Max —[(Max — Min)
(i—1)/(k —1)], where k is the number of chromosomes in
the population, Max is the maximum value of fitness, and
Min is the minimum value of fitness. The best chromo-
some in the population gets fitness value Max and the
worst chromosome gets fitness value Min. In our
implementation, Max and Min are set to 1.2 and 0.8,
respectively.
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To generate the initial population, we first select a
random contig as the first contig of an individual, and
then choose the nearest contig (according to the distance
mentioned in 2.1) from the contigs that have not appeared
in the individual. This procedure is repeated until all
contigs have appeared in the individual, and a feasible
individual has been generated.

Of the three operators of a GA, crossover is well known
to be the most important one because it significantly
affects the performance of the GA. Previous crossover
operators only took into account the position of the node
or its order when generating offspring. This is generally
considered ‘blind’ recombination (14). Here we imple-
mented a new pheromone trail-based method, which
utilizes both local (path length, adjacency relations) and
global information to construct offspring. As shown in the
Appendix (see Supplementary Data), the crossover
operator employed attains global information from
pheromone trails, as is done by artificial ants in the
ACO algorithm (12). Our crossover operator was then
tested under a pure GA framework and the computational
results show that it gives a much faster and better
convergence than order crossover-type operators.

Data application

The genome data used to evaluate the performance of our
PGA and previous methods were downloaded from the
National Center for Biotechnology Information (NCBI)
or obtained from our ongoing genome projects
in collaboration with the Joint Genome Institute (JGI;
Department of Energy) or the Penn State Center for
Comparative Genomics and Bioinformatics. Reference
genomes were chosen based on phylogenetic proximity
and the combined fitness score between them and the
target genomes as calculated in the Distance section. The
assembly accuracy is defined as 1 — Ny/N,, where Ny is
the number of breakpoints identified when comparing two
contig orderings (the correct one and the estimated one
obtained by PGA or other approaches), N, is the number
of inter-contig gaps (n—1 in the case of linear chromo-
somes and n in the case of circular chromosomes). To
make our explanation simple, we do not consider contig
orientation in the following example. Let the real con-
nection of five contigs be ‘1-2-3-4-5" and the estimated
assembly be ‘1-2-4-3-5’, then the accuracy of the estimated
assembly is 2/4 = 0.5. Hence, this criterion is quite
stringent in evaluating the performance of contig assembly
methods including PGA, Projector2, OSLay and other
BLAST end-based tools.

The software can be accessed at http://sourceforge.net/
projects/pgadgenomics/. We provide both source code and
pre-compiled versions of PGA implemented for Mac and
PC. The following genome assemblies were run on a
Power PC G5, Dual 2.3GHZ, with 8GB SDRAM, and
the computational time for heuristic search with PGA is
usually several seconds. The time-consuming steps in
assembling a genome with PGA are the BLAST and
Repeat-masking as shown in Figure 1, which, depending
on the genome size and the closeness between two
genomes, usually takes from 5 to 30 min.
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Figure 2. Relationships between PGA performance and various parameters. The X-axis shows the number of iterations, while the Y-axis shows the
fitness score. (A) Comparison of the performance of genetic algorithms with different crossover operators. (B-D) Parameter settings for the relative
importance of pheromone trail and the visibility (), the pheromone trail persistence (p) and the probability for pseudo-random-proportional

selection (go)-

RESULTS
Parameters setting

The parameters considered here are those that have a
direct effect on the pheromone trail-based crossover
operator, including B, ¢y, and p. Based upon working
experience with PGA, the population size pop_size was
set to 60, crossover and mutation probabilities to 1 and
0.1, respectively, and the number of iteration steps to
5000. The default values for 8, ¢, and p were set to 3, 0.9
and 0.95, respectively. All parameter-setting tests were
based on simulated data sets (120 contigs) produced by
random shearing of the 4.97-Mb Shewanella sp. ANA-3
(Sana) genome and by using the 4.97-Mb genome of
Shewanella oneidensis MR-1 (Sone) as the reference (15).
As shown in Figure 2, at higher g-values, which mean
local information (the visibility between contigs) earns a
higher relative importance, quicker convergence can be
found in the early evolutionary stages of the PGA.
However, a higher g-value usually results in a more
greedy selection in constructing offspring and causes a
higher probability of early search stagnation. A higher ¢,
in pseudo-random-proportional selection results in a
quicker convergence at an earlier stage, and ¢y = 0.8
usually produces a better result here than other tested
values. In Figure 2, we also present the evolutionary
process under different p-values, which show that lower

pheromone trail persistence may also cause earlier search
stagnation.

To demonstrate the effectiveness of the pheromone
trail-based crossover operator, we compared it to the
well-known order crossover (16), and found that the
pheromone trail-based crossover produced a much
faster and better convergence (Figure 2A). As shown in
Supplementary Figure S2, after 5000 iterations the
average fitness score derived from the PGA is significantly
smaller than that from the GA (Wilcoxon’s signed-ranks
test, P =1.76 E-07). Given the random nature of any
GA-based method, we compared the SD of the final
optimized fitness score between the GA and the PGA, and
found that the PGA is more stable and shows much
smaller SDs (Wilcoxon’s signed-ranks test, P = 1.05
E-03). Moreover, with an increasing number of contigs,
both PGA and GA take more time to reach convergence;
however, the actual computational CPU time for each run
is only several seconds, so this is not a limitation.
Although the optimal values for different data sets may
be slightly different, in all subsequent analyses we set
B, qo, and p to 3, 0.8 and 0.8, respectively. In practice, this
is not a limitation, because 5000 or 10000 iterations
are sufficient for the evolutionary process to reach
convergence, and the final accuracy of the predicted
assemblies does not seem to be affected significantly (data
not shown).
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Figure 3. Performance comparison between the BLAST-end method (plotted points) and the PGA method (vertical bars) using different simulated
data sets. (A) The assembly accuracies on data sets containing different numbers of simulated contigs of random fragments derived from
Synechococcus sp. WH8102. The genomes of Synechococcus sp. CC9605 (S9605), Synechococcus sp. CC9902 (S9902) and P. marinus MIT 9313
(P9313) were used as the reference genomes, respectively. (B) The assembly accuracies on data sets containing different numbers of simulated contigs
of random fragments derived from Shewanella sp. ANA-3. The genomes of S. oneidiensis (Sone), S. amazonensis (Sama), and S. frigidimarina (Sfri)
were used as references, respectively. (C) The overall success rate for gap closure attained if one uses the four best predictions from the relaxed PGA
method (PGA-extended, see text for detail) with the same data sets used in Figure 3A. (D) The overall success rate for gap closure attained using the
four best predictions from the relaxed PGA method (PGA-extended, see text for detail) with the same data sets used in Figure 3B.

Simulation

We randomly generated 20, 40, 60, 80, 100 and 120 DNA
fragments (i.e. simulated contigs) from a complete genome
sequence. Each fragment was at least 5kb, and the gap
sizes between contigs ranged from —0.2kb to 3 kb, where
a negative value indicates that the two fragments actually
overlapped. We repeated this process five times and thus
generated five different sets of fragments for each
category. Each fragment thus represents the equivalent
of a contig derived from an actual draft genome assembly.
We chose three other closely (or moderately) related
genomes as references to predict the arrangement of these
contigs. We then used these data sets to evaluate the
efficiency of the PGA and to compare its performance
with other known approaches. The most commonly used
method to order and orient contigs is based on mapping
contig ends to the reference genome (1,17-18). Because the
aforementioned tools do not provide an automatic
method to assemble large numbers of contigs, we modified
them to produce easy-handling versions, designated
collectively as BLAST-end methods, to benchmark the
performance of our new algorithm.

We first used two strains of Synechococcus
(Synechococcus sp. CC9605 (S9605); Synechococcus sp.
CC9902 (S9902)) and one strain of Prochlorococcus
marinus MIT9313 (P9313) (19) as reference genomes to
assemble various numbers of pseudo-contigs simulated
from Synechococcus sp. WH8102 (S8102) (20). These four
genomes range from 2.2 to 2.5Mb, and the synteny of

these genomes is relatively well conserved. As shown in
Figure 3A, PGA clearly outperforms the BLAST-end
methods for all simulated data sets, and the overall
performance of the PGA is quite similar when predicting
the arrangements of different numbers of contigs. Similar
results were also found using much larger Shewanella spp.
genomes (4.3-5.0 Mb). Three species [S. oneidensis, (Sone),
S. amazonensis (Sama) and S. frigidimarina, (Sfri)] were
used to arrange the pseudo-contigs from Shewanella sp.
ANA-3 (Sana). In contrast to Sone, Sama and Sfri have
much less conserved gene syntenies with Sana, which
results in assembly accuracies of <20% in most instances
with the BLAST-end methods (Figure 3B). We also
determined the accuracy of predicted contig arrangements
by using the PGA with Sama, Sfri and a combination of
Sama and Sfri as the reference genomes. As shown in
Figure 3B, the results indicate that the predicted
organization of the Sana genome, assembled by the
PGA, has significantly higher accuracy (40-50%) than
that assembled by the BLAST-end methods (<20%).
Additionally, the data in Figure 3B show that using a
combination of two reference genomes can significantly
improve the contig arrangement predicted by PGA. It is
notable that the assembly accuracy by PGA did not
decrease significantly as the number of simulated contigs
increased. This strongly supports the idea that PGA would
be especially useful for projects with lower sequence
coverage and greater numbers of contigs [e.g. draft
genome sequences with only 2x coverage (21)]. To verify
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Table 1. Comparisons of contig assembly accuracy for authentic data sets from the assembly of contigs from green sulfur bacterial genomes using
PGA, PGA-extended, BLAST-end, Projector2 and OSLay

Genomes” Contigs Method Reference Ctep Reference Cpha Reference Plut 2 or 3 Refs
Best Average Best Average Best Average Best Average
Clim 37 PGA 0.324 0.276 £0.040 0.405 0.373+£0.032 0.378 0.346 £ 0.026 0.514° 0.443 £0.040°
PGA-ext. 0.514 NA 0.541 NA 0.568 NA NA Na
BLAST-end 0.108 NA 0.135 NA 0.135 NA NA NA
Projector2 0.189 NA 0.189 NA 0.162 NA NA NA
OSLay 0.135 NA 0.162 NA 0.108 NA NA NA
Cvib 26 PGA 0.385 0.331+0.031 0.462 0.454+0.015 0.769 0.738+0.015 0.731¢ 0.731 £0.000¢
PGA-ext. 0.577 NA 0.731 NA 0.885 NA NA NA
BLAST-end 0.115 NA 0.385 NA 0.538 NA NA NA
Projector2 0.231 NA 0.308 NA 0.577 NA NA NA
OSLay 0.000 NA 0.154 NA 0.423 NA NA NA
Cpar 58 PGA 0.690 0.679+£0.014 0.431 0.400 £0.020 0.586 0.559+£0.018 0.7419 0.738 +0.007¢
PGA-ext. 0914 NA 0.621 NA 0.724 NA NA NA
BLAST-end 0.534 NA 0.190 NA 0.172 NA NA NA
Projector2 0.224 NA 0.121 NA 0.155 NA NA NA
OSLay 0.534 NA 0.052 NA 0.103 NA NA NA

#Assembly of contigs of C. limicola (Clim), C. vibrioforme (Cvib) and C. parvum (Cpar) contigs.

®Chlorobium tepidum (Ctep), C. phaeobacteriodes (Cpha) and P. luteolum (Plut) were used as the reference genomes.

€Chlorobium phaeobacteriodes (Cpha) and P. luteolum (Plut) were used as the reference genomes.

dChlorobium tepidum (Ctep) and P. luteolum (Plut) were used as the reference genomes.

“The corresponding value indicates the overall success rate for gap closure attained using the four best predictions from the PGA-extended method.

NA, not applicable.

that the PGA outperforms the actual methods (Projector2,
OSLay) instead of the proxy method (BLAST-end), we
used simulated data sets from Sana to evaluate their
performance (Supplementary Figure S3). The assembly
results show that when using closely related species
(Sone) as a reference genome, both PGA and OSLay
give significantly higher assembly accuracies than
Projector2 and BLAST-end (Wilcoxon’s signed-ranks
test, P<«0.001), but that there was no significant
difference between PGA and OSLay (Wilcoxon’s signed-
ranks test, P = 0.793). In contrast, when using moderately
related species as references, PGA outperforms all other
algorithms including OSLay, Projector2 and BLAST-end
(Wilcoxon’s signed-ranks test, p < 0.001).

The accuracy of the predicted assembly fully depends on
the conservation of gene synteny between the target and
reference genomes, and thus poorly conserved gene order
may provide insufficient, confusing or incorrect informa-
tion for arranging the target contigs. To account for these
possibilities and uncertainties, PGA predicts three addi-
tional suboptimal connections for each contig from a
fitness matrix (Fp 4). As shown in Figure 3C and D, by
relaxing the selection criteria for optimal connections one
can increase the probability of predicting the correct
contig organization significantly, especially for less-
conserved genomes. In practical terms, these predictions
can be used to reduce significantly the number of PCR
reactions required to obtain products to close gaps
between contigs. The practical outcome is that closing
costs and time can be substantially reduced.

Evaluation on real data sets

To evaluate the performance of PGA further, we
assembled three green sulfur bacterial (GSB) genomes

[Chlorobium limicola (Clim), C. vibrioforme (Cvib) and
Chlorobaculum parvum (Cpar)] by using three previously
finished GSB reference genomes. Each of these genomes
has now been completely closed, so it is possible to
evaluate the prediction of PGA relative to the known, final
contig organization in each genome (Zhao, F., Li, T. and
Bryant, D.A., unpublished results). The first two genomes
were sequenced using the standard Sanger techniques, and
the last one was sequenced by pyrosequencing with a
Roche GS20 instrument (22). After initial assembly of
reads into contigs (by Phred/Phrap/Consed for the first
two genomes and the Newbler assembler for C. parvum),
we obtained a set of contigs for each genome, and then
removed those contigs with lengths <3.5kb. As shown in
Table 1, we used C. tepdium (Ctep), C. phaeobacteroides
DSM 266 (Cpha), Pelodictyon luteolum DSM 273 (Plut) as
reference genomes, some of which have limited synteny
with the target genome. In all three real data sets, the PGA
outperformed any other assembly method (BLAST-end,
Projector, and OSLay). For Clim, when we used Ctep,
Cpha and Plut as references simultaneously, the assembly
accuracy was significantly improved to 51.4%. In con-
trast, the average assembly accuracy for BLAST-end,
Projector2 and OSLay was only 13.5, 18.9 and 16.2%,
respectively. It is worth noting that the combination of
several genomes as the reference may not assure a better
result, especially when selecting very closely related and
moderately related genomes together, because the latter
may actually obscure connections among contigs. For
example, the assembly accuracy was 76.9% for Cvib when
using Plut as a reference, whereas assembly accuracy
decreased slightly (73.1%) when a second reference
genome (Cpha) was included. When C. parvum (Cpar)
was sequenced and the data from the GS20 pyrosequencer
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Figure 4. An example to illustrate the performance of the PGA. (A) Linear mapping between given target contigs (red bars) and a reference genome
(blue bar). The purple lines represent the connections of the interior BLASTN matches and the light blue lines represent the connections of the
terminal contig BLASTN matches. The name (number) of each contig is indicated below the red bars. (B, inset) The fitness matrix for these contigs
derived from the reference genome. The smaller the matrix value, the shorter the distance between a pair of contigs. Red boxes indicate scores that
provide correct information to PGA; the blue boxes indicate scores that provide false information, which may predict an incorrect assembly.

was initially assembled into contigs, there were more
contigs than for the other two species because of the
shorter pyrosequencing read lengths (~120bp). PGA
dramatically outperformed any of the other assembly
tools listed in Table 1, especially when using more
distantly related species as reference genomes (Cpha
or Plut).

The PGA program can provide additional suboptimal
connections for each contig. This significantly increases
the range of predictions and can provide one with many
more clues as to how to close gaps by PCR, especially
for distantly related genomes. For example, by including
three additional, suboptimal connections in PCR-based
testing of connectivities, one can substantially increase
the probability of performing the appropriate PCR
reaction without having to test all possible reactions.
PGA has been successfully applied to several currently
ongoing genome sequencing projects in collaboration with
the Penn State Center for Comparative Genomics
and Bioinformatics or the Joint Genome Institute. The
genome sizes of these organisms range from about 2 Mb to
6 Mb (H. pylori J166a, H. pylori J166b, H. pylori Mom,
H. cetorum, Bordetella bronchiseptica 1289, Chloroflexus
aurantiacus Y-400-fl, and C. parvum) and most of these
genomes have been sequenced by pyrosequencing without
any paired read sequencing. PGA has greatly facilitated
the closing and finishing phases of these projects.

DISCUSSION

We have developed a GA-based algorithm (PGA) for
comparative genome assembly of contigs into scaffolds
from Sanger sequencing or pyrosequencing data using one
or multiple reference genomes. Comparisons with pre-
viously published algorithms indicate that PGA can

successfully obtain optimal or nearly optimal solutions
from complex and large numbers of possible solutions.
Our algorithm outperforms previous approaches for the
following reasons: (i) PGA applies a novel scoring system
to evaluate the distance between two contigs. This system
is more reliable and informative than the simple linear
arrangement produced for the target and reference
genomes, as employed by other tools. (ii)) PGA uses
global search heuristics to find the optimal connection for
each contig from a collection of possible candidates, and
thus avoids misguidance from regions with less-conserved
gene synteny. (iiil) PGA can use multiple genomes as
references to arrange the contigs into scaffolds. This
significantly improves performance when assembling
distantly related genomes.

Figure 4 illustrates why our proposed algorithm out-
performs other approaches. Here we selected the mapping
results between eight simulated contigs of Shewanella sp.
ANA-3 and the reference genome (S. oneidensis MR-1).
Red lines between the target and reference genomes show
the positions and connections of BLAST matches, and
blue lines show the terminal significant matches (E-value
<1E-10) with length >200bp. Apparently, terminal
matches for each contig do not assure the right connection
to their adjacent contig. For example, the right end of
contig 37 was targeted to another far away region in the
reference, and likewise there are also many uninformative
connections between the target and the reference genome,
which result from non-orthologous BLAST matches and/
or gene rearrangement. Using the BLAST-end method,
only contig 42 and contig 43 were correctly ordered but
with the wrong orientation. However, the PGA, which
utilized a novel distance-scoring matrix and performed a
global search of optimal connections, gave a much better
prediction. For example, contig 38 has three candidate
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connections (contig 37, contig 39, contig 42 in line 2,
Figure 4B), but for contig 37, contig 39 and contig 42 (in
row 1/3/6, Figure 4B), their closest contigs are contig 38,
contig 38, and contig 41, respectively. The scores labeled
in red in this partial matrix may be successfully searched
by PGA and thus give correct predictions, whereas the
scores labeled in blue may give wrong predictions. In this
case, all of these contigs were correctly ordered except
contig 44. In contrast, if we use other methods, such as
MUMmer, Projector2 and OSLay, all of these contigs
would be misassembled because of frequent gene inversion
and rearrangements among them.

In summary, the new PGA contig assembler differs
considerably from other assembly tools and has crucial
advantages over them. Even for difficult assembly
problems and using reference genomes with less overall
conserved synteny, PGA achieves much more accurate
assemblies than other tools by using a global search
strategy and by introducing more than one reference at
a time. Additionally, the extended PGA can also predict
suboptimal connections for each contig and thus can
increase the chances of closing a gap by predicting a set of
the most probable contig connectivities. Extensive testing
conducted so far indicates that it is extremely useful for
finishing bacterial genomes. The main drawback of this
comparative assembly method is its dependence on the
availability of reference sequences of related genomes.
However, with the very rapid growth in the number of
sequenced genomes, and especially the introduction of
newly developed sequencing and resequencing methodol-
ogies (e.g. pyrosequencing), PGA should have an increas-
ing number of applications.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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