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Several strategies are used by Escherichia coli to evade the host innate immune system in
the blood, such as the cleavage of complement system proteins by secreted proteases.
Members of the Serine Proteases Autotransporters of Enterobacteriaceae (SPATE) family
have been described as presenting proteolytic effects against complement proteins.
Among the SPATE-encoding genes sat (secreted autotransporter toxin) has been
detected in high frequencies among strains of E. coli isolated from bacteremia. Sat has
been characterized for its cytotoxic action, but the possible immunomodulatory effects of
Sat have not been investigated. Therefore, this study aimed to evaluate the proteolytic
effects of Sat on complement proteins and the role in pathogenesis of BSI caused by
extraintestinal E. coli (ExPEC). E. coli EC071 was selected as a Sat-producing ExPEC
strain. Whole-genome sequencing showed that sat sequences of EC071 and
uropathogenic E. coli CFT073 present 99% identity. EC071 was shown to be resistant
to the bactericidal activity of normal human serum (NHS). Purified native Sat was used in
proteolytic assays with proteins of the complement system and, except for C1q, all tested
substrates were cleaved by Sat in a dose and time-dependent manner. Moreover, E. coli
DH5a survived in NHS pre-incubated with Sat. EC071-derivative strains harboring sat
knockout and in trans complementations producing either active or non-active Sat were
tested in a murine sepsis model. Lethality was reduced by 50% when mice were
inoculated with the sat mutant strain. The complemented strain producing active Sat
partially restored the effect caused by the wild-type strain. The results presented in this
study show that Sat presents immunomodulatory effects by cleaving several proteins of
the three complement system pathways. Therefore, Sat plays an important role in the
establishment of bloodstream infections and sepsis.
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INTRODUCTION

Bloodstream infections (BSI) result from the presence of viable
bacteria or other microorganisms in the blood that trigger an
inflammatory response in the host (1). After gaining access to the
bloodstream, bacteria face the host innate immune system and
the pathogen is efficiently eliminated. However, in some cases the
pathogen can prevail, and the host response becomes unbalanced
and harmful, leading to the development of sepsis (2). The
clinical outcome of a BSI is influenced by several factors, such
as the agent causing the infection and its arsenal of virulence
traits, the frequency of bloodstream invasion by the pathogen,
availability of diagnostic resources, host response to the infection
and the delivery of appropriate early treatment (3).

Extraintestinal Escherichia coli (ExPEC) is among the most
frequent pathogens causing BSI whose primary sources of
infection can be the intestines or intravascular medical devices or
be secondary to other extraintestinal infections (4–8). To survive in
the bloodstream, E. coli must resist the bactericidal activity of the
complement system. The complement system consists of a
regulated network of proteins in the serum or associated with cell
membranes involved in host defense and inflammation (9, 10).
Pathogens may employ several mechanisms to evade the
complement system, by targeting different steps of activation and/
or regulation of this cascade. The secretion of proteases that directly
degrade complement proteins is an efficient strategy to avoid
complement activation (6, 11, 12). Two members of the Serine
Protease Autotransporters of Enterobacteriaceae (SPATE) family,
EspP andPic, are involved in the cleavageof complementmolecules
and together with other members of this family play an important
role in E. coli pathogenesis (13–16).

SPATE is a superfamily of secreted virulence factors highly
prevalent in enteropathogens, including E. coli and Shigella. These
proteases are responsible for thedegradationof intraorextracellular
substrates (14, 17, 18) and their structure is remarkably similar,
composed of three domains: an N-terminal signal peptide, a
passenger domain, and a C-terminal translocator domain. The
passenger domain, which is entirely secreted to the extracellular
milieu, constitutes the mature form of the SPATE proteins and is
responsible for their biological activity (14, 19, 20).

Amino acid sequence analysis of the passenger domains
classified SPATEs in two different groups: class 1, comprising
SPATEs with cytotoxic effects, and class 2, comprising
immunomodulatory SPATEs (14, 19). Although these specific
biological functions were observed among the members of the
same class, studies have shown that both biological activities can
be displayed by some SPATEs. EspP, a class 1-SPATE, cleaves
complement proteins, indicating that this SPATE can also exert
an immunomodulatory activity (13). Moreover, the class-2
SPATE SepA was shown to be involved in barrier disruption,
facilitating bacterial translocation and epithelium invasion (21).

SPATE-encoding genes are present in mobile elements, such
as plasmids, pro-phages and pathogenicity islands, allowing their
dissemination among different E. coli lineages. In a previous
study, our group characterized a collection of E. coli isolated
from human bacteremia in terms of frequency of SPATE-
encoding genes, phylogeny and genetic markers for intrinsic
Frontiers in Immunology | www.frontiersin.org 2
virulence (22). sat was the most frequent gene (34.2%), similarly
to the frequency observed by others, with sat frequencies ranging
between 25 to 70% (22–32). Further to this, sat is among the
most frequent SPATE-encoding genes found in uropathogenic
E. coli (UPEC) (33–37).

The Secreted autotransporter toxin (Sat) is a 107-kDa protein
firstly described in the prototypeUPEC strainCFT073, encoded by a
3.9-kb gene located in the pathogenicity island II (38). Sat is a class 1-
SPATE and its cytotoxic effects on urinary tract cells (Vero, HK-2,
CRL-1749,CRL-1573 andHEK-293) arewell characterized, showing
its role in the pathogenesis of UTI caused by UPEC (38–40). This
SPATE also displays enterotoxic activity (41), promotes
reorganization of tight-junction associated proteins in Caco-2/TC7
cells, and increases cellular permeability (42) and cellular detachment
in HeLa cells (43). Recently, it was reported that Sat causes intense
cytotoxic effectsonhumanumbilical veinendothelial (HUVEC)cells,
indicating a possible role in the pathogenesis of BSI and sepsis (44).
Further functional characterizations have shown that Sat has a
proteolytic activity on spectrin and coagulation factor V (45).
However, no other studies assessing possible immunomodulatory
effects or extracellular substrates of Sat have been reported so far.

The high frequency of sat in E. coli strains isolated from
bacteremia and Sat cytotoxic effects on endothelial and urinary
tract cells suggest that this SPATE may be involved in different
steps of BSI and sepsis pathogenesis. Considering that the
complement system is the first barrier of the host innate
immune response faced by E. coli in the bloodstream, we
hypothesized that Sat could contribute to bacterial immune
evasion by inactivating complement molecules. In the present
work, we have assayed Sat proteolytic activity over complement
proteins and evaluated its role in the pathogenesis of sepsis.
MATERIAL AND METHODS

Bacterial Strains and Growth Conditions
TheE. coli strainEC071was isolated fromthebloodofapatientwith
bacteremia and verified for the presence of SPATE-encoding genes,
intrinsic virulence genetic markers and phylogroup classification
(22). EC071 harbors no SPATE-encoding genes but sat and is
classified as an ExPEC+ strain, according to the criteria determined
by Johnson et al. (46). It belongs to phylogroup F, according to the
revisited Clermont method (47). Further bacterial strains used in
this work are described in the Supplementary Table 1.

All strains were routinely grown in Luria-Bertani (LB) broth
at 37°C supplemented with ampicillin (100 µg/ml), kanamycin
(150 µg/ml), or tetracycline (15 µg/mL), when indicated.
Bacterial stocks were kept on LB supplemented with glycerol
20% (vol/vol) at –80°C.

Detection of Sat Production by
E. coli EC071
E. coli EC071 was grown for 18 h in 5 mL of LB broth at 37°C
under constant shaking (250 rpm). The culture was harvested at
2.000 x g for 15 min at 4°C and 1 mL aliquots of the supernatant
were precipitated with 10% trichloroacetic acid (TCA) (Sigma-
February 2022 | Volume 13 | Article 844878
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Aldrich, USA), as described elsewhere (48). Culture supernatants
of enteroaggregative E. coli (EAEC) EC233/93 and diffusely-
adherent E. coli (DAEC) FBC 114 were prepared as described
above and used as Sat-producing strains (positive controls).
Shigella flexneri M90T culture supernatant, similarly prepared,
was used as a negative control (41, 44, 49).

The resulting precipitated supernatants were denatured with b-
mercaptoethanol at 96°C for 5 min for further analysis by 10%
SDS-PAGE (2 independent gels) (50). The first gel was stained by
silver nitrate (51) and the second one was used for immunoblotting
assays, employing polyclonal anti-Sat serum (44) and peroxidase-
conjugated anti-rabbit IgG as secondary antibody (Sigma-Aldrich).
Signal detection was performed using SuperSignal® West Pico
Enhanced Chemiluminescent Substrate (ThermoFisher Scientific)
and the Alliance Image System (UVITEC, UK).

E. coli EC071 Whole Genome Sequencing
and Plasmid Analysis
EC071 genomic DNA was extracted from an overnight culture in LB
broth at 37°C using the GeneJet Genomic DNA Purification Kit
(ThermoFisher Scientific, USA), according to the manufacturer´s
instructions. Following extraction, DNA was analyzed by
electrophoresis in a 1% agarose gel and quantified using the
Qubit™dsDNA HS Assay Kit (Invitrogen, USA), according to the
manufacturer’s instructions. EC071 genomic DNA was submitted to
theMicrobesNG (University of Birmingham,UK) facilitywhereDNA
libraries were prepared using Nextera XT Library Prep Kit (Illumina,
USA) and sequencedby the IlluminaHiSeq2500platform,using a 250
bp paired-end protocol. Reads were adapter trimmed using
Trimmomatic 0.30 with a sliding window quality cutoff of Q15 (52).
Denovoassemblyandannotationof thegenomewereperformedusing
SPAdes version 3.7 (53) and Prokka 1.11 (54), respectively. The
genome assembly metric was calculated using QUAST (55).

After sequencing, EC071 whole genome was analyzed for the
presence/absence of SPATE-encoding genes, intrinsic virulence
gene markers, and bactericidal serum activity resistance-related
genes by alignment with the respective genetic sequences available
in the ecoli VF collection database (https://github.com/aleimba/
ecoli_VF_collection) using BLAST (https://ncbi.nlm.nih.gov/
genbank/). The phylogenetic classification was accessed by the
ClermontTyping online tool (http://clermontyping.iame-research.
center/) (56), while serotype, sequence type (ST) and presence of
plasmids were verified by the SerotypeFinder 2.0, MLST 2.0 and
PlasmidFinder 2.0, respectively, at the Center for Genomic
Epidemiology webpage (http://www.genomicepidemiology.org/
services/). sat nucleotide sequence of EC071 and its predicted
amino acid sequence were also compared to the corresponding
sequences of prototype UPEC CFT073 (accession numbers
AF289092.1 and AAG30168.1).

The plasmid profile of E. coli EC071 was determined by alkaline
lysis (57) followed by agarose gel (0.8%) electrophoresis analysis.

Resistance of E. coli EC071 to the
Bactericidal Activity of Human Serum
Resistance of E. coli EC071 to the bactericidal activity of normal
human serum (NHS) was assessed as previously described (30,
58). Briefly, EC071 was grown in 50 mL of LB broth and
Frontiers in Immunology | www.frontiersin.org 3
incubated at 37°C under constant shaking (250 rpm) until the
optical density at 600 nm (OD600) of 0.5 was reached. E. coli
DH5a, a negative control, was submitted to the same protocol.

Simultaneously, 100 µL of NHS (Sigma-Aldrich, USA) were
added to 80 µL of sterile 0.01 M PBS in duplicates for each strain.
The first tube was incubated at 37°C for 30 min before the test.
Heat inactivated human serum (heat-IHS) was obtained by
incubating the second tube at 56°C for 30 min. A third tube
containing 180 µL of sterile 0.01M PBS (viability control) was also
incubated at 37°C for 30 min. Then, 20 µL of the bacterial
inoculum were added to each tube. NHS and heat-IHS tubes
were then incubated at 37°C and 20 µL of each were collected after
30 and 60 min of incubation. The collected volume of each time
point, as well as the viability control tube, were serial diluted and
plated onto MacConkey agar plates. The plates were incubated at
37°C for 18 h for colony-forming unity (CFU)/mL enumeration.
Results obtained for each tested condition at each period of
incubation were compared using ANOVA and Tukey’s multiple
comparison tests, using a 95% confidence interval

Purification of Sat From E. coli EC071
Sat purification was carried as described by Maroncle et al. (40)
with slight modifications. Initially, E. coli EC071 was grown
statically in 20 mL of LB broth at 37°C for 18 h and then
subcultured to 1 L of LB broth at 37°C under constant shaking
(250 rpm), until the optical density at 600 nm (OD600) of 1.0 was
reached. The large-scale culture was centrifuged at 8.000 x g for 15
min at 4°C and the supernatant was vacuum filtered in a 0.22 µm
membrane (Millipore, USA). The filtered supernatant was first
100-fold concentrated in a 30-kDa cutoff centrifugal device
(Millipore, USA) in successive centrifugations at 5.000 x g for 20
min at 4°C. The crude concentrate was then 10-fold concentrated
in a 50-kDa centrifugal device (Millipore, USA) in single
centrifugation at 5.000 x g for 20 min at 4°C. The refined
concentrate was diluted in an anion exchange buffer (0.025 M
NaCl, 0.025M Tris-HCl, pH 7.5) to 15 mL and then submitted to a
Q Sepharose Fast Flow column for anionic exchange (GE
Healthcare, USA), previously washed with 5 column-volumes of
anion exchange buffer. Elution was carried with 15 mL of 0.025 M
Tris-HCl buffers pH 7.5 containing different concentrations of
NaCl (0.025 M, 0.100 M, 0.175 M, 0.250 M, 0.325 M, 0.400 M and
0.500 M) at a flow rate of 2 mL/min. Fractions collected during the
elution were analyzed by SDS-PAGE, silver nitrate staining and
immunoblotting as described above for Sat detection in culture
supernatants. Fractions containing Sat were quantified using the
Pierce™ BCA Protein Assay Kit (ThermoFisher Scientific), as
instructed by the manufacturer.

The identity of Sat in each of these fractions was confirmed by
mass spectrometry analysis, through a gel-based proteomics
approach. The in-gel digestion was conducted as described
elsewhere (59) with small modifications. Firstly, the gel bands
were selected, excised, and transferred to a 1.5-mL microtube.
Subsequently, a solution of 75 mM ammonium bicarbonate (in
40% ethanol) was added to destain the bands. Thereafter, the
supernatant was removed, 5 mM dithiothreitol (in 25 mM
ammonium bicarbonate) was added, and all samples were
incubated at 60°C for 30 min (reduction step); next, we added 55
February 2022 | Volume 13 | Article 844878
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mM iodoacetamide (in 25 mM ammonium bicarbonate) and
incubated all samples at room temperature for 30 min in the
absence of light. The supernatant of all individual samples was
removed, and the gel pieces were dehydrated by adding acetonitrile
(ACN). Subsequently, 10 µL of proteomic grade trypsin solution (10
ng/µL in 50 mM ammonium bicarbonate) was added to each
sample, and digestion was allowed for 45 min on ice. Thereafter,
supernatants were removed, gel pieces were covered with 50 mM
ammonium bicarbonate and incubated overnight at 30°C. Finally,
each sample was suspended in 20 µL of ACN/5% trifluoroacetic acid
(TFA) (1:1, v/v) and sonicated for 10 min. The supernatant was
removed and dispensed in a separate tube. We repeated this step
three times and combined the supernatants of the same samples.
Lastly, we repeated the process using ACN instead of ACN/5%TFA.
The obtained supernatant was combined with the previously
obtained supernatants.

The tryptic peptides were analyzed by liquid chromatography-
mass spectrometry (LC–MS) using an electrospray-ion trap-time of
flight (ESI-IT-TOF) system coupled to a binary ultra-fast liquid
chromatography system (UFLC) (20A Prominence,
ShimadzuKyoto, Japan). Briefly, samples were dried, resuspended
in 0.1% acetic acid, and loaded onto a C18 column (Discovery C18,
5 mm, 50 × 2.1 mm) operating with a binary solvent system: (A)
water:acetic acid (999:1, v/v) and (B) ACN:water:acetic acid
(900:99:1, v/v/v). The column was eluted at a constant flow rate
of 0.2 mL/min with a 0 to 40% linear gradient of solvent B for 40
min. The eluates were monitored by a Shimadzu SPD-M20A PDA
detector before introduction into the mass spectrometer. The
interface voltage was set to 4.5 kV, the capillary voltage used was
1.8 kV at 200°C, and the fragmentation was induced by argon
collision at 50% ‘energy’. The MS spectra were acquired under the
positive mode and collected in the range of 350 to 1400 m/z. The
MS/MS spectra were collected in the range of 50 to 1950 m/z.

Raw LCD LCMSolution Shimadzu data were converted into
MGF by the LCMSolution tool and then loaded into Peaks
Studio V7.0 (BSI, Canada). Data were processed according to
the following parameters: MS and MS/MS error mass were 0.1
Da; methionine oxidation and carbamidomethylation as variable
and fixed modification, respectively; trypsin as cleaving enzyme;
maximum missed cleavages (3), maximum variable PTMs per
peptide (3) and non-specific cleavage (both). Data were analyzed
against the whole UniProt protein database.

Proteolysis of Complement
System Proteins
Initially, the proteolytic activity of purified Sat was tested against the
following purified complement proteins (Complement Technology,
USA): C1q, C2, C3 and C3b, C4 and C4b, C5, C6, C7, C8 and C9.
To identify possible Sat substrates among these complement
proteins, 5 µg of Sat were incubated with 0.5-1.0 µg of each
complement molecule in the presence of MOPS buffer (0,1 M
MOPS, 0,2 MNaCl and 0,01 mMZnSO4, pH 7,3) (40) at 37°C for 5
or 24 h. As a control for spontaneous cleavage, complement
molecules diluted in MOPS buffer were incubated under the same
conditions. Incubation products were analyzed by immunoblotting
using specific antibodies to each complement protein (Complement
Technology, USA), and peroxidase-conjugated anti-goat IgG as the
Frontiers in Immunology | www.frontiersin.org 4
secondary antibody (Sigma-Aldrich). Signal detection was
performed using the SuperSignal® West Pico Enhanced
Chemiluminescent Substrate (ThermoFisher Scientific) and the
Alliance Image System (UVITEC, UK).

Dose dependency of Sat-induced cleavage of the substrates
was evaluated using lower concentration of purified Sat (0.5 or
1.0 µg). Also, inhibition of Sat proteolytic activity was assessed by
incubating purified Sat (0.5 or 1.0 µg) with 1.0 mM
phenylmethylsulfonyl fluoride (PMSF) for 30 min at room
temperature before the addition of complement proteins.
Incubation products were analyzed as described above.

E. coli DH5a Resistance in Sat-Treated
Human Serum
The capacity of E. coliDH5a to survive in Sat pre-treated NHS (Sat-
NHS) was assessed. Considering that 0.5 µg of Sat cleaved 0.5 µg of
C4 and the C4 concentration in NHS (0.6 µg/µL), 56 µL of one
fraction of purified Sat (0.270 µg/µL), resulting in a total of 15 µg of
purified Sat, were added to 25 µL of NHS (15 µg of C4) and enough
volume of sterile 0.01 M PBS to complete 100 µL (serum final
concentration: 25%). Reactions were incubated at 37°C for 5 h and
then 10 µL of E. coli DH5a inoculum (OD600 0.5) were added to
each tube, including the controls NHS without Sat, heat-IHS and
0.01 M PBS without serum. The tubes were then incubated at 37°C,
and after 30 and 60 min 20 µL of each incubation were collected,
serial diluted and plated onto MacConkey agar plates for CFU/mL
enumeration, after incubation at 37°C for 18 h. Results obtained for
each tested condition at each period of incubation were compared
using ANOVA and Tukey’s multiple comparison tests, using a 95%
confidence interval.

E. coli EC071-Based Genetic
Constructions
Mutagenesis of sat in E. coli EC071 was achieved by homologous
recombination using the suicide vector pJP5003 (60). Briefly, a
930-bp fragment of sat was amplified by PCR with sat primers
(Supplementary Table 2) and genomic DNA of EC071 as
template, prepared using the GeneJet Genomic DNA
Purification Kit (ThermoFisher Scientific, USA), according to
the manufacturer’s instructions. PCR cycling was conducted as
follows: 94°C/5 min (1 cycle); 94°C/1 min; 59°C/1 min; 72°C/1
min (30 cycles); 72°C/5 min (1 cycle). Amplification products
were analyzed by electrophoresis in a 0.7% agarose gel in Tris
borate-EDTA (TBE) buffer (0.5X). After gel analysis, the
corresponding product was purified using the Monarch® PCR
& DNA Cleanup Kit (New England Biolabs, USA).

The amplified fragment was cloned in pGEM-T Easy (Promega,
USA), according to the manufacturer’s instructions. Ligation
products were transformed in chemically competent E. coli
DH5a (61) and transformants harboring the insert were selected
on LB agar containing ampicillin (100 µg/mL). One selected
transformant was named DH5a(pCF1). pJP5603 and pCF1 were
purified with Pure Yield™ Plasmid Miniprep System Kit
(Promega) and digested with EcoRI (Invitrogen, USA). Digestion
products were analyzed in a 0.7% agarose gel and the insert released
from pCF1 was gel extracted with Monarch® DNA Gel Extraction
Kit (New England Biolabs), while pJP5603 was purified with
February 2022 | Volume 13 | Article 844878
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Monarch® PCR & DNA Cleanup Kit (New England Biolabs).
Insert and pJP5603 were submitted to ligation with T4 DNA ligase
(Invitrogen, USA) and transformed in S17-lpir chemically
competent cells (61). Transformants were selected on LB agar
containing kanamycin (150 µg/mL). One selected transformant
was named S17-lpir (pCF2). S17-lpir (pCF2) and EC071 were
submitted to conjugation, as previously described (62). One
transconjugant was selected on MacConkey agar containing
kanamycin (150 µg/mL) and tetracycline (15 µg/mL) and named
EC071::pCF2. The correct insertion of pCF2 in the genome of
EC071 was checked by PCR with different combinations of sat and
M13 primers (Supplementary Table 2). PCR cycling was
conducted as follows: 94°C/5 min (1 cycle); 94°C/1 min; 59°C/1
min; 72°C/1 min (30 cycles); 72°C/5 min (1 cycle). Amplification
products were analyzed by electrophoresis in a 0.7% agarose gel in
TBE buffer (0.5X). After gel analysis, the corresponding product
was excised from the agarose gel and purified using the Monarch®

PCR&DNACleanup Kit (New England Biolabs, USA) and Sanger
sequenced with their respective primers. The absence of Sat
production in EC071: :pCF2 was also confirmed by
immunoblotting as described above for Sat production by EC071.

A sat minimal clone was also obtained for complementation
purposes. Primers satNdeI(F)/sat XhoI(R) andNdeI pettac(F)/XhoI
pettac(R)weredesigned (SupplementaryTable2) for amplification
of the complete sequence of sat and the vector pettac (63),
respectively. The 3.9 kb and 5.3 kb fragments, corresponding to
sat and pettac, respectively, were amplified using Phusion® High-
fidelity DNA polymerase (New England Biolabs). PCR cycling was
conducted as follows: 98°C/2 min (1 cycle); 98°C/30 sec; 60°C/30
sec; 72°C/5 min (30 cycles); 72°C/5 min (1 cycle). Amplification
products were analyzed by electrophoresis in a 0.7% agarose gel in
TBE buffer (0.5X). The insert and the vector were then purified
using QIAquick® PCR Purification Kit (Qiagem, Germany) and
digestedwithNdeI andXhoIat37°C for3h.During thefinalhourof
incubation, the vector was also dephosphorylated by CIP (New
England Biolabs). Digestion products were purified using
QIAquick® PCR Purification Kit (Qiagem) and submitted to
ligation with T4 DNA ligase (New England Biolabs), according to
the manufacturer’s instructions. Ligation products were
transformed in chemically competent E. coli DH5a cells (61).
One transformant was selected on LB agar containing ampicillin
(100 µg/mL) and named DH5a(pCF3). Plasmid pCF3 was
extracted using the QIAprep® Spin Miniprep Kit (Qiagen), and
correct cloningwas confirmed by Sanger sequencing of the 5’ and 3’
ends of the insert using primers pettac (F) and T7 terminator (R)
(SupplementaryTable 2), respectively. pCF3was also transformed
in chemically competent E. coliMG1655 cells (61). Sat expression
by DH5a(pCF3) and MG1655(pCF3) was confirmed by
immunoblotting as described above for Sat production by EC071.

Site-directed mutagenesis was performed to inactivate the serine
protease active site of Sat, by exchanging the serine residues in
positions 256 and 258 for an isoleucine and an alanine, respectively
(S256I/S258A) (40). Primers sat sdmwere designed (Supplementary
Table 2) based on the sequence of the active site with two nucleotide
changes corresponding to the mentioned amino acid changes and
annealing at the same site from both DNA strands, to complete
Frontiers in Immunology | www.frontiersin.org 5
amplify pCF3 containing the exchanges in the amplification
products. Amplifications were performed using pCF3 as template
and the Velocity DNA Polymerase (Bioline, USA). PCR cycling was
conducted as follows: 98°C/30 sec (1 cycle); 98°C/30 sec; 60°C/30 sec;
72°C/5 min 30 sec (20 cycles); 72°C/1 min (1 cycle). Amplified
products were treated with DpnI at 37°C for 1 h (New England
Biolabs), for further transformation in chemically competent E. coli
DH5a cells (61). One transformant was selected on LB agar
containing ampicillin (100 µg/mL) and named pCF4. Plasmid
pCF4 was extracted using the QIAprep® Spin Miniprep Kit
(Qiagem) and Sanger sequenced with sat2 primers
(Supplementary Table 2) to confirm the mutation. pCF4 was also
transformed in chemically competent E. coliMG1655 cells (61). Sat
production by DH5a(pCF4) andMG1655(pCF4) was confirmed by
immunoblotting as described above.

Sat mutation in EC071 (EC071::pCF2) was complemented in
trans. Chemically competent EC071::pCF2 cells were prepared
(61) and transformed with pCF3 and pCF4. Transformants were
selected on LB agar containing ampicillin (100 µg/mL) and
kanamycin (150 µg/mL) and named as EC071::pCF2 (pCF3)
and EC071::pCF2 (pCF4). Sat production by these strains was
confirmed by immunoblotting as described above.

Growth Curve of CFT073, MG1655, EC071
and Derived Strains
Each strain was grown statically in 3 mL of LB broth or LB broth
with the appropriate antibiotic at 37°C for 18 h. Then, 500 µL of
each culture were transferred to 50 mL of LB broth, LB broth
with kanamycin (150 µg/mL) and/or ampicillin (100 µg/mL) and
incubated at 37°C under constant shaking (250 rpm). Bacterial
growth was monitored by OD600 readings every 30 min for 6 h.
Biological replicates were performed for each strain. Also,
aliquots correspondent to each time point were serial diluted
and plated onto MacConkey agar plates containing the
appropriate antibiotic to determine the correspondence
between the absorbance and CFU/mL at each time point.

Murine Sepsis Model
The sepsis murine model was employed to assess the lethality of
E. coli EC071 and its derived strains following the protocol
described by Picard et al. (64). This experimentation was
approved by the Ethics Committee on Animal Use of the
Butantan Institute (CEUAIB protocol number 5743060220).

E. coli EC071, its derivative strains and E. coliMG1655(pCF3)
harboring sat minimal clone were tested in this model. UPEC
CFT073 and E. coli MG1655 were used as positive and negative
controls, respectively. Strains were grown in 50 mL of LB broth
containing the appropriate antibiotics at 37°C under constant
shaking (250 rpm), until the optical density at 600 nm (OD600)
corresponding to 109 CFU/mL was reached. Then, 1 mL of each
culture was harvested at 2.500 x g for 10 min and the pellet was
washed twice with sterile saline solution (0.9%). Finally, the pellet
was resuspended in 1 mL of saline solution.

Female Swiss mice aged between six and eight weeks and
weighing between 20-30 g were used. Each of the following
strains was inoculated in ten mice: EC071, EC071::pCF2, EC071::
February 2022 | Volume 13 | Article 844878
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pCF2(pCF3) and EC071::pCF2(pCF4); while strain MG1655
(pCF3) was inoculated in eight mice and strains UPEC
CFT073 and E. coli MG1655 in four mice each. Each animal
was inoculated subcutaneously with 200 µL (2 x 108 CFU) of the
bacterial suspension and observed at each hour during six hours
after the inoculum, at the eighteenth hour and daily up to seven
days post-infection or until the animal naturally died or reached
the endpoint determined by the presentation of clinical signs
such as body weight loss, fur aspect, posture and motility
alteration and dehydration (65). The animals that reached the
endpoint during the experiment course or survived during seven
days of observation were euthanized by an anesthetics overdose
of xylazine (30 mg/kg) and ketamine (300 mg/kg). Lethality rates
were compared between each experimental group using Fisher’s
exact test, with a 95% confidence interval.
RESULTS

E. coli EC071 Is a Sat-Producing ExPEC
To assess Sat production by EC071, precipitated LB broth over-
night culture supernatant was submitted to SDS-PAGE analysis
followed by immunodetection using a Sat specific anti-serum (44).
Silver nitrate gel staining revealed a protein band corresponding to
approximately 100 kDa present in EC071 TCA-treated culture
supernatant (Figure 1A). Immunoblotting detection showed that
the corresponding protein band was recognized by anti-Sat
demonstrating the production and secretion of Sat by E. coli
EC071 (Figure 1B). Therefore, EC071 was employed in further
experiments as the Sat-producing prototype ExPEC strain.
Frontiers in Immunology | www.frontiersin.org 6
EC071WGS was performed to analyze its genetic background
concerning the presence of SPATE-encoding genes, intrinsic
virulence genes, as well as genes related to resistance to the
bactericidal activity of human serum. The alignment between sat
sequences from EC071 and CFT073 (accession number
AF289092.1) genomes showed 99% of identity. Also, 99% of
similarity between their respective predicted amino acid
sequences was verified. The catalytic triad, composed by His,
Asp and Ser, is conserved in both sequences as well as the
characteristic serine protease motif GDSGS of the SPATEs
family, harboring the catalytic serine residue (Figure 2). Still,
Sat predicted amino acid sequence from EC071 was aligned to
multiple Sat amino acid sequences available in the National
Center for Biotechnology Information (NCBI) database (https://
www.ncbi.nlm.nih.gov/) and a minimum of 99.85% of identity
was verified, indicating that Sat sequence is highly conserved
among different E. coli strains (Supplementary File 1).

The genetic background of EC071 genome is disclosed in
Supplementary Table 3. No other SPATE-encoding gene was
detected in EC071. The presence of pap, afa and dra operons
confirmed the classification of EC071 as EXPEC, following the
criterion proposed by Johnson et al. (46). The following genes
encoding serum resistance-related proteins were detected among
the sequences available in the ecoli VF collection database
(https://github.com/aleimba/ecoli_VF_collection): nlpI
(accession number: CU928161.2), prc (accession number:
NC_000913.3), ompX (accession number: U00096.3), ompTc
(accession number: NC_008563.1) and ompTp (accession
number: NC_007675.1). Phylogenetic classification, sequence
type (ST), serotype and the occurrence of plasmids were
A B

FIGURE 1 | Sat production by EC071. TCA-treated LB culture supernatants of EC071, DAEC EC233/93 (positive control) and Shigella flexneri M90T (negative
control) were analyzed by 10% SDS-PAGE. (A) Silver nitrate-stained gel; (B) Immunoblotting with anti-Sat (1:500) and peroxidase-conjugated goat anti-rabbit IgG
(1:10,000). Ladder: Precision Plus Protein Kaleidoscope Prestained Protein Standard (BioRad, USA).
February 2022 | Volume 13 | Article 844878
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evaluated using the ClermontTyping online tool (http://
clermontyping.iame-research.center/) and the online tools
available at the Center for Genomic Epidemiology webpage
(http://www.genomicepidemiology.org/services/). EC071 was
assigned to phylogroup F, serotype O1:H7 and ST 59. Plasmid
analysis revealed five different origins of replication: Col(MP18),
Col 156, Col8282, IncB/O/K/Z and IncX1, suggesting the
presence of at least five plasmids in EC071. Plasmid extraction
confirmed this result, since at least five plasmids could be clearly
visualized after agarose gel electrophoresis analysis
(Supplementary Figure 1). Still, none of these origins of
replication was detected in the same contig containing sat.

EC071 genome sequence was deposited in GenBank under
the accession numbers NZ_JAFFIA010000001.1 until
NZ_JAFFIA010000240.1. Sequencing metrics are shown in
Supplementary Table 4.
E. coli EC071 Is Able to Resist the
Bactericidal Activity of Normal Human
Serum (NHS)
The capacity of EC071 to resist the bactericidal activity of NHS
was evaluated. EC071 and DH5a cultures were incubated in
NHS or previously heat-inactivated human serum (heat-IHS), in
a final concentration of 25%, and colony-forming units (CFU/
mL) were counted. As shown in Figure 3, EC071 completely
survived in NHS, since no differences in CFU/mL were observed
for NHS and heat-IHS. As expected, E. coli DH5a was killed
within the first 30 min in contact with NHS and fully survived in
heat-IHS (Figure 3).
Frontiers in Immunology | www.frontiersin.org 7
Sat Was Purified as a Native Protein From
EC071 Culture Supernatant
EC071 culture supernatant was concentrated and submitted to
an anionic exchange column for Sat purification. Elution
fractions collected during this process were analyzed by SDS-
PAGE and immunoblotting using anti-Sat serum (44). Silver
nitrate staining revealed a single band of approximately 100 kDa
in five of these fractions (Figure 4A), which were recognized by
anti-Sat serum (Figure 4B). Mass spectrometry analysis of each
fraction confirmed the identity of Sat (Supplementary File 2).
Purified Sat Cleaves Proteins of All Three
Pathways of the Complement System
Once the identity of purified Sat was unequivocally confirmed
through proteomic analyses (Supplementary File 2), proteolytic
assays were then performed. We first screened for possible Sat
substrates among complement proteins from all three pathways.
Sat (5 µg) was incubated with 0.5-1.0 µg of each complement
protein for 5 or 24h. Incubation products were analyzed by
immunoblotting for cleavage detection, using specific antibodies.
As shown in Figures 5A, 6A, 7A, all proteins but C1q were
cleaved by Sat. Cleavages of C2, C5 a-chain, C6 and C8 were
apparently more effective, with a clear reduction in the intensity
of their remaining chains. In addition, cleavage products of C3b
and C4b were also more intense than those observed for C3 and
C4, suggesting that the physiological loss of 10 kDa in C3 a-
chain and C4 a-chain (corresponding to C3a and C4a,
respectively) may expose cleavage sites used by Sat and
improve its catalytic action on these proteins.
FIGURE 2 | Partial alignment between Sat amino acid predicted sequences of prototype UPEC CFT073 (accession number AAG30168.1) and EC071. The catalytic
triad (highlighted in yellow) composed by His, Asp and Ser (residues 121, 149 and 256, respectively) are conserved in both sequences as well as the characteristic
serine protease motif GDSGS of the SPATEs family, harboring the catalytic serine (red box).
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FIGURE 3 | Susceptibility of E. coli EC071 to the bactericidal activity of human serum. EC071 and DH5a (serum-sensitive control) were incubated at 37°C for 30
and 60 min with normal human serum (NHS) or heat-inactivated human serum (heat-IHS) in final concentrations of 25%. Data are presented as CFU/mL counts on
MacConkey agar plates. Time zero CFU/mL correspond to the initial inocula before contact with NHS or heat-IHS. Results obtained for each tested condition at
each time point were compared using ANOVA and Tukey’s multiple comparison tests. ns, not significant.
A B

FIGURE 4 | Sat purification from EC071 concentrated LB culture supernatant. Five collected elution fractions of the same batch were analyzed by 10% SDS-PAGE.
TCA-treated LB culture supernatants of DAEC FBC 114 (positive control) and S. flexneri M90T (negative control) were used as positive and negative controls,
respectively. (A) Silver nitrate-stained gel; (B) Immunoblotting with anti-Sat (1:500) and peroxidase-conjugated goat anti-rabbit IgG (1:10,000). Ladder: Precision Plus
Protein Kaleidoscope Prestained Protein Standard (BioRad, USA).
Frontiers in Immunology | www.frontiersin.org February 2022 | Volume 13 | Article 8448788
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FIGURE 5 | Proteolytic activity of Sat on complement proteins of the classical and the lectin activation pathways. P
incubation products were analyzed by 10% SDS-PAGE, followed by immunodetection of the target proteins with sp
conjugated anti-goat IgG (1:10,000). Reactivity was detected with the SuperSignal® West Pico Enhanced Chemilum
1.0 µg of complement proteins. (B) Inhibition assays using 0.5 - 1.0 µg of Sat or PMSF-inhibited Sat and 0.5 - 1.0 µ
each protein after denaturation. Red asterisks indicate the cleavage products. Ladder: Precision Plus Protein Kaleid
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Dose-dependency experiments using lower amounts of
purified Sat and inhibition assays by phenylmethylsulfonyl
fluoride (PMSF) further confirmed that cleavages were due to
the activity of a serine protease. Sat displayed dose- and time-
dependent proteolytic activity since less intense cleavage
products were observed when lower concentrations of Sat and
shorter incubation periods were used. Complement proteins
cleavage was completely abolished when Sat was inhibited by
PMSF (Figures 5B, 6B, 7B).

E. coli DH5a Is Not Killed by Sat-
Inactivated NHS
Since Sat was able to cleave complementmolecules, wewondered if this
activity would protect the non-virulent E. coli strain DH5a from
complement-mediated killing in the serum. NHS (25%) was
preincubated with Sat using the enzyme:substrate ratio tested in the
proteolytic assays for cleavage of purified C4. After treatment, DH5a
was added to Sat pre-treated NHS (Sat-NHS), NHS or heat-IHS, and
incubated at 37°C for 30 and 60 min. As presented in Figure 8, E. coli
DH5a was able to survive in Sat-NHS, and in heat-IHS for 60 min.
Survival in Sat-NHS was unequivocally significant, but bacteria were
Frontiers in Immunology | www.frontiersin.org 10
less resistant than those incubated in heat-IHS, possibly due to
incomplete inactivation of complement proteins by Sat (Figure 8).
E. coli EC071 Derived Genetic
Constructions
To evaluate the role of Sat in a murine sepsis model, genetic
constructions and modifications were performed in the wild-type
strain EC071. First, sat was inactivated by homologous
recombination, yielding the sat mutant strain EC071::pCF2. In
parallel, the sat gene was amplified from EC071 genomic DNA
and cloned into pettac, resulting in the Sat expression clone
pCF3. The pCF3 plasmid was used as a template for construction
of a site-directed mutant (S256I/S258A), resulting in plasmid
CF4, which expresses the inactive serine protease Sat (Table 1).
Both pCF3 and pCF4 were transformed into E. coliDH5a, E. coli
MG1655 and EC071::pCF2. Expression of Sat was confirmed in
all strains by SDS-PAGE and immunoblotting with anti-Sat
serum (Figure 9). The mutations and corresponding
complementation did not affect the growth of the host strains
(EC071 and MG1655) (Supplementary Figure 2).
A

B

FIGURE 6 | Proteolytic activity of Sat on C3 and C3b complement proteins. Purified Sat and the human complement proteins were incubated at 37°C for 5 and 24
h and the incubation products were analyzed by 10% SDS-PAGE, followed by immunodetection of the target proteins with specific complement antibodies (dilutions
are indicated under each image) and peroxidase-conjugated anti-goat IgG (1:10,000). Reactivity was detected with the SuperSignal® West Pico Enhanced
Chemiluminescent Substrate kit (ThermoFisher Scientific). (A) Screening assays using 5 µg of Sat and 0.5 - 1.0 µg of complement proteins. (B) Inhibition assays
using 0.5 - 1.0 µg of Sat or PMSF-inhibited Sat and 0.5 - 1.0 µg of target proteins. The molecular masses indicated in the images correspond to the chains of each
protein after denaturation. Red asterisks indicate the cleavage products. Ladder: Precision Plus Protein Kaleidoscope Prestained Protein Standard (BioRad, USA).
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FIGURE 7 | Proteolytic activity of Sat on complement proteins of the terminal pathway. Purified Sat and the human complement proteins were incubated at 37
analyzed by 10% SDS-PAGE, followed by immunodetection of the target proteins with specific complement antibodies (dilutions are indicated under each image)
Reactivity was detected with the SuperSignal® West Pico Enhanced Chemiluminescent Substrate kit (ThermoFisher Scientific). (A) Screening assays using 5 µg o
(B) Inhibition assays using 0.5 - 1.0 µg of Sat or PMSF-inhibited Sat and 0.5 - 1.0 µg of target proteins. The molecular masses indicated in the images correspon
asterisks indicate the cleavage products. Ladder: Precision Plus Protein Kaleidoscope Prestained Protein Standard (BioRad, USA).
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Sat Contributes to the Pathogenesis of
Sepsis in Mice
To evaluate the contribution of Sat in the development of BSI
and sepsis, EC071, MG1655 and their respective derivative
strains were tested in a murine sepsis model, which assesses
the lethality of each strain.

Swiss mice were infected subcutaneously with 2 x 108 UFC of
each strain. Mice were then observed daily for seven days or until
they presented clinical signs that led to a humane endpoint.
Survival rates were compared between each experimental group
using Fisher’s exact test, with a 95% confidence interval. Initially,
the sepsis model was validated by the infection of four animals
with the UPEC prototype strain CFT073 (positive control) and
four animals with the K-12 E. coli strain MG1655 (negative
control). While CFT073 caused the death of all the animals up to
36 h post-infection, none of the animals infected with MG1655
died within 7 days post-infection.

While the wild type strain (EC071) caused the death of all the
animals in 48 h, a statistically significant reduction of 50% in
lethality was observed in the groups infected with the satmutant
strain (EC071::pCF2) and with the non-functional gene
complemented strain [EC071::pCF2(pCF4)] (Figure 10). The
effect was partially restored by the complemented strain [EC071::
pCF2(pCF3)], since 70% of the animals within this group died.
Frontiers in Immunology | www.frontiersin.org 12
All the animals infected with MG1655(pCF3) were alive until the
seventh day post-infection with no signs of clinical disease. Since
death reduction was partially accomplished for the mutant
strains and none of the animals infected with MG1655(pCF3)
died, our observations suggest that Sat is part of the EC071
virulence arsenal enrolled in sepsis pathogenesis acting in
conjunction with other virulence factors.
DISCUSSION

One common immune system evasion strategy used by E. coli
causing BSI is the cleavage of complement system proteins by
secreted proteases (12). EspP and Pic are secreted proteases of
the SPATE family that are capable of cleaving proteins of the
complement cascade in vitro (12, 13, 15). However, the Sat-
encoding gene (sat) is among the most frequent SPATE-
encoding genes found in ExPEC strains isolated from BSI and
is detected in higher frequencies than espP and pic (22, 23, 25–27,
29–31, 66–68). In addition, Sat causes cytotoxic effects on urinary
tract and endothelial cell lines, which may also contribute to the
pathogenesis of BSI (38–40, 44).

EC071, the Sat producer prototype strain used in this work,
was previously characterized by our group as a phylogroup F
FIGURE 8 | Susceptibility of E. coli DH5a in Sat pre-treated normal human serum. DH5a was incubated at 37°C for 30 and 60 min in 25% normal human serum
(NHS), 25% heat-inactivated human serum (heat-IHS) or 25% Sat pre-treated normal human serum (Sat-NHS). Data are presented as CFU/mL counts on
MacConkey agar plates. Time zero CFU/mL correspond to the initial inocula before contact with NHS, heat-IHS or Sat-NHS. Results obtained for each tested
condition at each time point were compared using ANOVA and Tukey’s multiple comparison tests. ns, not significant.
TABLE 1 | Genetic constructions obtained in this study.

Strain Description Sat Production

EC071::pCF2 EC071 sat mutant Absent
EC071::pCF2 (pCF3) EC071 sat mutant complemented with sat minimal clone Active serine protease
EC071::pCF2 (pCF4) EC071 sat mutant complemented with sat site-directed mutant Inactive serine protease
DH5a (pCF3) DH5a harboring sat minimal clone Active serine protease
DH5a (pCF4) DH5a harboring sat site-directed mutant Inactive serine protease
MG1655 (pCF3) MG1655 harboring sat minimal clone Active serine protease
MG1655 (pCF4) MG1655 harboring sat site-directed mutant Inactive serine protease
February 2022 | Volu
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strain harboring the genetic markers for intrinsic virulence
(ExPEC+) and carrying no other SPATE-encoding gene but sat
(22). In the present work, Sat production by EC071 was
confirmed by immunoblotting using specific anti-Sat serum
and this strain was shown to be resistant to the bactericidal
Frontiers in Immunology | www.frontiersin.org 13
activity of NHS. EC071 WGS analysis revealed the presence of
other serum-resistance related genes, such as outer membrane
proteins-coding genes (ompX, ompTc, ompTp and nlpI) and prc,
which encodes the protease Prc. These virulence traits interact in
different manners with complement proteins, interfering with its
A B

FIGURE 9 | Sat production by EC071, DH5a, MG1655 and derivative strains. TCA-treated LB culture supernatants of all strains, including DAEC FBC114 (positive
control) and S. flexneri M90T (negative control), were analyzed by 10% SDS-PAGE. (A) Silver nitrate-stained gel; (B) Immunoblotting with anti-Sat (1:500) and
peroxidase-conjugated goat anti-rabbit IgG (1:10,000). Ladder: Precision Plus Protein Kaleidoscope Prestained Protein Standard (BioRad, USA).
FIGURE 10 | Percentage of survival of the infected animals with EC071 and its derived strains in a murine sepsis model. Female Swiss mice were inoculated
subcutaneously with 2 x 108 CFU of EC071 or one of its derivative strains and observed for a maximum of seven days. The animals were observed daily to check for
clinical signs resulting from the development of the infection. *p < 0.05
February 2022 | Volume 13 | Article 844878
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activation; however, the expression of these factors has not been
evaluated in this study and their enrollment in EC071 serum
resistance remains unclear. WGS and plasmid profile analysis
indicated that sat is located in the chromosome, since none of
five origins of replication found in the EC071 genome were in the
same contig containing the gene sat.

The sat genetic context in the EC071 genome is in accordance
with other authors, since there are no reports concerning the
presence of sat in plasmids (38, 42, 69).

Purified Sat from EC071 culture supernatant showed a very
efficient proteolytic activity on C2, C4, C4b and C6 since
degradation products could be observed after 5 h of incubation
with a lower concentration of Sat (0.5 µg). The same amount of
Sat was sufficient to cleave C3, C3b, C5, C7, C8 and C9, but a
longer incubation period was required. These differences may be
a consequence of the absence of other putative co-factors absent
in MOPS buffer. In a sepsis context, known enzymatic cofactors
such as Ca2+, glycosaminoglycans, lipids and citrate are available
in the plasma (70, 71) and could improve Sat proteolytic activity
on complement substrates. Therefore, further kinetic studies are
necessary to evaluate Sat activity modulation by such co-factors.
Finally, PMSF-inhibited Sat did not cleave any complement
protein, confirming that this proteolytic activity relies on its
serine protease active site.

In vitro cleavage assays with purified Sat indicated that this
serine protease has a broad proteolytic activity on complement
proteins and may interfere with the activation of the complement
cascade in multiple ways. Direct cleavage of C2, C4 and C4b by
Sat may compromise C3 convertase (C4b2a) formation of both
the classical and the lectin pathways, preventing the
physiological cleavage of C3 into C3a and C3b. Degradation of
C3, the central complement factor, and C3b into non-functional
fragments may interfere with the activation of all three
complement pathways. Besides being involved in opsonization
and phagocytosis, C3 and C3b are also enrolled in the formation
of the C5 convertases of all pathways (C4b2a3b for the classical
and the lectin pathways and C3bBb3b for the alternative
pathway). Therefore, cleavage of C3 and C3b by Sat may
hinder pathogen elimination by phagocytosis and prevent
physiological cleavage of C5 into C5a, an anaphylatoxin
involved in the inflammatory response, and C5b, necessary for
the initiation of the membrane attack complex (MAC) formation
(2, 9, 72). Finally, Sat can suppress complement bactericidal
function by direct cleavage of proteins of the common terminal
pathway. The direct cleavage of C5 by Sat may interfere with the
inflammatory response, and MAC assembly can be
compromised by inactivation of C5, C6, C7, C8 and C9 by Sat
thereby preventing bacterial elimination by osmotic lysis.
Figure 11 outlines the complement system targets for Sat, and
the potential biological consequences resulting from
complement inactivation by this protease.

In addition to Sat, the class-2 SPATE Pic was shown to cleave
the complement components C2, C3, C3b, C4, C4b and C5 (15,
16). C3, C3b and C5 are also substrates for the class-1 SPATE
EspP, produced by EHEC (13). Diverse pathogens of medical
importance, including periodontal bacteria, secrete proteolytic
Frontiers in Immunology | www.frontiersin.org 14
enzymes that may impair host defense mechanisms (11). The
metalloprotease thermolysin LIC13322 secreted by pathogenic
Leptospira, NalP produced by Neisseria meningitidis, as well as
ScpA and SlpB, both produced by Staphylococcus aureus, are a
few examples of bacterial proteases that target C2, C3, C3b and
C5 (73–76).

A smaller number of studies have evaluated the action of
bacterial proteases on the common terminal pathway of
complement. Thermolysin from pathogenic Leptospira (77),
the cysteine protease SpeB from Streptococcus pyogenes (78)
and the serine protease SplB from Staphylococcus aureus (76)
were shown to degrade C6, C7, C8, and C9, besides C5.
Structural similarities shared by the complement proteins
acting in the terminal pathway can be an explanation for the
fact that all of them are cleaved by Sat and the other two bacterial
proteases mentioned above (77, 79, 80).

The fact that Sat cleaved almost every tested complement
component raises the hypothesis that such proteolytic activity is
not specific. However, C1q was not cleaved in our study, and the
study of Dutta et al. (45) showed that other biological substrates,
such as pepsin and mucin, are not targeted by Sat as well.

Some structural features of C1q could explain the inability of
Sat to cleave this protein. According to Reid (81), C1q is a big
molecule (490 kDa) shaped as a “flower bouquet” composed by
18 polypeptide chains (6a, 6b and 6g). Such a big and complex
molecule can turn difficult for bacterial proteases to access
possible cleavage sites and for this reason, no degradation can
be observed. In fact, the absence of cleavage of C1q by other
proteases from different bacteria was observed by other authors
(15, 73, 74, 76).

Considering that some complement proteins were more
efficiently cleaved by Sat (e.g., C2, C4, C4b and C6) and E. coli
DH5a survived in Sat-treated human serum in lower rates than
in heat-inactivated human serum, it is plausible to presume that
the classical, the lectin and the terminal pathways are more
efficiently inhibited by Sat than the alternative pathway.
However, additional assays are required to assess the specific
effects of Sat on each complement activation pathway.

To assess the effects caused by Sat regarding the immune
system, EC071 and the derivative strains obtained in this study
were assayed in a mouse model of sepsis to assess the lethality of
each strain. Considering that a BSI usually results from a primary
infection, bacteria were inoculated via subcutaneous injection to
simulate the occurrence of a resulting BSI from an extraintestinal
infection, where bacteria would have to overcome the barriers of
this site to access the bloodstream. If another route of inoculation
was used, such as intraperitoneal or intravenous, the
bloodstream access step would be skipped. Also, the lethality
model of infection used in our work has been widely employed
since its report by Picard et al. (64) in a way to investigate the role
of putative virulence factors of extraintestinal E. coli strains. A
statistically significant reduction of 50% in lethality was observed
for the sat mutant strain and its complementation with a site-
directed mutated sat clone. However, a partial restoration of the
lethality with the wild-type strain was observed in animals
infected with the sat mutant strain complemented with an
February 2022 | Volume 13 | Article 844878
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active sat minimal clone, since only 70% of the mice died. The
production of Sat by the pCF3 construction (containing the
active sat minimal clone) was apparently distinct from that
observed in the wild-type strain, as observed in the
immunoblotting of culture supernatants (Figure 9). The lower
Sat production could be a possible explanation for the partial
restoration of lethality observed for EC071::pCF2(pCF3). Thus,
we conclude that Sat is important for EC071 lethality in this
mouse model and is involved in sepsis pathogenesis caused by
this strain. A similar result was observed by Dutra et al. (82)
when the ExPEC strain F5, a Pic-producing ExPEC, and its
respective pic mutant were tested in a murine sepsis model.
While all animals infected with the wild type strain died, all
animals infected with the mutant strain survived, suggesting that
Pic is also involved in the pathogenesis of sepsis.
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In our study, E. coli MG1655(pCF3) was also tested in the
murine model of sepsis, but all animals infected with this strain
survived. From these data, there is evidence that Sat works in
conjunction with other virulence factors produced by EC071 for
the establishment and dissemination of the infection. Other
authors have observed that infection severity is related to the
presence of different combinations of virulence genes such as
adhesins, protectins and iron uptake systems, and these traits are
important for colonization, immune evasion, and nutrient
acquisition for bacterial survival (64, 83–88). For that reason, it
would be of interest to verify how the presence/absence of sat in
strains with different genetic backgrounds would impact in the
infected animals survival using this murine model of sepsis.

The subcutaneous route of inoculation used in our murine
model highlights that the cytotoxic effects of Sat (38–45) are also
FIGURE 11 | Possible consequences of Sat cleavage of complement system proteins. Proteolysis of complement system proteins by Sat may impact the activation
of all three pathways. 1: Direct cleavage of C4 and C2 may inhibit the formation of C4b2a, the C3 convertase of the classical and the lectin pathways. 2: Direct
cleavage of C3 may impair the formation of the alternative pathway convertase C3bBb and the C5 convertases C4b2a3b and C3bBb3b. Moreover, cleavage of C3
and C3b may interfere with opsonization. 3: Direct cleavage of C5, C6, C7, C8 and C9, molecules of the common terminal pathway, may restrict MAC assembly on
the bacterial surface.
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important for bacteria to access the bloodstream, since Sat causes
endothelial damages (44). However, since our murine model of
infection evaluates lethality only, further studies are necessary to
fully understand the action of Sat in the bloodstream components.

Considering the data presented herein and previously published
studies about the biological activities of Sat (38–45), a hypothetical
model for the role of Sat in E. coli sepsis is presented in Figure 12.
Altogether, these results suggest that Sat may play a dual role in the
infection by allowing bacterial accession to the bloodstream after
endothelial damage and by locally protecting the pathogen against
complement-mediated killing.

Finally, the importance of Sat in the pathogenesis of BSI caused
by E. coli gives light to the fact that this protease is an important
target for the development of vaccines and anti-virulence drugs,
either for prevention or treatment of different ExPEC infections, as
an alternative to the increasing antibiotic resistance rates.
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secretes Sat, causing cellular damage in the bladder, kidneys, or intestine. This damage allows the bacteria to move forward to the blood vessels, whose endothelial
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to multiply and disseminate in the bloodstream and consequently reach other organs such as the spleen and the liver, where new sites of infection can be
established and a magnification of the immune response can occur, facilitating the progression of the disease to sepsis.
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