Published online 22 March 2021

NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1 1
doi: 10.1093/nargabllqab015

Two-stage Cox-nnet: biologically interpretable
neural-network model for prognosis prediction and its
application in liver cancer survival using
histopathology and transcriptomic data

Zhucheng Zhan'-', Zheng Jing?1, Bing He3, Noshad Hosseini3, Maria Westerhoff?,

Eun-Young Choi* and Lana X. Garmire '3’

School of Science and Engineering, Chinese University of Hong Kong, Shenzhen Campus, Shenzhen 518172, PR.
China, 2Department of Applied Statistics, University of Michigan, Ann Arbor, Ml 48104, USA, 3Department of
Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Ml 48104, USA and “Department of
Pathology, University of Michigan, Ann Arbor, Ml 48104, USA

Received July 31, 2020; Revised February 01, 2021; Editorial Decision February 17, 2021; Accepted February 24, 2021

ABSTRACT

Pathological images are easily accessible data with
the potential of prognostic biomarkers. Moreover, in-
tegration of heterogeneous data types from multi-
modality, such as pathological image and gene ex-
pression data, is invaluable to help predicting can-
cer patient survival. However, the analytical chal-
lenges are significant. Here, we take the hepatocel-
lular carcinoma (HCC) pathological image features
extracted by CellProfiler, and apply them as the input
for Cox-nnet, a neural network-based prognosis pre-
diction model. We compare this model with the con-
ventional Cox proportional hazards (Cox-PH) model,
CoxBoost, Random Survival Forests and DeepSurv,
using C-index and log-rank P-values. The results
show that Cox-nnet is significantly more accurate
than Cox-PH and Random Survival Forests models
and comparable with CoxBoost and DeepSurv mod-
els, on pathological image features. Further, to inte-
grate pathological image and gene expression data
of the same patients, we innovatively construct a
two-stage Cox-nnet model, and compare it with an-
other complex neural-network model called PAGE-
Net. The two-stage Cox-nnet complex model combin-
ing histopathology image and transcriptomic RNA-
seq data achieves much better prognosis prediction,
with a median C-index of 0.75 and log-rank P-value
of 6e—7 in the testing datasets, compared to PAGE-
Net (median C-index of 0.68 and log-rank P-value of

0.03). Imaging features present additional predictive
information to gene expression features, as the com-
bined model is more accurate than the model with
gene expression alone (median C-index 0.70). Patho-
logical image features are correlated with gene ex-
pression, as genes correlated to top imaging features
present known associations with HCC patient sur-
vival and morphogenesis of liver tissue. This work
proposes two-stage Cox-nnet, a new class of biolog-
ically relevant and interpretable models, to integrate
multiple types of heterogenous data for survival pre-
diction.

INTRODUCTION

Prognosis prediction is important for providing effective
disease monitoring and management. Various biomateri-
als have been proposed as potential biomarkers to pre-
dict patient survival. Among them, hematoxylin and eosin
(H&E) stained histopathological images are very attractive
materials to extract biomarker features. Compared to ge-
nomic materials, such as RNA-seq transcriptomics, these
images are much more easily accessible and cheaper to ob-
tain, through processing archived formalin-fixed paraffin-
embedded (FFPE) blocks. In H&E staining, the hema-
toxylin is oxidized into phematein, a basic dye that stains
acidic (basophilic) tissue components (ribosomes, nuclei
and rough endoplasmic reticulum) into darker purple color,
whereas acidic eosin dye stains other protein structures of
the tissue (stroma, cytoplasm and muscle fibers) into a pink
color. As patients’ survival information is retrospectively
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available in electronic medical record data and FFPE blocks
are routinely collected clinically, the histopathology images
can be generated and used for highly valuable and predictive
prognosis models.

Previously, we developed a neural-network model called
Cox-nnet to predict patient survival, using transcriptomic
data (1). Cox-nnet is an alternative to the conventional
methods, such as Cox proportional hazards (Cox-PH)
methods with LASSO or ridge penalization. We have
demonstrated that Cox-nnet is more optimized for survival
prediction from high-throughput gene expression data, with
comparable or better performance than other conventional
methods, including Cox-PH, Random Survival Forests (2)
and CoxBoost (3). Moreover, Cox-nnet reveals much richer
biological information, at both the pathway and gene lev-
els, through analyzing the survival-related ‘surrogate fea-
tures’ represented as the hidden layer nodes in Cox-nnet.
A few other neural network-based models were also pro-
posed around the same time as Cox-nnet, such as Deep-
Surv (4). It remains to be explored whether Cox-nnet can
take input features from other data types that are less bio-
logically intuitive than genomic data, such as histopathol-
ogy imaging data. It is also important to benchmark Cox-
nnet with the other above-mentioned methods. Moreover,
some neural network-based models were reported to han-
dle multi-modal data (5). For example, PAGE-Net is a com-
plex neural-network model that has a convolutional neu-
ral network (CNN) layer followed by pooling and a ge-
nomic model involved in transformation of the gene layer
to pathway layer (5). The genomic neural network por-
tion is followed by two hidden layers, the latter of which
is combined with the image neural-network model to pre-
dict glioblastoma patient survival. It is therefore of inter-
est to test whether a model built upon Cox-nnet, using pre-
extracted, biologically informative features, can combine
multiple types of data, e.g. imaging and genomic data, and
if so, how well it performs relative to other models, such as
PAGE-Net.

In this study, we extend Cox-nnet to take up pathologi-
cal image features extracted from imaging processing tool
CellProfiler (6), and compare the predictive performance of
Cox-nnet relative to Cox proportional hazards model, Cox-
Boost and Random Survival Forests which we had com-
pared before on genomic data, as well as the state-of-the-
art method DeepSurv (4). Moreover, we propose a new type
of two-stage complex Cox-nnet model, which combines the
hidden node features from multiple first-stage Cox-nnet
models, and then use these combined features as the in-
put nodes to train a second-stage Cox-nnet model. We ap-
ply these models on The Cancer Genome Atlas (TCGA)
hepatocellular carcinoma (HCC), which we had previously
gained domain experience on (7,8). HCC is the most preva-
lent type of liver cancer that accounts for 70-90% of all liver
cancer cases. It is a devastating disease with poor prognosis,
where the 5-year survival rate is only 12% (9), and the prog-
nosis prediction becomes very challenging due to the high
level of heterogeneity in HCC as well as the complex etiolog-
ical factors. Limited treatment strategies in HCC relative to
other cancers, also impose an urgent need to develop tools
for patient survival prediction. Further, we also evaluate the
performance of two-stage Cox-nnet with PAGE-Net on in-

tegrating pathological images and gene expression data of
HCC, and show that Cox-nnet achieves higher accuracy in
testing data.

MATERIALS AND METHODS
Datasets

The histopathology images and their associated clinical in-
formation are downloaded from TCGA. A total of 384 liver
tumor images are collected. Among them, 322 samples are
clearly identified with tumor regions by pathology inspec-
tion. Among these samples, 290 have gene expression RNA-
seq data, and thus are selected for pathology—gene expres-
sion integrated prognosis prediction. The gene expression
RNA-seq dataset is also downloaded from TCGA; each
feature is normalized into RPKM using the function Pro-
cessRNASeqData by TCGA-Assembler (10).

Tumor image preprocessing

For each FFPE image stained with H&E, two pathologists
at the University of Michigan provide us with the Region
of Interest (tumor regions). The tumor regions are then ex-
tracted using Aperio software ImageScope (11). To reduce
computational complexities, each extracted tumor region is
divided into non-overlapping 1000 by 1000 pixel tiles. The
density of each tile is computed as the summation of red,
green and blue values, and 10 tiles with the highest den-
sity are selected for further feature extraction, following the
guideline of others (12). To ensure that the quantitative fea-
tures are measured under the same scale, the red, green and
blue values are rescaled for each image. Image #128 with the
standard background color (patient barcode: TCGA-DD-
A73D) is selected as the reference image for the others to be
normalized against. The means of red, green and blue val-
ues of the reference image are computed and the rest of the
images are normalized by the scaling factors of the means of
red, green and blue values relative to those of the reference
image.

Feature extraction from the images

CellProfiler is used for feature extraction (13). Images are
first preprocessed by ‘UnmixColors’ module to H&E stains
for further analysis. ‘Identify PrimaryObject’ module is used
to detect unrelated tissue folds, which are then removed by
‘MaskImage’ module to increase the accuracy for detec-
tion of tumor cells. Nuclei of tumor cells are then identi-
fied by ‘Identify PrimaryObject’ module again with param-
eters set by Otsu algorithm. The identified nuclei objects
are utilized by ‘IdentifySecondaryObject’ module to detect
the cell body objects and cytoplasm objects that surround
the nuclei. Related biological features are computed from
the detected objects, by a series of feature extraction mod-
ules, including ‘MeasureGranularity’, ‘MeasureObjectSize-
Shape’, ‘MeasureObjectIntensity’, ‘MeasureObjectIntensi-
tyDistribution’, ‘MeasureTexture’, ‘MeaureImage AreaOccu-
pied’, ‘MeasureCorrelation’, ‘Measurelmagelntensity’ and
‘MeasureObject Neighbors’. To aggregate the features from
the primary and secondary objects, the related summary
statistics (mean, median, standard deviation and quartiles)



are then calculated to summarize data from object level to
image level, yielding 2429 features in total. Each patient
is represented by 10 images, and the median of each fea-
ture is selected to represent the patient’s image biological
feature.

Survival prediction models

Cox-nnet model. The Cox-nnet model is implemented in
the Python package named Cox-nnet (1). Current im-
plementation of Cox-nnet is a fully connected, two-layer
neural-network model, with a hidden layer and an output
layer for Cox regression. A drop-out rate of 0.7 is applied to
the hidden layer to avoid overfitting. The size of the hidden
layer is equal to the square root of the size of the input layer.
We use a hold-out method by randomly splitting the dataset
to 80% training set and 20% testing set, using train_test_split
function from Sklearn package. We use grid search and 5-
fold cross-validation to optimize the hyperparameters for
the deep learning model on the selected training set. We
train the model with a learning rate of 0.01 for 500 epochs
with no mini-batch applied, and then evaluate the model
on testing data. The procedure is repeated 20 times to as-
sess the average performance. More details about Cox-nnet
are described in (1).

Cox proportional hazards model. ~ Since the number of fea-
tures produced by CellProfiler exceeds the sample size, an
elastic-net Cox proportional hazards model is built to select
features and compute the prognostic index (PI) (14). Func-
tion cv.glmnet in the Glmnet R package is used to perform
cross-validation to select the tuning parameter lambda. The
parameter alpha that controls the trade-off between the
quadratic penalty and linear penalty is selected by grid
search. Same hold-out setting is employed by training the
model using 80% randomly selected data and evaluating the
model on the remaining 20% testing set. The procedure is
repeated 20 times to assess the mean accuracy of the model.

CoxBoost model. CoxBoost is a modified version of Cox-
PH model, but is especially suited for data with a large
number of predictors (3). As an iterative gradient boost-
ing method, CoxBoost divides the parameters into individ-
ual partitions. It first selects the partition that leads to the
largest improvement in the penalized partial log likelihood,
then selects other blocks in subsequent iterations and refits
the parameters by maximizing the penalized partial log like-
lihood.

Random Survival Forests model. Random Survival Forests
is a non-linear tree-based ensemble method (15). Each tree
in the forest is fitted on bootstrapped data, with nodes split
by maximizing the log-rank statistics. A patient’s cumulative
hazard is then calculated as the averaged cumulated hazard
over all trees in the ensemble. We implement RSF using R
package ‘randomForestSRC’ (16), where the hyperparame-
ters, such as node size or the number of trees, are optimized
by random search.

DeepSurv model.  DeepSurv is a deep learning generaliza-
tion of the Cox proportional hazards model, for predicting

NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1 3

a patient’s risk of failure (4). DeepSurv is implemented in
Python using Theano and Lasagne, with hyperparameters
optimized by random search over box constraints. The op-
timal DeepSurv architecture for our imaging data is deter-
mined by its built-in random hyperparameter search, con-
sisting of two hidden layers with 38 nodes and 0.07 dropout
for each. We train DeepSurv model on imaging data with
a learning rate of le-5 and a learning rate decay of 6e-4 for
10,000 epochs.

Two-stage Cox-nnet model. The two-stage Cox-nnet
model has two phases, as indicated in the name. For the
first stage, we construct two separate Cox-nnet models in
parallel, one for the image data and the other one for gene
expression data. For each model, we optimize the hyperpa-
rameters using grid search under 5-fold cross-validation,
as described earlier. In the second stage, we extract and
combine the nodes of the hidden layer from each Cox-nnet
model as the new input features to train a new Cox-nnet
model. We construct and evaluate the second stage Cox-
nnet model with the same parameter-optimization strategy
as in the first stage.

PAGE-Net model. 1t is another neural-network method
that can combine imaging and genomics (e.g. gene ex-
pression) information to predict patient survival (5). The
imaging prediction module is very complex, with a patch-
wide pre-trained CNN layer followed by pooling them to-
gether for another neural network. The pre-trained CNN
of PAGE-Net consists of an input layer, three pairs of di-
lated convolutional layers (a kernel size of 5 by 5, 50 feature
maps and a dilation rate of 2) and a max-pooling layer of 2
by 2 size. The sequential layers are followed by a flatten layer
and a fully connected layer. The size of patches for training
CNN is 256 by 256. After CNN, PAGE-Net consists of one
gene layer (4675 nodes), one pathway layer (659 nodes), two
hidden layers (100 nodes; 30 nodes), one pathology layer (30
nodes) and a cox output layer. Drop-out rates of 0.7, 0.5,
0.3 are applied to two hidden layers and pathology hidden
layer respectively. We train PAGE-Net with a learning rate
of 1.5e-6 and a batch size of 32 for 10,000 epochs. The hyper-
parameters are optimized by grid search. It is noteworthy
that PAGE-Net has prolonged running time in CNN pre-
training and feature pooling steps, therefore we only repeat
the training on the integrative layer 20 times.

Model evaluation

Similar to the previous studies (1,7-8), we also use concor-
dance index (C-index) and log-rank P-value as the metrics
to evaluate model accuracy. C-index signifies the fraction of
all pairs of individuals whose predicted survival times are
correctly ordered and is based on Harrell’s C statistics. The
equation is as follows:

# concordant pairs
C =

# concordant pairs + # discordant pairs
2L #j Uni < nj}y YTi > Tj}dj
N Si#j Y Ti > Tj)dj ’

where 7 is the predicted risk score, 7 is the ‘time-to-event’
response, d is an auxiliary variable such that d = 1 if event
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is observed and d = 0 if patient is censored. A C-index of
1 means the model fits the survival data perfectly, whereas
a score around 0.50 means randomness. In practice, a C-
index around 0.70 indicates a good model. As both Cox-
nnet and Cox-PH models quantify the patient’s prognosis
by log hazard ratios, we use the predicted median hazard
ratios to stratify patients into two risk groups (high versus
low survival risk groups). We also compute the log-rank P-
values to test if two Kaplan—Meier survival curves produced
by the dichotomized patients are significantly different, sim-
ilar to earlier reports (7,14,17-20).

Feature evaluation

The input feature importance scores are calculated by drop-
out method. The values of a variable are set to its mean and
the log likelihood of the model is recalculated. The differ-
ence between the original log likelihood and the new log
likelihood is considered as feature importance (21). We se-
lect 100 features with the highest importance scores from
Cox-nnet for association analysis between pathology image
and gene expression features. We regress each of the top 10
image features (y) on each of the top 50 gene expression fea-
tures (x), and use the R-square statistics with significant P-
value (<0.05) as the correlation metric.

Code availability

The code for two-stage Cox-nnet, including model train-
ing, hidden layer integration and feature importance
calculation are available on Github: https://github.com/
lanagarmire/two-stage-cox-nnet.

RESULTS
Overview of Cox-nnet model on pathological image data

In this study, we test if pathological images can be used to
predict cancer patients. The initial task is to extract image
features that can be used as the input for the predictive mod-
els. As described in the ‘Materials and Methods’ section,
pathological images of 322 TCGA HCC patients are indi-
vidually annotated with tumor contents by pathologists, be-
fore being subject to a series of processing steps. The tumor
regions of these images then undergo segmentation, and the
top 10 tiles (as described in ‘Materials and Method’ section)
out of 1000 by 1000 tiles are used to represent each patient.
These tiles are next normalized for RGB coloring against
a common reference sample, and 2429 image features of
different categories are extracted by CellProfiler. Summary
statistics (mean, median, standard deviation and quartiles)
are calculated for each image feature, and the median values
of them over 10 tiles are used as the input imaging features
for survival prediction.

We apply these imaging features on Cox-nnet, a neu-
ral network-based prognosis prediction method previously
developed by our group. The architecture of Cox-nnet is
shown in Figure 1. Briefly, Cox-nnet is composed of one in-
put layer, one fully connected hidden layer and one output
‘proportional hazards’ layer. We use 5-fold cross-validation
(CV) to find the optimal regularization parameters. Based
on our previous results on RNA-seq transcriptomics, we use
dropout as the regularization method.

: Prognostic
o— "

= Cox- Index

Regression
Layer

Q0202200000000

High
Dimensional
Input

Figure 1. The architectures of Cox-nnet model: the sketch of Cox-nnet
model for prognosis prediction, based on a single data type.

Comparison of prognosis prediction among Cox-nnet and
other methods on pathology imaging data

To evaluate the results on pathology image data, we com-
pare Cox-nnet with three other models which were bench-
marked before using genomics data: Cox-PH model, Cox-
Boost and Random Survival Forests (3), as well as an-
other state-of-the-art neural network-based method Deep-
Surv (Figure 2). We use two accuracy metrics to evaluate
the performance of models in comparison: C-index and log-
rank P-values. C-index measures the fraction of all pairs of
individuals whose predicted survival times are correctly or-
dered by the model. The higher C-index, the more accurate
the prognosis model is. As shown in Figure 2A, on the test-
ing datasets, the median C-index score from Cox-nnet (0.74)
is significantly higher (P < 0.001) than both Cox-PH (0.72)
and Random Survival Forests (0.70). Moreover, Cox-nnet
achieves a comparable C-index score with other two mod-
els, CoxBoost (0.75, P = 0.10) and DeepSurv (0.74, P =
0.19). In particular, Cox-nnet yields more stable results than
DeepSurv, as shown by the smaller variations in the C-index
scores in different test sets. Additionally, we dichotomize
survival risks using the median score of predicted PI from
each model. We then use log-rank P-value to show the sur-
vival difference between the Kaplan—Meier survival curves
of high versus low survival risk groups in a typical run (Fig-
ure 2B-F and Supplementary Figure S3A-E). In the train-
ing dataset, Cox-nnet achieves the third highest log-rank P-
value of 1e-12 (Supplementary Figure S3A), after those of
DeepSurv (3e-19) and RSF (2e-21). Whereas in the testing
dataset, Cox-nnet achieves the highest log-rank P-value of
4e-6, better than those of Cox-PH (3e-4), DeepSurv (7e-6),
CoxBoost (3e-4) and Random Survival Forests (0.004).
We next investigate the top 100 image features according
to Cox-nnet ranking (Supplementary Figure S1). Interest-
ingly, the most frequent features are those involved in tex-
tures of the image, accounting for 48% of raw input features.
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Figure 3. The architectures of two-stage Cox-nnet. The first stage builds
individual Cox-nnet models for each data type. The second stage combines
the hidden nodes from the first stage Cox-nnet models as the input, and
builds a new Cox-nnet model.

Intensity and area/shape parameters make up the second
and third highest categories, with 18% and 15% features.
Density, on the other hand, is less important (3%). It is also
worth noting that among the 47 features selected by the con-
ventional Cox-PH model, 70% are also found in the top 100
features selected by Cox-nnet, showing the connections be-
tween the two models.

Two-stage Cox-nnet model to predict prognosis on combined
histopathology imaging and gene expression RNA-seq data

Multi-modal and multi-type data integration is challeng-
ing, particularly for survival prediction. We next ask if we
can utilize Cox-nnet framework for such purpose, exempli-
fied by pathology imaging and gene expression RNA-seq
based survival prediction. Toward this, we propose a two-
stage Cox-nnet complex model, inspired by other two-stage
models in genomics fields (22-24). The two-stage Cox-nnet
model is depicted in Figure 3. For the first stage, we con-
struct two Cox-nnet models in parallel, using the image data
and gene expression data of HCC, respectively. For each
model, we optimize the hyperparameters by grid search un-
der 5-fold cross-validation. Then we extract and combine
the nodes of the hidden layer from each Cox-nnet model
as the new input features for the second-stage Cox-nnet
model. We construct and evaluate the second-stage Cox-
nnet model with the same parameter-optimization strategy
as in the first stage.

As shown in Figure 4A, the resulting two-stage Cox-
nnet model yields very good performance, judging by the
C-index values. The median C-index scores for the train-
ing and testing sets are 0.89 and 0.75, respectively. These
C-index values are significantly improved, compared to the
Cox-nnet models that are built on either imaging (described
earlier) or gene expression RNA-seq data alone. For ex-
ample, on the testing datasets, the median C-index score
from two-stage Cox-nnet (0.75) is significantly higher (P <
0.0005) than that from the Cox-nnet model built on gene
expression data (0.70). It is also significantly higher (P <
0.005) than that from the Cox-nnet model built on image

data (0.74). The superior predictive performance of the two-
stage Cox-nnet model is also confirmed by the log-rank P-
values in the Kaplan—Meier survival curves (Figure 4B-D).
It achieves a log-rank P-value of 6e-7 in testing data (Figure
4D), higher than the Cox-nnet models based on patholog-
ical image data (Figure 4B) or gene expression RNA-seq
data (Figure 4C), which have log-rank P-values of 4e-6 and
0.01, respectively.

Comparing two-stage Cox-nnet model with another imaging
and gene expression-based prognosis model

We compare two-stage Cox-nnet with PAGE-Net, another
neural-network method that combines imaging and ge-
nomics information to predict patient survival (5). The
imaging prediction module of PAGE-Net is very complex,
with a patch-wide pre-trained CNN layer followed by pool-
ing them together for another neural network. The ge-
nomics model involves transformation of gene layer to path-
way layer, and then followed by two hidden layers, the lat-
ter of which is combined with the image neural network to
predict patient survival. For a fair comparison, we use the
same image and gene inputs for PAGE-Net and Cox-nnet.
The data are randomly split into 80% training and 20% test-
ing. The training set for PAGE-Net is further split into 90%
training and 10% validation, which is used for early stop-
ping. The whole experiment is repeated 20 times with dif-
ferent train-test splits.

As shown in Figure 5A, on the testing datasets, the me-
dian C-index score of 0.75 from the two-stage Cox-nnet
model is significantly higher (P-value < 3.4e-4) than that
of PAGE-Net (0.68). The C-index values from the PAGE-
Net model are much more variable (less stable), compared
to those from two-stage Cox-nnet model. Moreover, PAGE-
Net model appears to have an overfitting issue: the median
C-index score of PAGE-Net model on the training set is very
high (0.97), however, its predictability on hold-out testing
data is much poorer (0.68). Extensive running time is an-
other concern for PAGE-Net. On Graphic Processing Unit
(GPUs) of Nvidia V100-PCIE with 16GB of memory each,
it takes over a week to pre-train CNN and extract image
features from 290 samples, prohibiting its practical use. The
Kaplan—Meier survival differences using median PI as the
threshold confirm the observations by C-index (Figure 5B—
E). On testing data, two-stage Cox-nnet achieves a much
better log-rank P-value of 6e-7 (Figure 5D), compared to
that of 0.03 for PAGE-Net prediction (Figure 5E), even
though Cox-nnet has a lower log-rank P-value of 4e-15 in
the training data (Figure 5B), compared to the value of 2e-
30 of PAGE-Net (Figure 5C).

Relationship between histology and gene expression features
in the two-stage Cox-nnet model

We also investigate the correlations between the top imag-
ing features and top RNA-seq gene expression features.
These top features are determined by the ranks of their
feature scores (see ‘Materials and Methods’ section). The
top 10 images and their Cox-nnet importance scores are
also listed in Supplementary Table S1. We then use the
bipartite graph to show the image-gene pairs with Pear-
son’s correlations > 0.1 and P-value < 0.05, among the
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top 10 histopathology features and top 50 gene expres-
sion features (Figure 6). Top genes associated with top 10
histopathology features include long intergenic non-protein
coding RNA 1554 (LINCO01554), mucin 6 (MUCH6), keratin
17 (KRT17), matrix metalloproteinase 7 (MMP?7), secreted
phosphoprotein 1 (SPP1) and myosin XVIIIB (MYO18B).
Gene Set Enrichment (GSEA) analysis on top 1000 genes

correlated to each image feature shows that image feature
correlated genes are significantly (false discovery rate, FDR
< 25% as recommended) enriched in pathways-in-cancer
(normalized enrichment score, NES = 1.41, FDR = 0.18)
and focal-adhesion (NES = 1.22, FDR = 0.21) pathways,
which are upregulated in HCC patients with poor progno-
sis. Pathways-in-cancer is a pan-pathway that covers mul-
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tiple important cancer-related signaling pathways, such as
PI3-AKT signaling, MAPK signaling and p53 signaling.
Focal-adhesion pathway includes genes involved in cell-
matrix adhesion, which is important for cell motility, pro-
liferation, differentiation and survival. These two pathways
play important roles in the survival of HCC patients (25).

DISCUSSION

Driven by the objective to build a uniform workframe to
integrate multi-modal and multi-type data to predict pa-
tient survival, we extend Cox-nnet model, a neural network-
based survival prediction method, on pathology imaging

and transcriptomic data. Using TCGA HCC pathology im-
ages as the example, we demonstrate that Cox-nnet is more
robust and accurate at predicting survival, compared to
Cox-PH, the standard method that was also the second best
method in the original RNA-seq transcriptomic study (1).
We also demonstrate that Cox-nnet achieves better or com-
parable performance compared to other methods, includ-
ing DeepSurv, CoxBoost and Random Survival Forests.
Moreover, we propose a new two-stage complex Cox-nnet
model to integrate imaging and RNA-seq transcriptomic
data, and showcase its superior accuracy on HCC pa-
tient survival prediction, compared to another neural net-
work method: PAGE-Net. The two-stage Cox-nnet model
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regression, indicating worse prognosis. Blue nodes represent features with negative coefficients (hazard ratio) in univariate Cox-PH regression, indicating

protection against bad prognosis.

combines the transformed, hidden node features from the
first-stage Cox-nnet models for imaging or gene expression
RNA-seq data, respectively, and uses these combined hid-
den features as the new inputs to train a second-stage Cox-
nnet model.

Rather than using CNN models that are more complex,
such as PAGE-Net, we utilize a less complex but more bio-
logically interpretable approach, where we extract imaging
features defined by the tool CellProfiler. These features are
then used as input nodes in relatively simple, two-layer neu-
ral network models. Hidden features extracted from each
Cox-nnet model can then be combined flexibly to build new
Cox-nnet models. On the other hand, PAGE-Net uses a pre-
trained CNN for images and a gene-pathway layer to handle
gene expression data. Despite great efforts, image features
extracted by CNN in PAGE-Net are not easily interpretable
and the model appears to overfit given the small sample size.
PAGE-Net also requires very long training time. The signifi-
cantly higher predictive performance of two-stage Cox-nnet
model argues for the advantages to use a relatively simple
neural network model with input nodes of biological rele-
vance, such as those extracted by image processing tools and
gene expression input features.

Besides the interpretability of histopathology image fea-
tures themselves, correlation analysis between top gene fea-
tures and top image features identifies the genes known to
be related to survival of HCC patients or morphology of
the tissue, such as LINC01554, MUC6, MMP7, KRT17,

MYOI18B and SPP1. LINCO01554 is a long non-coding
RNA that is downregulated in HCC and its expression cor-
responds to good survival of HCC patients previously (26).
MUC6 is a mucin protein that participates in the remod-
eling of the ductal plate in the liver (27), which was also
involved in the carcinogenesis of HCC (28). MMP7, also
known as matrilysin, is an enzyme that breaks down extra-
cellular matrix by degrading macromolecules, including ca-
sein, type I, I, IV and V gelatins, fibronectin and proteogly-
can (29). MMP7 participates in the remodeling of extracel-
lular matrix (30) and impacts the morphology of liver tissue
(31), which may explain its link to histopathology features.
MMP7 expression was also shown association to poor prog-
nosis in patients with HCC (32). KRT17 serves as an onco-
gene and a predictor of poor survival in HCC patients (33).
MYOI18B is a myosin family gene that promotes HCC pro-
gression by activating PI3K/AKT/mTOR signaling path-
way. Overexpression of MYOI18B predicted poor survival
of HCC patients (34). SPP1 functions as an enhancer of cell
growth in HCC. The 5-year overall survival rate generated
from 364 HCC cases demonstrated a poor survival of the
patients with relatively higher SPP1 expression (35).

In summary, we extend the previous Cox-nnet model to
process pathological imaging data, and propose a new class
of two-stage Cox-nnet neural-network model that creatively
addresses the general challenge of multi-modal data inte-
gration for patient survival prediction. Using input imag-
ing features extracted from CellProfiler, Cox-nnet models
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are biologically interpretable. Some image features are also
correlated with genes of known HCC relevance, enhanc-
ing their biological interpretability. Since the proposed two-
stage Cox-nnet is generic, we would like to extend this
methodology to other types of cancers in the future, includ-
ing those in TCGA consortium.
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