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Abstract Gene co-expression network (GCN) mining identifies gene modules with highly correlated expression profiles
across samples/conditions. It enables researchers to discover latent gene/molecule interactions, identify novel gene
functions, and extract molecular features from certain disease/condition groups, thus helping to identify disease bio-
markers. However, there lacks an easy-to-use tool package for users to mine GCN modules that are relatively small in size
with tightly connected genes that can be convenient for downstream gene set enrichment analysis, as well as modules that
may share common members. To address this need, we developed an online GCN mining tool package: TSUNAMI (Tools
SUite for Network Analysis and MIning). TSUNAMI incorporates our state-of-the-art ImQCM algorithm to mine GCN
modules for both public and user-input data (microarray, RNA-seq, or any other numerical omics data), and then performs
downstream gene set enrichment analysis for the identified modules. It has several features and advantages: 1) a user-
friendly interface and real-time co-expression network mining through a web server; 2) direct access and search of NCBI
Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, as well as user-input gene ex-
pression matrices for GCN module mining; 3) multiple co-expression analysis tools to choose from, all of which are
highly flexible in regards to parameter selection options; 4) identified GCN modules are summarized to eigengenes, which
are convenient for users to check their correlation with other clinical traits; 5) integrated downstream Enrichr enrichment
analysis and links to other gene set enrichment tools; and 6) visualization of gene loci by Circos plot in any step of the
process. The web service is freely accessible through URL: https://biolearns.medicine.iu.edu/. Source code is available at
https://github.com/huangzhii/ TSUNAML/.

KEYWORDS Network mining; Gene co-expression network; Transcriptomic data analysis; ImQCM; Web server;
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modules, which are linked by their highly correlated ex-
pression profiles. It helps biologists discover latent gene/
molecule interactions and identify novel gene functions,
disease pathways, biomarkers, and insights for disease
mechanisms. GCN mining approaches such as WGCNA [1]
and ImQCM [2] have been increasingly used [3—7]. Com-
pared to the more popularly used WGCNA package,
ImQCM is capable of mining smaller densely connected
GCN modules. It also allows overlapping membership in
the output modules. Such features are more consistent with
biological networks in which the same genes may partici-
pate in multiple pathways, where a small group of genes are
more likely to be synergistically regulated in local pathway
functions. In addition, gene modules with smaller size de-
rived from ImQCM usually generate more meaningful gene
set enrichment results, which have been successfully ap-
plied to many diseases and cancer types [8—17].

Currently, several online databases exist that curate
transcriptomic data. For instance, PanglaoDB (https://pan
glaodb.se/) collects single-cell RNA sequencing (scRNA-
seq) data from mice and humans; scRNASeqDB [18] pro-
vides an scRNA-seq database for gene expression profiling
in humans; recount2 [19] provides publicly available ana-
lysis-ready gene and exon counts datasets. However, all of
these databases focus on data collection and curation. To the
best of our knowledge, there is no tool offering the complete
pipeline that can directly process transcriptomic data, mine
GCN modules, carry out gene set enrichment analysis, and
provide visualization for the results. To meet such needs, we
implemented our web-based analysis tool suite Tools SUite
for Network Analysis and MIning (TSUNAMI).

For users’ convenience, mRNA-seq data from The
Cancer Genome Atlas (TCGA; Illumina HiSeq RSEM
genes normalized from https://gdac.broadinstitute.org/) and
NCBI Gene Expression Omnibus (GEO) are directly in-
corporated into TSUNAMI. GEO hosts a large number of

transcriptomic datasets generated from multiple platforms,
including microarray and RNA-seq data. Other data types,
such as miRNA-seq and DNA methylation, are also com-
patible with TSUNAMI. In fact, TSUNAMI can handle any
numerical matrix data regardless of the omics data type.
TSUNAMI not only incorporates the newly released
ImQCM algorithm, but also includes the WGCNA package
for users to explore and compare GCN modules generated
from two different algorithms. We offer highly flexible
parameter choices in each step to users who want to fine
tune each algorithm to suit their own data and goal.

Prior to data mining, a data pre-processing interface has
been designed to address differences in the input data
formats and to filter the data in order to remove noise for
GCN mining. Each step of pre-processing is transparent to
users and can be adjusted according to their preferences and
needs.

Furthermore, our website directly incorporates enrich-
ment analysis of the gene modules and Circos plot function
for researchers to explore the enriched biological terms and
gene locations in the output GCN modules. It also provides
a tool for survival analysis with respect to each GCN
module’s eigengene values. All the aforementioned func-
tions only require button clicks from users. The design of
such a user-friendly interface in our TSUNAMI pipeline
provides a one-stop comprehensive analysis tool suite for
biological researchers and clinicians to perform tran-
scriptomic data analyses without any programming skill or
data mining knowledge.

Method

A flowchart of the TSUNAMI pipeline is presented in
Figure 1. The entire pipeline is implemented in R language
with Shiny server pages. In the future, it will be upgraded
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upload data
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Download co-module

—> Download eigengene matrix
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Figure 1 Flowchart of TSUNAMI
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GO enrichment analysis [—>  Download GO results

pre-processed data ——>
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In this flowchart for TSUNAMI pipeline, blue rectangles represent pipeline operations; rounded rectangles in pink represent download processes.
TSUNAMI, Tools SUite for Network Analysis and Mining; GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; GCN, gene co-

expression network; GO, Gene Ontology.
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with Python to improve computing efficiency in the module
mining step. Some front-end interfaces and functions are
implemented using JavaScript. With TSUNAMI, users can
choose to use multiple types of data formats, including
TCGA RNA-seq data, gene expression microarray data
from GEO (in the format of GSE series matrix data), RNA-
seq data from GEO, and user-defined numerical matrix data
(such as microarray, RNA-seq, scRNA-seq, and DNA me-
thylation data). Instead of searching the GEO database
manually, TSUNAMI provides a friendly interface for users
to retrieve data from GEO by utilizing keywords and offers
a flexible selection tool to retrieve a relevant GSE dataset to
perform GCN analysis. Users can also choose a specific
omics data type on the GEO database if keywords are en-
tered in the search window to indicate the desired data type.
In our testing, only a smaller portion of GSE data was not
able to be processed (e.g., 12 out of first 1000 GSE data),
most of which were legacy microarray data that contain too
much missing data or too small of a sample size. On the
website, a variety of example datasets ranging from mi-
croarray to scCRNA-seq data are listed on TSUNAMI for
users’ reference. TSUNAMI also provides an upload bar for
users to upload local files in various formats (e.g., CSV,
TSV, XLSX, and TXT). The data uploading interface is
shown in Figure 2A. In this study, one microarray dataset
(GSE17537 from GEQO) was chosen as an example to

A B
File uploader
Choose file

Browse... o file selectec

Note: maximum file size allowed for uploading is
300 MB. If data is uploaded from a .xIsx or .xls
file, separator can be any value, but please
make sure data are located in Sheet1.

Header

Separator Quote

@ Comma ) None

() Semicolon @ Double quote
) Tab Single quote

() Space

Confirm when complete

Figure 2 Dataset selection and the data pre-processing panel

demonstrate the features of TSUNAMI. GSE17537 con-
tains gene expression data of 55 colorectal cancer patients
from the Vanderbilt Medical Center (VMC) generated from
the Affymetrix HU133 2.0 Plus Genechip with 54,675
probesets [20,21].

Results

Online data pre-processing

One issue of the microarray dataset from GEO is that dif-
ferent platforms adopt different rules when converting
probeset IDs to gene symbols. To make this step easier for
users, probeset IDs in GSE data matrix from GEO can be
converted to gene symbols using R package “BiocGenerics”
[22] by only one click. For instance, for the GSE17537
dataset, the annotation platform is GPL570. TSUNAMI
then automatically identifies the annotation platforms of the
data from GEO. During the conversion, TSUNAMI 1) re-
moves rows with empty gene symbols and 2) selects the
rows with the largest mean expression value when multiple
probesets are matched to the same gene symbol. The user
interface of the data pre-processing step is shown in Figure
2B.

Additional data filtering steps include: 1) converting
“NA” value (not a number value) to 0 in expression data, to

Basic Advanced

Verify starting column and row of expression data:

Choose starting column and row for expression data.

Default values when leaving the input boxes blank: starting row = 1, starting column = 2.
Gene and Expression starting row: Expression starting column:

1 2

Convert probe ID to gene symbol:
Convert probe ID to gene symbol with identified platform (optional for self-uploaded data):
Be sure to verify (modify) gene symbol

GPL570 Convert

Remove genes:

Remove rows with lowest percentile mean expression value shared by all samples. Then
remove data with lowest percentile variance across samples.

Default values when leaving the input boxes blank: 0.
Lowest mean percentile (%) to remove:

50 10

Convert NA value to 0 in expression data.
Take the log:(x+1) of expression data x (default: unchecked).
Remove rows with empty gene symbol.

Keep only one row with largest mean expression value when gene symbol is duplicated.

Continue to co-expression analysis

Lowest variance percentile (%) to remove:

A. Data can be uploaded manually or chosen from the NCBI GEO database (not shown in the figure). When uploading the data, the maximum file size that
TSUNAMI allows is 300 megabytes. Header, separators, and quote methods can be adjusted by users. B. The data pre-processing panel includes several

pre-processing steps.
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Figure 3 The ImQCM method panel

The ImQCM method panel that allows users to choose a variety of parameters. In this study, experiment with GSE17537 runs with unchecked weight
normalization, y = 0.7, 1 =1, t = 1, f = 0.4, minimum cluster size = 10, and Pearson correlation coefficient.

ensure all the values are numeric and can be processed by
co-expression algorithms; 2) performing log, (x+1) trans-
formation of the expression values y if the original values
have not been previously transformed; 3) removing lowest.J
percentile rows (genes) with respect to mean expression
values; and 4) removing lowest K percentile rows with re-
spect to expression values’ variance. These data filtering
steps are necessary to reduce noise and to ensure the ro-
bustness for the downstream correlational computation in
the ImQCM algorithm. The default settings are J = 20 and
K = 20, by which genes with low expression and variance
across samples are filtered out. In our example with
GSE17537, we deselected logarithm conversion and NA
value to 0 conversion and set /=50 and K = 10, as shown in
Figure 2B. However, users can always adjust these para-
meters based on their own needs and preferences. In the data
pre-processing section, we further provide an “Advanced”
panel to allow users to select a subgroup of samples of their
interest. After the data pre-processing finishes, a dialog box
appears to indicate how many genes are preserved after the
filtering process.

Weighted network co-expression analysis

After data pre-processing, users can directly download pre-
processed data or further proceed to the GCN analysis. In
GCN analysis, we implemented the InQCM algorithm as
well as the WGCNA pipeline. The R package “WGCNA”
from Bioconductor (http://bioconductor.org/) was adopted
to integrate the WGCNA pipeline. We kept the mining steps
concise and simple with default parameter settings, while
preserving the flexibility for users to select parameters in
each step. Guidelines for parameter selection are in the
Method pages of the website. In addition, we also released

the ImQCM package to CRAN (https://CRAN.R-project.
org/package=ImQCM/).

In the ImQCM method panel, users can adjust parameters
such as initial edge weight y, weight threshold controlling
parameters /, ¢, and £, and the minimum cluster size (Figure
3). Pearson correlation coefficient (PCC) and Spearman’s
rank correlation coefficient (SCC) are implemented sepa-
rately for users to select. SCC is recommended for ana-
lyzing RNA-seq data due to the large range of data values,
and it is more robust than PCC to outliers. In our example
with GSE17537, positive gene correlations were analyzed
and the default settings were used (unchecked weight nor-
malization, y = 0.7, A =1, t =1, f = 0.4, minimum cluster
size = 10, and PCC for correlation measure). In the newer
version of the TSUNAMI tool, both positive and negative
correlations are considered during network module mining.
The running time of ImQCM depends on the number of
genes present after the filtering process. A progress bar is
provided to show the program progress. Note that InQCM
will not work if the data contain no clustering structures or
the gene pair correlations are so poor that none is above the
initial mining starting threshold (y). In those cases, the
program will stop running and generate a warning message.
However, this should not happen if the data contain enough
highly correlated gene pairs after filtering and the default
program settings are used.

The WGCNA method panel is a two-step analysis. Step 1
helps users to specify the hyper-parameter “power” in step
2, i.e., the soft thresholding in Langfelder et al. [1] by vi-
sualizing the resulting plot (Figure 4A). Step 2 allows users
to select the remaining parameters. TSUNAMI allows users
to customize the parameters of power, reassign threshold,
merge cut height, and indicate minimum module size. After
applying WGCNA, a hierarchical clustering plot for the
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resulting modules is also shown in this panel (Figure 4B).
The resulting plot in Figure 4B is from the example data
GSE17537 with powe = 10, reassign threshold = 0, merge
cut height = 0.25, and minimum module size = 10.

In the last step of GCN mining, two outputs are provided
by TSUNAMI: 1) merged gene clusters sorted by their sizes
in descending order (Figure 5A with ImQCM algorithm)
and 2) an eigengene matrix, which is the summarized ex-
pression values of genes in each GCN using the first prin-
cipal component from singular value decomposition (Figure
5B with the ImQCM algorithm). Eigengene values can be
regarded as the weighted average expression levels of each
GCN. Such values are very useful for users to correlate
GCN modules’ expression profiles with various clinical and
phenotypic traits in the downstream analysis, such as sur-
vival analysis. All results can be downloaded as files in
CSVor TXT format.

Downstream enrichment analysis

Enrichr [23,24] is used as the tool for downstream gene set
enrichment analysis implementation. By default, a total of
14 types of frequently used enrichment analyses are per-
formed: 1) Biological Process; 2) Molecular Function; 3)
Cellular Component; 4) Jensen DISEASES; 5) Reactome;
6) KEGG; 7) Transcription Factor PPIs; 8) Genome
Browser PWMs; 9) TRANSFAC and JASPAR PWMs; 10)
ENCODE TF ChIP-seq; 11) Chromosome Location (Cy-
toband); 12) miRTarBase; 13) TargetScan microRNA; and
14) ChEA. Users can further customize the enrichment re-
sult categories from the open source code available in
Github (https://github.com/huangzhii/ TSUNAMI/).

To access Enrichr results, users can simply click the blue
“GO” button in each row adjacent to the GCN mining re-
sults (as shown in Figure 5A). In each enrichment analysis,
its output includes multiple results, such as the enriched

A Scale independence
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0 5 10 15 20
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Dendrogram height

Module color

0.9

0.8
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term (e.g., GO term or pathway), P value, Z-score, and
overlapping genes. Users can download multiple analysis
results that are bundled in a ZIP file. In addition, other
popular gene set enrichment analysis websites are also di-
rectly linked in TSUNAMI to enhance convenience for
users. In our example with GSE17537, we selected the 36th
GCN module with 15 genes generated by ImQCM to be
analyzed for enrichment, and each result table was sorted
based on the P value generated by Enrichr. From the results
in Table 1, we can see that the 36th GCN module is highly
enriched in GO Biological Process term “type I interferon
signaling pathway (GO:0060337)” (9 out of 148 genes).

Circos plot

TSUNAMI provides Circos plots [25] through intermediate
results or inputs in the cases of human transcriptomic data.
Circos plots are very useful graphs for visualizing the po-
sitions of genes on chromosomes and gene—gene relation-
ships/interactions. The Circos plot function from the R
package “circlize” [25] is adopted in this package for users
to locate and visualize mined GCNs of human genes.

In TSUNAMYI, users can visualize the Circos plot via the
“Circos Plots” section, either by typing their own gene list
separated by the carriage return character (‘“\n”) directly, or
by using the calculated GCN modules (e.g., by clicking the
yellow button right next to the “GO” button in Figure 5A).
TSUNAMI supports both human genomes hg38 (GRCh38)
and hgl19 (GRCh37). To match the gene symbol to starting
and ending sites on a chromosome, we use the refGene
database downloaded from the UCSC genome browser
[26]. If multiple starting/ending sites are matched, we
choose the longest one with length calculated by:
length=|ending_site—staring_site|+1

By updating the plots, users can also choose the size of
the plots and decide whether gene symbols and pair-wise

B Power =10, minModuleSize = 10, mergeCutHeight = 0.25
1.04

e e R

Gene

Figure 4 Choosing the power in WGCNA and the hierarchical clustering graph of WGCNA
A. The hyper-parameter “power” chosen from the value above the blue horizontal line. B. The hierarchical clustering graph with color bar indicating
modules with GSE17537 dataset as an example. Parameters for WGCNA are power = 10, reassign threshold = 0, merge cut height = 0.25, and minimum

module size = 10.
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Figure S Merged cluster results generated by InQCM
A. The merged GCN modules sorted in descending order based on the length of each cluster. The screenshot only shows part of the results (Clusters 35-39)
with part of genes. B. The screenshot of the eigengene matrix (rounded to 4 decimal places for better visualization). Only part of the results (Clusters 1-16)
with part of samples (GSM437270-GSM437274) are shown. C. The Circos plot results from the 36th GCN module with 15 genes. All modules in these
subfigures are generated using the ImQCM algorithm with default parameters (unchecked weight normalization, y = 0.7, A =1, ¢t = 1, # = 0.4, minimum
cluster size = 10, and Pearson correlation coefficient) with the GSE17537 dataset as an example.

Table 1 The partial results of GO enrichment analysis

CYSRT1

XAF1

TCTN1 P

SUCLG2

CAPN5

Merged clusters with gene symbol:

® csv

txt

. Download

Preview

Merged clusters

GSM437270

1 -0.1503
2 0.1172
3 0.2212
4 -0.0995
5 -0.2455
6 -0.0652
7 0.0502
8 0.0518
9 0.1734
10 0.0833
11 0.0839
12 0.2775
13 -0.0416
14 -0.0591
15 -0.1276
16 -0.0952

Eigengene matrix

Eigengene matrix:
® csv

txt

& Download

Circos plots

GSM437271 GSM437272

0.1500
-0.0982
-0.0464

0.1561
-0.0257

0.0251

0.0443

0.1934

0.1102
-0.1028
-0.1176
-0.0293

0.0405

0.0914
-0.0843

0.0110

-0.3186
0.3087
0.0861

-0.3344

-0.1566
0.0333
0.1917
0.2648
0.2648
0.1812
0.1869
0.2267
0.0098

-0.0392

-0.2090

-0.2128

GSM437273 GSM437274

0.1091 0.0044
-0.1257 0.0591
-0.0940 -0.0028
-0.0238 0.0541

0.0999 0.0860

0.0476 -0.1432

0.0658 0.0851

0.0804 0.0627 o

0.1112 0.1588
-0.1153 -0.2419

0.0464 0.0217
-0.0346 0.0069
-0.1555 0.0125

0.0547 -0.0692

0.0291 —-0.1485
-0.0220 -0.0318

ID Term Overlap P value Z-score Overlapping gene
1 Type I interferon signaling pathway (GO:0060337) 9/148 2.51E-16 —3.2821 SP100; RSAD2; STAT2; MX1; ISG15;
SAMHD1; XAFI; IFITI; IFIT3

2 Cellular response to type I interferon (GO:0071357) 4/23 1.80E-09 —2.7766 SP100; MX1; ISG15; IFIT1
Negative regulation of single stranded viral RNA 4/44 2.73E-08 —2.6829 RSAD2; MX1; ISG15; IFITI
replication via double stranded DNA intermediate
(GO:0045869)

4 Negative regulation of viral genome replication 4/40 1.84E-08 —2.4940 RSAD2; MX1; ISG15; IFIT]
(GO:0045071)

5 Negative regulation by host of viral genome replication 4/51 5.01E-08 —2.6224 RSAD2; MX1; ISG15; IFITI
(GO:0044828)

6 Response to type I interferon (GO:0034340) 3/35 2.20E-06 —2.7155 SP100; MX1; ISG15
Regulation of type I interferon-mediated signaling 3/43 4.14E-06 —2.6859 STAT2; SAMHD1; USP18
pathway (GO:0060338)

8 Negative regulation of type I interferon-mediated 2/43 4.66E—-04 —2.5488 STAT2; USPI18
signaling pathway (GO:0060339)

9 Positive regulation of type I interferon-mediated 2/52 6.81E-04 —2.5122 STAT2; USP18
signaling pathway (GO:0060340)

10 Positive regulation of Fas signaling pathway 1/7 5.24E-03 —2.9563 SP100

(GO:1902046)

Note: This table contains partial rows and columns from original result (active panel: GO Biological Process) from the 36th GCN module with 15 genes generated by ImQCM
with GSE17537 series matrix as data. GO terms are sorted by P value. We refer readers to explore other P values and scores from TSUNAMI webpage and Enrichr package. GO,
Gene Ontology; GCN, gene co-expression network.

links should be shown on the graph.

An example output of the Circos plot is shown in Figure
5C. This example used the 36th GCN module with 15 genes
from our previously discussed example (use a color set for
texts to get a clear visual effect), annotated by gene symbols

of human genome hg38 (GRCh38). The link between a pair
of genes indicates that they belong to the same GCN

module.

Circos plots can help users visualize the locations of
genes in a GCN on human chromosomes, thus enabling
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them to identify GCNs due to copy number variation and
other structural changes. In the future, genome from mice
and other species will be incorporated for Circos plots.

Survival analysis with respect to GCN modules

An optional step of survival analysis follows the generation
of the eigengene matrix. It allows users to correlate the
GCN modules’ eigengenes with patient survival time (or
event-free survival). This extension of the tool can be fur-
ther customized to correlate module eigengenes with other
clinical traits in the future version. In our current version,
we only implements survival analysis as a starting point.

In the survival analysis, users can perform Overall Sur-
vival/Event-Free Survival (OS/EFS) analysis based on the
GCN modules’ eigengenes and look for GCN modules that
are significantly associated with prognosis. Although, de-
pending on the group of patients specified by users, such
GCNs may not exist all the time. To catry out the analysis,
users first select an eigengene (corresponding to a GCN
module) in TSUNAMI. The program then splits the patients
into two groups by the median of eigengenes. Next, it tests
the two groups against OS/EFS by calculating the P value of
the log-rank test [27,28]. Before doing so, users need to
input the numerical survival time of OS/EFS (either in
months or in days) with categorical events on OS/EFS status
(1: deceased; 0: censored). The “survdiff” function from R
package “survival” is adopted to calculate the P value and
plot the Kaplan-Meier survival curves.

Taking GSE17537 with full survival information as an
example, the Kaplan-Meier survival plot was generated
according to the OS information by dichotomizing the 36th
GCN module’s eigengenes at its median to high and low
groups, as shown in Figure 6. Such a GCN module was
generated from the ImQCM method with default settings, as
shown in Figure 3. This survival analysis offers researchers
a tool to immediately identify any GCN modules that are
associated with patients’ survival time, thus allowing re-
searchers to further study their roles as potential prognosis
biomarkers, as well as the biological pathways that

Survival probability

differentiate the patients.

Discussion

We released the online TSUNAMI tool package for gene
co-expression module identification with direct link to the
TCGA RNA-seq datasets and the NCBI GEO database,
while also accommodating users’ input data. It is a one-stop
comprehensive tool package with several advantages, such
as flexibility in parameter selections, comprehensive GCN
mining tools, direct link to downstream gene set enrichment
analysis, Circos plot visualization, and survival analysis,
with downloadable results in each step. All of these features
bring tremendous convenience to biological researchers.

In addition, TSUNAMI not only can process microarray,
RNA-seq, and scRNA-seq transcriptomic data, but is also
capable of processing any numerical valued matrix for
weighted network module mining. If the users upload an
adjacency matrix of any supported format with numerical
values as the edge weights, TSUNAMI can be used to mine
network modules. This extension will be implemented in
version 2.0.

Code availability

The web service is freely accessible through URL: https://
biolearns.medicine.iu.edu/. Source code is available at
https://github.com/huangzhii/TSUNAMI/.
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