@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Xu X, Yin Z, Chen J, Wang X, Peng D,
Shangguan X (2016) De Novo Transcriptome
Assembly and Annotation of the Leaves and Callus of
Cyclocarya Paliurus (Bata1) lljinskaja. PLoS ONE 11
(8): €0160279. doi:10.1371/journal.pone.0160279

Editor: Xiang Jia Min, Youngstown State University,
UNITED STATES

Received: March 25, 2016
Accepted: July 15,2016
Published: August 2, 2016

Copyright: © 2016 Xu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.
The raw sequence data was deposited into NCBI
SRA database (http://www.ncbi.nlm.nih.gov/sra) with
the project accession number PRINA326184 with
SRA Study accession number SRR3709217 for the
leaves and SRR3709206 for the callus. The
assembled transcripts were deposited into NCBI
Transcriptome Shotgun Assembly Sequence
Database (http://www.ncbi.nim.nih.gov/genbankitsal),
with the accession numbers (GEUI00000000).

RESEARCH ARTICLE

De Novo Transcriptome Assembly and
Annotation of the Leaves and Callus of
Cyclocarya Paliurus (Bata1) Iljinskaja

Xiaoxiang Xu'2, Zhongping Yin'-?*, Jiguang Chen', Xiaogiang Wang®, Dayong Peng’,
Xinchen Shangguan'

1 Jiangxi Key Laboratory of Natural Products and Functional Food; Jiangxi Agricultural University, Nanchang
330045, China, 2 College of Food Science and engineering, Jiangxi Agricultural University, Nanchang
330045, China, 3 State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai
University, Tianjin 300000, China

* yin_zhongping@163.com

Abstract

Cyclocarya Paliurus (Bata1) lljinskaja contains various bioactive secondary metabolites
especially in leaves, such as triterpenes, flavonoids, polysaccharides and alkaloids, and its
leaves are widely used as an hyperglycemic tea in China. In the present paper, we
sequenced the transcriptome of the leaves and callus of Cyclocarya Paliurus using lllumina
Hiseq 4000 platform. After sequencing and de novo assembly, a total of 65,654 unigenes
were generated with an N50 length of 1,244bp. Among them, 35,041 (53.37%) unigenes
were annotated in NCBI Non-Redundant database, 19,453 (29.63%) unigenes were classi-
fied into Gene Ontology (GO) database, and 7,259 (11.06%) unigenes were assigned to
Clusters of Orthologous Group (COG) categories. Furthermore, 11,697 (17.81%) unigenes
were mapped onto 335 pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG),
among which 1,312 unigenes were identified to be involved in biosynthesis of secondary
metabolites. In addition, a total of 11,247 putative simple sequence repeats (SSRs) were
detected. This transcriptome dataset provides a comprehensive sequence resource for
gene expression profiling, genetic diversity, evolution and further molecular genetics
research on Cyclocarya Paliurus.

Introduction

Cyclocarya Paliurus (Batal) Iljinskaja, a unique genus of Juglangdaceae, is a well-known edible
and medicinal plant growing in southern China. The leaves of Cyclocarya Paliurus have been
often used to produce teas with health benefits, which is named “sweat tea” for its slight sweet-
ness [1-4]. It has been demonstrated that C. Paliurus exhibits various pharmacological activi-
ties such as anti-hypertensive, hypoglycemic, antioxidant and enhancement of mental
efficiency [5-7], which may be mostly attributed to its various bioactive components, e.g. flavo-
noids [4], triterpenoids [8], polysaccharides [9] and polyphenols [10]. Among these com-
pounds, triterpenoids are an important group of health-promoting chemicals. In our previous
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studies, eight triterpenoids named B-amyrin, ursolic acid, oleanolic acid, betulinic acid, coroso-
lic acid, maslinic acid, B-boswellic acid, and arjunolic acid were isolated and identified from the
C. Paliurus leaves [11], which have been proven to have valuable pharmacological and biologi-

cal activities [12-14], and are now widely used in drugs, food and cosmetics.

However, because of the great difficulty in propagation and cultivation, C. Paliurus is
endangered, and there are very few populations scattered in remote forested mountains, which
seriously impaired the utilization of this resource [14]. We investigated the cutting of C.
Paliurus [15], and achieved a rooting rate of 64.57% by the stimulation of SJCL (a rooting
agent) [16]. We studied another rapid propagation method named in vitro culture of stem seg-
ment and obtained a high bud ratio, but found it was hard to root and grow into a tree [17].
Although significant efforts have been made, applicable large-scale breeding and cultivation
techniques of C. Paliurus have not been established yet. In order to alleviate the resource short-
age, we tried to produce the C. Paliurus secondary metabolites by the plant cell culture. Our
group succeeded in inducing callus and establishing the cell culture technology, and found cell
culture was a promising way to yield triterpenic acids [18, 19]. Five triterpenic acids have been
isolated and identified in the cell cultures of C. Paliurus in our recent studies [20].

However, there are few studies on the synthetic mechanism of C. Paliurus secondary metab-
olites, and very limited information is available about the metabolism and related biosynthetic
genes. So far, only one C. Paliurus gene named CpFPS was reported [21]. It’s very hard to do
more further researches at the molecular level on metabolic mechanism and regulation to
achieve high metabolite production. RNA-seq (High-throughput RNA sequencing technology)
provides us a feasible way to carry out some secondary metabolism investigations without
genomic sequence, and therefore is particularly attractive for non-model organisms like C.
Paliurus.

RNA-seq is a powerful tool for transcriptome analysis based on second-generation sequenc-
ing technology, which have already made substantial contributions to our understanding of
genome expression and regulation [22]. This technology can be used to estimate the expression
of genes or isoforms, detect differentially expressed genes, and determine novel splice junctions
[22-24]. In recent years, RNA-seq has been widely applied in the genome-wide quantification
of absolute transcript levels, and the mining of molecular markers and identification of genes
involved in biosynthesis of various secondary metabolites in plants, such as Salvia miltiorrhiza
[25], Panax notoginseng [26], Asparagus racemosus [27], Cunninghamia lanceolata [28], Genti-
ana rigescens [29], and Astragalus membranaceus [30].

In the present study, high-quality transcriptome data of the leaves and callus from C.
Paliurus were obtained using Illumina Hiseq 4000 platform, and a total of 65,654 assembled
unigenes were generated and annotated against public protein databases followed by GO, COG
and KEGG classification. Moreover, 11,247 putative simple sequence repeats (SSRs) were
detected. These transcriptome data provide a valuable public genomic resource for understand-
ing the metabolic mechanisms and facilitating the discovery of genes involved in secondary
metabolism pathway and its regulatory, as well as the future gene expression profiling, func-
tional genomic studies of C. Paliurus.

Materials and Methods
Plant Material and RNA Extraction

The C. Paliurus leaves for RNA-seq were harvested from the arboretum of Jiangxi Agricultural
University in July. Calluses were induced from the leaves collected between April and May, then
inoculated on fresh agar-based MS medium (Murashige and Skoog medium) [31] supplemented
with 2,4-dichlorophenoxy (2,4-D 0.5 mg/L), 1-Naphthaleneacetic acid (NAA 0.3 mg/L) and
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6-Furfurylamino-purine (KT 1.0 mg/L) and cultured under a 12/12 h (light/dark) photoperiod.
The subculture interval was initially 20 days, then gradually decreased to 10 days with the
increase of subculture time [32]. The collected samples were immediately frozen in liquid nitro-
gen and stored at -80°C. Total RNA of each sample were extracted and purified using TRIzol ™
reagent (Plant RNA purification reagent, Invitrogen, Carlsbad, CA, USA) according the manu-
facturer’s instructions. The RNA concentration and purity were detected by Nanodrop 2000
(Thermo Fisher, America), and the quality of RNA was further verified by gel electrophoresis
and Agilent 2100. Only high-quality RNA samples (OD 260/280 = 1.8~2.2, 0D260/230>2.0,
RIN>6.5, 285:185>1.0, >10pg) were used to construct sequencing library.

cDNA library construction and lllumina sequencing

RNA-seq transcriptome library was prepared from 5ug of total RNA using TruSeq™ RNA
sample preparation kit from Illumina (San Diego, CA). The poly(A) mRNA was isolated from
total RNA using Oligo (dT) magnetic beads. Following purification, the mRNA was randomly
cleaved into short fragments (100 to 400 bp) after adding fragmentation buffer. These short
fragments were used as templates to synthesize the first-strand cDNA using reverse transcrip-
tase and random primers. The second-strand was synthesized subsequently using a SuperScript
double-stranded cDNA synthesis kit (Invitrogen, CA) with random hexamer primers (Illu-
mina). The cDNA fragments were purified and resolved with EB buffer for end repair and A-
tailing addition, and then connected with paired-end adapters. After PCR amplification using
Phusion DNA polymerase (NEB) for 15 PCR cycles, the cDNA target fragments of 200-300 bp
were size-selected to establish the cDNA library on 2% Low Range Ultra Agarose. After quanti-
fication by TBS380, the paired-end RNA-seq sequencing library was sequenced from the 5' to
3' ends using an Illumina Hiseq 4000 platform with the 2x151 bp paired-end read module.

Data filtering and De novo assembly

The raw paired-end reads, which were transformed by the Base Calling into sequence data,
were cleaned to high-quality reads by removing the joint sequences and adaptor sequences,
reads containing more than 10% N rate, and trimming the low-quality reads (quality

value < 20) from the 3' end of the sequence and the raw reads with an average length less than
30bp. Then, de novo transcriptome assembly was conducted using software Trinity (http://
trinityrnaseq.sourceforge.net/, Version number: trinityrnaseq, release-20140413) without ref-
erence genome [33], Trinity consists of three software modules: Inchworm, Chrysalis and But-
terfly, and has been regarded as the authoritative software for the efficient and robust de novo
reconstruction of transcriptome.

De novo assembly was carried out according to the established method [33], which was
briefly described as follows. Firstly, linear transcript contigs were efficiently reconstructed by
Inchworm in the following seven steps: (1) Constructing a k-mer dictionary (k = 25) from all
sequence reads; (2) Removing likely error-containing k-mers from the dictionary; (3) Selecting
the most frequent k-mer to seed a contig assembly (excluding both low-complexity and single-
ton k-mers); (4) Extending the seed in each direction with the highest occurring k-mer of a k-1
overlap; (5) Extending the sequence in either direction until it cannot be extended further; (6)
reporting the linear contig; (7) Repeating steps three to six with the next most abundant k-mer
until the entire k-mer dictionary has been exhausted. Secondly, Inchworm contigs were recur-
sively grouped into connected components by Chrysalis. Contigs with a perfect overlap of k- 1
bases or a minimal number of reads that span the junction across both contigs were deemed to
be derived from the same gene and clustered into the same group. After grouping, complete de
Bruijn graphs were constructed for each component. Thirdly, Butterfly processed the
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individual graphs independently, and extracted full-length isoforms and teased apart tran-
scripts derived from paralogous genes. Redundant sequences were eliminated, and the longest
transcript that could not be extended on either end was defined as unigenes. The assembled
unigenes (longer than 200 bp) had been deposited into the NCBI Transcriptome Shotgun
Assembly Sequence Database (http://www.ncbi.nlm.nih.gov/genbank/tsa/) with the accession
numbers (GEUI00000000).

Functional annotation and classification

All assembled unigenes were aligned with BLASTX program for homology searches against
publicly available protein databases Non-redundant (http://www.ncbi.nlm.nih.gov/), Swissprot
(http://www.ebi.ac.uk/uniprot/), Pfam (http://pfam.sanger.ac.uk/), String(http://string-db.org/)
with identity set at >30% and a cutoff E-value of 10>, and annotated and classified on Gene
Ontology (http://www.geneontology.org/), Clusters of Orthologous Group (http://www.ncbi.
nlm.nih.gov/COG/), and the KEGG pathway (http://www.genome.jp/kegg/) with a threshold
E-value of 107, The aligning results were used to identify the sequence direction and to predict
the coding regions. If the aligning results from different databases were conflicted with each
other, a priority order of alignments from Nr, SwissPort, KEGG, GO and COG was followed.
Based on the Nr annotations, the Blast2GO program was used to obtain GO annotations accord-
ing to biological process, molecular function and cellular component [34]. The unigenes were
also aligned to the COG database to predict and classify functions, and the secondary metabolic
pathways were annotated according to the KEGG pathway database. Transcription Factors of C.
Paliurus were extracted from Plant Transcription Factor Database (PlantTFDB), and unigenes
were mapped to them using Blastn program.

Detection of SSR markers

The unigenes were scanned for microsatellites using the MISA software (http://pgrc.
ipkgatersleben.de/misa/) with the default parameters. The parameters were adjusted for identi-
fication of perfect di-nucleotide, tri-nucleotide, tetra-nucleotide, penta-nucleotide, and hexa-
nucleotide motifs with a minimum of 6, 5, 5, 5, and 5 repeats, respectively. Primer pairs were
designed using Primer 3.0.

Results and Discussion
RNA sequencing and de novo assembly

To generate a comprehensive overview of C. Paliurus transcriptome, total RNA were extracted
from leaves and callus, then the mRNA was isolated, and cDNA libraries were established and
sequenced separately using Illumina Hiseq 4000 platform, which generated 39.0 and 49.4 mil-
lion raw reads, respectively (Table 1). After removing adaptor sequences, ambiguous reads and
low-quality reads, the quality of reads was assessed successively. The clean reads were individu-
ally generated with the average GC percentage of 46.49% and 47.90% (Table 1). By using the
Trinity program [1], all high-quality reads were assembled into 65,654 unigenes with an N50
of 1,244 bp and average length of 704 bp, and 84,223 transcripts were constructed with an N50
of 1,362 bp and average length of 792 bp (Table 2). The average GC content of the unigenes
was 42.95%. Furthermore, the length of these unigenes ranged from 201 to 10,000 bp (Fig 1),
and the majority were disturbed in 201-400bp. However, there are still 14,155 unigenes
(21.56%) whose lengths were more than 1,000bp. These data indicated that the generated uni-
genes in our experiments were of fine quality and therefore suitable for further annotation.
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Table 1. Summary of transcriptome sequencing of C. Paliurus leaves and callus.

leaves callus
Total raw reads 39,053,944 49,408,746
Total clean reads 38,324,176 48,392,438
Q20 percentage (%) 98.11 98.09
Q30 percentage (%) 94.18 94.12
Error percentage (%) 0.0116 0.0117
GC percentage (%) 46.49 47.90

(Note: Q20, the proportion of nucleotides with quality value larger than 20 in reads, Q30, the proportion of
nucleotides with quality value larger than 30 in reads)

doi:10.1371/journal.pone.0160279.t001

Functional annotation and classification

In order to predict and analyze the function of assembled unigenes, the total annotated uni-
genes were aligned against the NCBI non-redundant (Nr) database, the String and SwissPort
protein database, the Gene Ontology (GO) database, the Clusters of Orthologous Group
(COQG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database using the BLASTX
program with an E-value cut-off of 10, In total, 35,041 (53.37%) unigenes were annotated in
Nr database (S1 Table). Beyond that, 17,709 (26.97%), 15,529 (23.65%), 11,697 (17.81%),
20,629 (31.42%) unigenes were annotated in Pfam, String, KEGG, SwissPort databases, respec-
tively (Table 3). Further blast statistics indicated that 80.60% of the annotated unigenes in NR
exhibited high homology with the E-value < 1e-20, and 52.69% with a strong E-value (E-
value = 0) (Fig 2A). The similarity distribution showed that 63.97% of the annotated sequences
had similarities higher than 80%, while 36.02% had a similarity between 40% and 80% (Fig 2B).
Additionally, the annotated unigenes were compared to known nucleotide sequences of other
plant species, which were best matched to the known nucleotide sequences from Vitis vinifera
(11.40%), followed by Theobroma cacao (11.28%), Prunus persica (8.97%), Prunus mume
(8.19%), and Morus notabilis (5.69%) (Fig 2C).

Gene Ontology (GO) is an international standardized gene functional classification system.
The GO terms for C. Paliurus unigenes were retrieved using Blast2GO [35]. A total of 19,453
(29.63%) assembled unigenes were annotated and classified into three main categories: Biologi-
cal Processes, Cellular Component, and Molecular Function, and then distributed into 58 sub-
categories (Fig 3). Within the Biological Processes classification, metabolic process (12,696,
65.32%), cellular process (11,001, 56.59%), and single-organism process (8,854, 45.60%) were
the most significantly represented (Fig 3), which indicated that these unigenes played an
important metabolic activity in Cyclocarya Paliurus. Under the Cellular Component classifica-
tion, the unigenes were mainly related to “cell” (7,090, 36.45%) and “cell part” (7,090, 36.45%),

Table 2. Summary of the sequence assembly after lllumina sequencing.

Unigenes Transcripts
Total sequence num 65,654 84,223
Total sequence base 46,199,033 66,728,179
GC percentage (%) 42.94 42.96
Average length (bp) 704 792
Smallest length (bp) 201 201
Largest length (bp) 9184 9184
N50 (bp) 1,244 1,362

doi:10.1371/journal.pone.0160279.t002
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Fig 1. Length distribution of assembled unigenes. Among 65,654 unigenes, 44,010 (67.03%) were shorter than 600bp
and 14,155(21.56%) were longer than 1,000bp.

doi:10.1371/journal.pone.0160279.g001

followed by “organelle” (5,031, 25.86%) and “membrane” (4,324, 22.23%). Only a few unigenes
were assigned to extracellular matrix, extracellular matrix part and collagen trimer. In the
Molecular Function category, the majority were assigned to “binding” (10,265, 52.77%) and
“catalytic activity” (10,428, 53.61%) prominently. The above-mentioned findings were similar
to the recent report of Chinese Chive transcriptome functional annotation [35].

COG is a database which is widely used to predict and classify functional genes. Every pro-
tein in the COG database is assumed to be evolved from an ancestor, and the whole database is
built on coding proteins with complete genomes as well as system evolution relationships of
bacteria, algae, and eukaryotes [36, 37]. Out of the 65,654 unigenes, 7,259 (11.06%) were anno-
tated and classified into 24 functional categories (Fig 4). Among the aligned COG classifica-
tions, “general function prediction only” category (1,006, 13.86%) was the largest group,

Table 3. Summary of unigenes annotation.

Database Total unigenes Annotated unigenes Percentage
Pfam 65,654 17,709 26.97%
String 65,654 15,529 23.65%
KEGG 65,654 11,697 17.81%
Swissprot 65,654 20,629 31.42%
NR 65,654 35,041 53.37%

doi:10.1371/journal.pone.0160279.t003
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Fig 2. Unigenes homology searches against the NR database. (A) The E-value distribution of BLAST hits. (B) The similar distribution of BLAST hits.
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followed by “signal transduction mechanisms" (972, 13.39%), “posttranslational modification,
protein turnover, chaperones” (757, 10.43%), “translation, ribosomal structure and biogenesis”
(664, 9.15%), and “carbohydrate transport and metabolism” (510, 7.03%), whereas only few
unigenes were assigned to “cell motility” (7, 0.096%), “extracellular structures” (1, 0.014%),
and “nuclear structure” (1, 0.014%), respectively. In addition, 334 unigenes were classified into
the unknown function.

Metabolic pathway analysis by KEGG

The KEGG pathway database provides a wealth of information on molecular interaction and
reaction networks t o further understand the biological functions of unigenes. The mapped
results indicated that 11,697 (17.81%) unigenes were predominantly annotated with Enzyme
Commission (EC) numbers and divided into five branches according to the metabolic pathway
(Fig 5) (Metabolism; Genetic Information Processing; Environmental Information Processing;
Cellular Processes; Organismal Systems), and further grouped into 335 KEGG pathways (52
Table). It was noteworthy that 7,746 (66.34%) mapped unigenes participated in the metabolism
and 1,312 (11.24%) were involved in the biosynthesis of secondary metabolites such as phenyl-
propanoid biosynthesis (197), flavonoid biosynthesis (42), terpenoid backbone biosynthesis
(58), which were the important information we are especially interested in. Furthermore, the
top 20 largest annotated pathway groups of C. Paliurus were presented in Fig 6. The most rep-
resentative KEGG pathway was “Ribosome”, followed by “Plant hormone signal transduction”
(328), “Protein processing in endoplasmic reticulum” (301), “RNA transport” (299), and
“Plant pathogen interaction” (280). As shown in Fig 6, there were 328 (2.81%) unigenes
mapped into the “Plant hormone signal transduction” pathway, some of which might be stimu-
lated to express by the supplemented plant hormones in the callus culture medium. In our
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experiments, plant hormones such as rootone, indole acetic acid, and cytokinins were added
into the callus culture medium, which have been presumed to participate in the regulation of
“Plant growth”, “Cell culture”, “Cell differentiation”, and “Recession”. These predicted results
indicated that numerous unigenes were involved in the secondary metabolite biosynthesis of
C. Paliurus leaves and callus. The above mapped information with KEGG pathway database
would be very useful for future researches on gene function and its regulatory mechanism of
C. Paliurus.

Transcription factor analysis

Transcription factors (TFs) play critical roles in plant growth, bioactive component synthesis
and gene expression regulation, especially in the secondary metabolism regulation. Plants show
various TFs expression patterns when growing in different environments or facing stress,
which further significantly affect the synthesis of secondary metabolites [38-40]. Therefore,
the identification of putative TF genes is useful for understanding the regulatory mechanism
of secondary metabolites. TFs are often classified into different families according to the fea-
tures of DNA-binding domains. In this study, a total of 21,843 unigenes were annotated and
further classified into 60 transcription factor families (Plant Transcription Factor Database,
PlantTFDB, http://planttfdb.cbi.pku.edu.cn) in this paper (Fig 7). Among these TF families,
the most abundant transcription factors of C. Paliurus were found in the bHLH family which
includes 2,120 unigenes. The second was NAC, followed by the bZIP, MYB-related, WRKY,
C3H, B3 and C2H2 TF families, which contains 1,734, 1,422, 1,311, 1,071, 1,036, 1,007 and 990
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unigenes, respectively. Researches have validated that the bHLH, WRKY, MYB, bZIP, and
C2H2 TF families play a major role in the regulation of many genes which participate in the
plant secondary metabolism [41, 42], especially for the regulation of the bioactive component
synthesis, such as flavonoids [43], alkaloids [44, 45], and terpenoids [46]. The expression level
of these TFs in C. Paliurus may be associated with the biosynthesis of secondary metabolites,
and the discovery of these putative TFs may provide valuable information for the future
researches on gene expression regulation, particularly those TFs related to the flavonoid path-
way which will be described below.

Analysis of flavonoid biosynthesis pathway

Flavonoids are polyphenolic secondary metabolites derived from the phenylalanine via the
phenylpropanoid pathway, which become a research focus in recent years for their various bio-
logical and pharmacological activities [47]. It was reported that the total flavonoid content of
C. Paliurus leaves ranged from 0.73 to 4.73%, depending on the growing region, harvest time,
determination method and so on [48-50]. The most abundant flavonoid was isoquercitrin in
the C. Paliurus leaves [12]. Up to now, sixteen flavonoids have been isolated and identified
from C. Paliurus (Table 4). In the present study, 197 unigenes were found to be involved in
phenylpropanoid pathway by mapping with KEGG pathway database. Among them, 42, 3, 1
and 3 unigenes were involved in the biosynthesis of flavonoids, anthocyanin, isoflavonid and
flavone and flavonol, respectively, which represented different enzymes in the different path-
ways. The unigenes associated with flavonoid biosynthetic pathway were shown in the Fig 8. A
total of 10 candidate genes with annotations matching enzymes in the flavonoid biosynthesis,
i.e., phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), 4- coumaroyl:

PLOS ONE | DOI:10.1371/journal.pone.0160279 August 2, 2016 9/19



el e
@ ' PLOS ‘ ONE Transcriptome Assembly and Annotation of Cyclocarya Paliurus

Sensory system il 188
Nervous system Il 239
Immune system I 422
Excretory systemill 111
Environmental adaptation I 418 E
Endocrine system I 490
Digestive systemll 195
Developmentill 102
Circulatory systemill 119
Transport and catabolismZ——"""7] 576 N
Cell motilityd 60 D
Cell growth and death—71 498
Cell communication[1 161 U
Signaling molecules and interaction B 335
Signal transductionl | 801 C
Membrane transportE 199 U
Translation! | 1258 N
Transcription[_] 109 B
Replication and repairC____1 380
Folding, sorting and degradationC ] 722
Xenobiotics biodegradation and metabolism[—] 163
Nucleotide metabolism[_] 258
Metabolism of terpenoids and polyketides[—1 296
Metabolism of other amino acids—__] 256
Metabolism of cofactors and vitamins[C_—1 297
Lipid metabolism[C—————"1] 585
Glycan biosynthesis and metabolism—__1 265 A
Global and overview mapsl| ] 2790
Energy metabolism[C_—————] 756
Chemical structure transformation mapsl 25
Carbohydrate metabolisml | 997
Biosynthesis of other secondary metabolites_] 273
Amino acid metabolismi | 825 U

D C

r T T T T T T T

0 5 10 15 20 25 30 35 40

Percent of Isoform(%)

Fig 5. KEGG pathway annotation of the unigenes. These unigenes were divided into five branches (A, Metabolism; B, Genetic Information Processing; C,
Environmental Information Processing; D, Cellular Processes; E, Organismal System.)

doi:10.1371/journal.pone.0160279.9005

coenzyme A ligase(4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone -3-
hydroxylase (F3H), flavanone-3'-hydroxylase (F3'H), flavonoid 3',5'-hydroxylase (F3'5'H),
dihydroflavonol 4-reductase (DFR) and flavonol synthase (FLS), were annotated in this paper.
Moreover, the unique putative unigenes encoding anthocyanidin synthase (ANS), leucoantho-
cyanidin reductase (LAR), anthocyanidin reductase (ANR) and anthocyanidin 3-O-glucosyl-
transferase (3GT) were also prominently found. It's important to clone these unique genes and
further analyze their functions in the future studies. Isoflavonoids, a subclass of flavonoids with
special structure and function, have been normally found in leguminous plants. It's interesting
that one isoflavonoid 7-hydroxyl-4"-methoxy isoflavone was identified in C. Paliurus leaves
[51]. However, 2-hydroxyisoflavanone synthase (IFS), which catalyzes the conversion of flava-
nones to isoflavones, hasn’t been found in our mapping experiments. A further study is needed
in the future.

Transcription factors play an important role in flavonoid biosynthesis. These factors regu-
late some genes co-expression to stimulate or inhibit the accumulation of flavonoids when
combining with the special structure gene function. So far, researchers have isolated and
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Fig 6. The top 20 largest KEGG pathways. Annotated unigenes were classified into 335 KEGG pathways. The top 20 pathways containing

unigenes are displayed.

doi:10.1371/journal.pone.0160279.g006

identified many transcription factor genes involved in regulation of flavonoids in Maize [52],
Arabidopsis [53], Petunia [54], Rice [55] and other crops, such as MYB, MYC, bZIP, WD40,
zinc finger TFs. Among these transcription factors, MYB and MYC (bHLH) families became
the research focus.

MYC (bHLH) is one of the biggest transcription factor families in plant. This family regu-
lates not only the plant growth and developmental processes including formation of trichome
and light signal transduction, but also the stress responses and secondary metabolism [56, 57].
Plant bHLH proteins have been classified into 32 subfamilies according to genome-wild classi-
fication and the evolutionary analysis [58], whereas members of the same plant bHLH subfam-
ilies had similar functional characteristic [59]. There were some bHLH subfamilies involved in
the regulation of phenylpropanoid and terpenoids biosynthesis pathways, such as AtTT8 in
Arabidopsis [60], OsRa-c in rice [61] and TcJAMYC in yew [46]. Furthermore, the above men-
tioned subfamilies have also been found to be related to the regulation of anthocyanin biosyn-
thesis in various plants, for example, Zea mays L, Oryza sativa L, Dahlia variabilis Hort.and
Brassica oleracea L [62-65].

It was reported that there were approximately 197 and 155 MYB genes in Arabidopsis and
rice, respectively [66]. The first plant MYB gene, C1, encodes a MYB-like TF, was isolated from
Zea mays, which regulated the synthesis of anthocyanin with the synergy of R/B proten family
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doi:10.1371/journal.pone.0160279.9007
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Table 4. Summary of flavonoids identified in C. Paliurus.

Number Name Chemical Formula Reference
1 Kaempferol C15H1006 [71]
2 Quercetin CisH100- [71]
3 Isoquercitrin Co1H20012 [71]
4 3,6,3',5'-tetramethoxy-5,7,4' trihydroxyflavone C19H180g [72]
5 Kaempferol-7-O-a-L-rhamnoside Co1H20010 [73]
6 Kaempferol-4’-Methylether-7-O-B-D-Mannose CooHs5044 [73]
7 Quercetin-3-0O-a-L-rhamnopyranoside Cs1H50014 [74]
8 Kaempferol-3-B-D-glucuronide Co1H1g012 [75]
9 Kaempferol-3-O-a-L-Rhamnopyranoside Cz1H50010 [76]
10 Kaempferol-3-O-B-D-Galactopyranoside C21H180+4 [76]
11 Kaempferol 3-O-3-D-glucopyranoside C21H20044 [76]
12 Kaempferol-3-0-a-L-(4"'-E-p-coumaroyl) rhamnopyranoside Ca3H32045 [76]
13 Quercetin-3-0-B-D-glucuronate sodium C,1H17044Na [77]
14 myricetin-3-0-B-D-glucuronate sodium C45H10045Na [77]
15 7-hydroxyl-4°-methoxy isoflavone Co1H17045 [51]
16 Myricetin Ci15H100g [51]

doi:10.1371/journal.pone.0160279.t004

[67]. Grotewold et al characterized the maize P gene encode proteins with homology to the
DNA-binding domain of MYB-like transcription factors [68]. According to Grotewold et al
[69], maize P1 (R2R3-MYB transcription factor) improved the expression of CHS (chalcone
synthase), CHI (chalcone isomerase), DFR(dihydroflavonol 4-reductase), but didn't stimulate
the expression of branching enzyme such as F3H (flavanone 3-hydroxylase) in anthocyanin
biosynthesis. However, it has been reported that many R2R3-MYB transcription factors, e.g.,
AN2 in Petunia hybrid [70] and PAP1/PAP2 in Arabidopsis thaliana [53], were involved in the
regulation of anthocyanin biosynthesis. In our analysis, a total of 711 MYB genes were found
in C. Paliurus. Therefore, more study remains to be done to identify the MYB genes from C.
Paliurusfor studying the regulation of flavonoid biosynthesis.

In the present paper, we found many transcription factors involved in flavonoid metabolism
of C. Paliurus, providing critical information for further regulation study on the gene expres-
sion and secondary metabolism. We have established the cell suspension culture of C. Paliurus
to produce the bioactive components such as flavonoids, triterpenoids and polysaccharides,
and the above mentioned transcription factor information will be helpful to further develop
and improve our current approach to achieve a higher yield of these compounds by gene
expression regulation. Therefore, we can use genetic engineering for improving plant flavonoid
secondary metabolic pathways to effectively increase the content of secondary metabolites by
studying the transcription factors involved in flavonoid secondary metabolism, and under-
standing the mechanisms of plant secondary metabolic regulation.

Detection of simple sequence repeats (SSRs)

SSRs, or microsatellites are important molecular markers for genetics and biology researches,
including gene mapping, genetic diversity assessment, comparative genomics, and molecular
breeding. In this paper, 65,654 assembled unigene sequences from C. Paliurus were scanned to
explore the SSR profiles using MISA software and the results were shown in Table 5. A total of
9,688 sequences containing 11,247 SSRs were identified. Of all 9,688 SSR containing sequences,
1,353 had more than one SSR. In addition, 494 SSRs were present in compound forms. Among
these SSRs, dinucleotide repeat motifs (5,198, 46.21%) were the most abundant, followed by
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doi:10.1371/journal.pone.0160279.g008

4,217 (37.49%) mononucleotide repeat motifs, 1,681 (14.95%) trinucleotide repeat motifs, tetra-
nucleotide, hexa-nucleotide and penta-nucleotide repeat motifs. The main repeat motifs were
AG/CT which accounted for 36.90% (4,150 SSRs), followed by A/T (4,004, 35.60%), AT/AT,

Table 5. Summary of the SSRs identified in the transcriptome sequences.

Item Number
Total number of sequences examined 65,654
Total size of examined sequences (bp) 46,199,033
Total number of identified SSRs 11,247
Number of SSR containing sequences 9,688
Number of sequences containing more than 1 SSR: 1,353
Number of SSRs present in compound formation 494

doi:10.1371/journal.pone.0160279.t005
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Table 6. Frequency of SSRs repeat motifs in C. Paliurus.

Repeat motif length Repeat number Total Frequency%
5 6 7 8 9 10 >10
AC/GT 134 73 45 22 12 21 307 2.72
AG/CT 1,109 737 746 879 679 4,150 36.90
AT/AT 216 132 121 113 110 29 721 6.41
CG/CG 10 8 2 20 0.18
AAC/GTT 44 18 5 1 1 69 0.61
AAG/CTT 283 170 100 5 558 4.96
AAT/ATT 77 25 21 1 124 1.10
ACC/GGT 96 35 23 3 1 158 1.40
ACG/CGT 26 10 7 4 47 0.42
ACT/AGT 17 9 5 1 32 0.28
AGC/CTG 126 40 25 1 192 1.71
AGG/CCT 146 65 46 4 261 2.32
ATC/ATG 107 48 30 4 189 1.68
CCG/CGG 35 6 10 51 0.45
Tetranucleotide 108 16 1 125 1.11
Pentanucleotide 11 1 12 0.11
Hexanucleotide 10 4 14 0.12

doi:10.1371/journal.pone.0160279.t006

AAG/CTT, AC/GT and ACC/GGT repeat (Table 6). A total of 5341 primer pairs, which contain
three sets of primers respectively, were designed from 9,688 sequences using Primer 3 (S3 Table).
These results provided plenty of reliable markers for genetic linkage mapping, analysis of genetic
polymorphism and functional gene mining of C. Paliurus and its closely related species.

Conclusions

C. Paliurus is a well-known edible and medicinal plant, but no genomic information is available
yet. In this paper, the transcriptome of C. Paliurus leaves and callus without a reference genome
was analyzed using Illumina Hiseq 4000 platform. A total of 65,654 assembled unigenes were
generated. The annotated unigenes were functionally classified in the GO, COG, and KEGG
databases. Moreover, the putative simple sequence repeats (SSRs) were detected. To our knowl-
edge, this is the first attempt to de novo assemble the whole transcriptome of C. Paliurus. This
study provided not only a comprehensive enough coverage for gene cloning, expression, and
functional analysis, but also a valuable public platform to understand the biosynthesis and reg-
ulation of secondary metabolites in C. Paliurus, especially those important bioactive
components.

Supporting Information

S1 Table. Unigene annotation by the NCBI NR, Swiss-Port, Pfam, String, COG, GO and
KEGG databases.
(XLSX)

S2 Table. List of KEGG pathway in C. Paliurus.
(XLSX)

§3 Table. Designed SSR primers for C. Paliurus.
(XLSX)
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