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Abstract

The superantigen SEA causes non-specific hyperactivation of T and B cells at low concentrations. Studies of mutants or
soluble proteins suggest SEA is bivalent for its ligand, MHC class II. However, the interaction between these molecules on
intact cells is unknown. On primary mouse B cells expressing the MHC class II allele HLA-DR1, measurements of Förster
Resonance Energy Transfer between HLA-DR1 molecules on SEA-treated cells indicated specific clustering, not observed in
untreated or monovalent superantigen treated cells. Tomographic visualization and electron microscopy of immunogold-
labeled SEA-treated B cells revealed small clusters of surface HLA-DR1 (#4 gold labels). These results present direct visual
evidence of SEA-mediated clustering of MHC class II molecules on treated antigen presenting cells, and provide a new
structural approach to addressing problems of this nature.
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Introduction

The term ‘‘Superantigen’’ is used to define endogenous or

exogenous factors that can stimulate T cells whose T Cell

Receptors (TCR) bear specific Vb domains, irrespective of the

composition of the rest of the receptor [1], resulting in the

stimulation of a large fraction (up to 20%) of the T cell population

[2]. Some of the most potent exogenous superantigens (SAgs)

known to man are the enterotoxins secreted by Staphylococcal

bacteria. Staphylococcal Enterotoxins (SEs) are a family of

structurally related basic secretory proteins that are important

virulence factors for the pathogen. By mediating massive cellular

proliferation and cytokine secretion at extremely low concentra-

tions (5,6), these SAgs can cause systemic pathology in the host,

ranging from nausea and fever up to toxic shock and death [3,4].

SEs can bind relatively non-polymorphic regions outside the

peptide binding groove of MHC class II molecules on Antigen

Presenting Cells (APCs) [5,6,7] as well as conserved Vb regions of

TCR molecules [8,9,10], leading various groups to hypothesize

that these SAgs may act as a binding ‘‘bridge’’ between MHC class

II and TCR, resulting in downstream signaling events and

immune activation [11,12,13].

One of the most potent SEs is Staphylococcal Enterotoxin A

(SEA), with an exceedingly low half-maximum stimulating dose of

0.1 pg/mL [2]. SEA is somewhat atypical in that it has two

binding sites for two corresponding sites on MHC class II, a high

affinity Zinc coordinating site on the b chain of MHC class II [14]

and a second weaker (.1 mM affinity) binding site on the a chain

that has been shown to play an important role in the complete

functional activity of SEA [15,16]. Studies have suggested a

cooperative model where the binding of one SEA to MHC class II

favors the binding of the second SEA molecule [13,17,18], and

MHC class II - (SEA)2 trimers have been isolated in solution [18].

These results have led to the speculation that SEA could crosslink

multiple MHC class II molecules on the surface of APCs. Indeed,

when MHC class II expressing cell lines were treated with SEA,

but not with mutants missing either binding site or toxins with one

MHC class II binding site, downstream signaling [19,20],

inflammatory cytokine gene upregulation [19] and homotypic

aggregation [21] was observed, even in the absence of T cells.

These results hint a role for a multivalent binding mode between

SEA and MHC class II, and indeed, many subsequent studies on

superantigens have assumed this multivalency of SEA as part of its

functionality. However, the actual membrane reorganization of

MHC class II on the surface of a cell in response to SEA treatment

has not been directly probed, and as such, remains unknown.

In this study, using advanced optical spectroscopic and electron

microscopic techniques we demonstrate that the binding of SEA

via both of its binding sites to MHC class II on the surface of

primary B cells induces small clusters of these molecules. Working

with transgenic mice developed in our lab that express only the

MHC class II allele HLA-DR1 (DR1), we measure Förster

Resonance Energy Transfer (FRET) between antibody-labeled

DR1 molecules. We show that the addition of SEA results in the

increased clustering of DR1 in a dose dependent manner, and is

dependent on both binding sites. We employ electron tomography,

which allows us to directly visualize the three-dimensional

distribution of immuno-gold-labeled DR1 molecules on the
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surface of these B cells at high resolution, as well as immuno-gold

labeling followed by 2D transmission electron microscopy. We

observe a significant increase in small-scale clustering of MHC

class II on SEA treatment over controls. These results provide

evidence that SEA likely mediates the formation of small MHC

class II clusters or ‘‘daisy-chain oligomers’’ on the B cell surface,

and does not aggregate or coalesce large numbers of MHC class

II.

Methods

SDS-PAGE
SDS-PAGE experiments were performed essentially as previ-

ously described [22]. 1 mM wtDR1 was incubated in the absence

or presence of 50 mM of the immunodominant peptide derived

from Influenza Hemagglutinin HA306-318 (PKYVKQNTLKLAT)

or its synthetic variant HAY308A (PKAVKQNTLKLAT) at 37uC
for 48 h in PBS+10 mM ZnCl2 pH 7.4. The wtDR1/HAY308A

complexes were incubated for an additional hour with a molar

equivalent of soluble SEA or SEH before mixing with equal

volumes of SDS-PAGE sample buffer containing 0.2% SDS and

incubating for 10 min at room temperature. These samples were

then applied to 12% PAGE gels, and the gels were silver stained

according to standard protocols.

Surface Plasmon Resonance measurements
Cys-HA306–318 peptides were immobilized on an SMPB

activated CM5 chip in a BIAcore 2000 instrument and wtDR1/

HAY308A complexes (,2.5 mM) were allowed to bind to the

peptide surface for ten minutes [23]. Complexes were allowed to

dissociate for approximately three minutes, after which a solution

of wtDR1/HAY308A complexes (,2.5 mM) pre-incubated with

SEH or SEA at a 1:1 molar stoichiometry was injected over the

surface of flow cell 1 or 2 respectively for another ten minutes. To

control for DR1 binding to freshly dissociated peptides on the

chip, a second injection of wtDR1/HAY308A alone was performed

on a control flow cell. In all cases a quick spin in a G-50 column

equilibrated with PBS+10 mM ZnCl2 was performed to remove

excess peptide and to exchange buffer. RUs were measured ,3

seconds after end of injections to exclude the common artifact of

sudden RU changes caused by small changes in pH or protein or

ion concentrations. The linear association curves were caused by

mass-transport binding as a result of low analyte concentration in

the injection solution. The running buffer was PBS+10 mM ZnCl2,

pH 7.4, and flow speed was maintained at 5 mL/min.

Labeling of Antibodies
The anti-HLA-DR probe used in all experiments was the mouse

IgG1 monoclonal antibody L243. The antibodies were labeled

with Cy3 or Cy5 fluorophores (Amersham Biosciences, UK)

according to the manufacturers’ protocols. The labeled antibodies

were separated from excess dye using a size-separation column

and stored at 4uC. The Dye-to-protein (D/P) ratios were

approximately 2.5:1 for all experiments. There were no noticeable

aggregates in the size exclusion profile, and the labeled antibodies

were used for experiments within three months of preparation.

Affinity measurements of antibodies
Single cell suspensions of fresh DR1 transgenic mouse

splenocytes (see below) were incubated with 2.5 mg soluble SEA,

SEH (Toxin Technologies, CA) or no enterotoxin per 16106 cells

for 30 minutes, washed and stained with doubling dilutions of Cy3

conjugated L243. After washing, the cells were then analyzed by

flow cytometry on a FACSCalibur (BD Biosciences). The Mean

Fluorescence Index (MFI) of gated cells was then plotted against

Antibody concentration, and the data fit to a simple saturating

binding curve, as described by the equation

Y~Bmax
: X½ �= Kdz X½ �ð Þ

where Y was the MFI value measured by flow cytometry, Bmax is

the maximal binding at equilibrium, X is the antibody concentra-

tion, and Kd is the equilibrium dissociation constant.

Mice and cells
In all experiments, male wtDR1 transgenic mice (C57BL/6

background) of age 8–10 weeks were used as the source of cells.

These mice are normal and express the human class II allele HLA-

DR1 as their only MHC class II molecule at normal levels of

expression (Dalai SK and Sadegh-Nasseri, unpublished data).

Single cell suspensions were generated from naı̈ve spleens, and B

cells (.90% purity, Supplementary Fig. S2) were generated by

negative selection using CD43 magnetic beads (MACS, Miltenyi

Biotec) according to the manufacturers protocols. After washing

and resuspending in media, the cells (usually 16106 purified B cells

per group) were incubated with various concentrations of the

specified enterotoxin in media for 45 minutes at 37uC, washed in

FACS buffer (PBS pH 7.4+1% FCS+0.005% NaN3), and then

prepared for FRET or EM measurements, as detailed below. All

mice were housed in a Johns Hopkins University animal facility

under virus-free conditions. All experiments involving mice were

performed with protocols approved by the Animal Care and Use

Center of the Johns Hopkins School of Medicine.

Confocal Microscopy and FRET measurements
Preparation of cells. The following steps were performed at

4uC and in FACS buffer unless otherwise specified. Freshly

isolated B cells that were previously incubated either with or

without enterotoxin at 37uC were incubated with anti-Fc

antibodies for 20 minutes, washed, and incubated for 1 hour

with saturating concentrations of fluorophore conjugated L243.

Ratios of 1:1, 1:2, or 1:4 Donor (Cy3): Acceptor (Cy5) were used.

Care was taken to keep total antibody concentrations constant and

well above saturation (,2 mM). The cells were then washed and

resuspended in PBS, then fixed in 4% fresh paraformaldehyde at

room temperature for 30 minutes. To test for capping by confocal

microscopy or electron microscopy, negatively selected B cells

were incubated with saturating concentrations of either

unconjugated L243 or L243-FITC, washed, and incubated with

Gold-labeled or unlabeled goat anti-mouse IgG polyclonal

antibodies at 37uC, respectively. To test for internalization, B

cells were incubated with SEA for various lengths of time at 37uC
and stained with L243-FITC at 4uC.

Microscopy. All the experiments for this section were

performed on a Zeiss LSM 510 Meta confocal microscope at

the Integrated Imaging Center, Johns Hopkins University, and the

data analyzed on Zeiss Analysis software. The fixed B cells were

allowed to rest on cover slips and then imaged at 636
magnification using a Zeiss Apochromat objective with

averaging factor of 4 to increase the Signal-to-noise ratio.

Emission from Cy3 and Cy5 were detected using appropriate

filter sets (Cy3: excitation 543 nm and emission Band Pass 560–

615 nm. Cy5: excitation 633 nm and emission Band Pass 646–

753 nm of the META spectral detector). A multi-time bleach

macro was utilized to run the following loop: (i) pre-bleach - images

of several Cy3 and Cy5 labeled B cells were recorded in their

respective channels; (ii) photobleach - the acceptor Cy5 on these cells

MHC Small Clusters on B Cell
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was photobleached using the 633 nm laser within a region of

interest (ROI). The photobleach program was set up to achieve

.85% bleaching of the acceptor (the donor was not bleached); (iii)

post-bleach - the same cells were imaged again using the same

parameters as the pre-bleach, and the fluorescent intensities in all

cases quantified.

Several iterations of the loop were executed to image as many

cells as possible at various (x,y) coordinates on the cover slip. In

most experiments at least 50 cells for each Donor: Acceptor (D:A)

ratio per group were imaged and analyzed. The quantified

intensities of various ROIs in the donor and acceptor channels

were then used for the calculation of FRET efficiencies using

software provided by Zeiss. Cells that were only Donor labeled,

irrespective of experimental group, showed no FRET as measured

by Acceptor Photobleach experiments (data not shown).

Immunolabeling and Transmission Electron Microscopy
Preparation of cells. Fresh B cells were prepared and

incubated with enterotoxin as above; here, after blocking with

anti-Fc antibodies the cells were incubated with saturating

concentrations (,5 mM) of unlabelled L243 for 1 hour at 4uC.

In the case of the EM experiments, either 5 or 106106 purified B

cells were used per group. After washing, the cells were fixed in

4% paraformaldehyde, washed twice in PBS+2.5% FCS and

incubated overnight at 4uC in saturating concentrations of donkey

anti-mouse antibodies conjugated to 6 nm Gold Beads (Jackson

ImmunoResearch Labs, PA) and washed again.

Microscopy. The cells were fixed in 3%

Paraformaldehyde+1.5% Glutaraldehyde, post-fixed in OsO4,

pelleted, embedded and prepared as previously described [24].

The block containing the cell pellet was cut to fit in a Leica UCT

ultramicrotome and thin sections (80 nm) were collected on

uncoated grids, and post-stained with lead citrate and uranyl

acetate. Projection electron microscopic images were recorded at

magnifications in the range between 450006and 540006using a

Philips EM 410 or 420 transmission electron microscope equipped

with a SIS Megaview III CCD digital camera and analyzed using

the AnalySIS software (Olympus).

Distance Measurements. Using ‘‘blind’’ samples, at least 30

slices per group were examined. The distances between adjacent

gold beads were then measured along the contour of the cell

membrane (this is not possible for the 3D images, as the gold beads

are rendered as points in space). It is important to note that this

measure of clustering is unable to quantitatively determine the

number of MHC class II molecules clustered primarily because

technical limitations with antibody staining preclude a labeling

efficiency of 100%. Also, the 2-D measurements do not account

for the width of the sections. However, care was taken to keep the

sections thin (80 nm) and of the same thickness across the groups.

In addition, all groups were treated and measured in exactly the

same way, and the experiments were conducted blind. Hence, this

is a valid method to compare relative differences in cell surface

distribution of DR1 between those groups, within an experiment.

Electron Tomography
250 nm thick sections were prepared in the same way as

described above for the thin sections. 15 nm gold fiducial beads

were deposited on the grids to aid alignment of tilt series.

Collection of tilt series and reconstruction of tomograms was

performed as previously described [25]. Briefly, a series of

projections of the region of interest were taken at various tilt

angles (260u to +60u, 2u increments) and recorded using a 2k62k

CCD (Supplementary Movie S1). The resulting images were

back-projected and aligned using the IMOD package (IMOD,

etomo [26,27]) to generate the tomogram (Supplementary
Movie S2). The tomograms were segmented using Amira (Amira

3.1, Mercury Computer Systems GmbH, Berlin, Germany); the

cell membrane and the electron dense gold beads are highlighted

in purple and as golden spheres, respectively, to generate the final

images and/or movies (Supplementary Movie S3).

Results

SEA and SEH bind DR1 and confer SDS stability to
peptide-DR1 complexes

In order to test the binding and potential crosslinking of

recombinant DR1 molecules by SEA in solution, we performed a

‘‘gentle SDS’’ PAGE assay to probe the conformational stability of

DR1 complexes [22,28]. Soluble peptide-DR1 complexes that

were SDS-unstable were pre-incubated with SEA or the control

Staphylococcal Enterotoxin H (SEH), then incubated with SDS

for an additional 2 minutes without boiling, and the solution was

run on a gel in the presence of SDS under non-reducing

conditions (Fig. 1A). SEH is a well-characterized superantigen

[2,29] with a similar overall fold and Zinc dependent binding site

as SEA; however, SEH does not possess a second binding site, and

is therefore a good ‘‘non-clustering’’ control. The SDS-unstable

complexes (lane 3) now attained SDS stability and migrated

differently (lanes 4 and 6), suggesting that SEA and SEH bound

and conferred rigid SDS stable conformations to otherwise

unstable peptide-DR1 complexes. However, there was an absence

of supershifted bands (Fig. 1A, *) suggesting that no detectable

aggregates were formed. In addition, in a size-exclusion experi-

ment where equal amounts of soluble SEA or SEH and soluble

DR1 were incubated in the presence of excess ZnCl2 or EDTA (to

disrupt the Zn2+ binding site) and run on a pre-equilibrated size-

exclusion column, no high molecular weight peaks corresponding

to SEA-DR1 multimers were observed (data not shown).

Real time binding experiments reveal SEA but not SEH
crosslinks DR1

The gel-based experiments could not conclusively demonstrate

the crosslinking of soluble recombinant DR1 molecules by SEA.

Hence, we attempted to follow the binding of these two molecules

in real-time using Surface Plasmon Resonance. In a BIAcore

experiment, a solution of DR1 was allowed to bind to HA306–318

peptides immobilized on a CM5 chip. After flowing buffer for a

short period, a second injection of DR1 pre-incubated with either

SEH or SEA at a 1:1 molar stoichiometry was performed. Given

that one of the two binding sites on SEA is a weak binding site of

micromolar affinity [1,21], we hypothesized that there may exist a

fraction of SEA in solution that remained bound to DR1 through

only one binding site. This would allow SEA-DR1 complexes to

bind transiently to the DR1 on the chip via the second binding site

on SEA, whereas SEH-DR1 should show little or no such binding.

Fig. 1B shows the real time raw binding data measured in

Response units (RUs) from one of two experiments. There was

stable binding of DR1 to the peptide-immobilized surfaces in both

flow channels (*). However, in the second binding step (**), SEH-

DR1 (blue) showed only a small amount of binding. The RU

change was similar to a control flow cell treated with two

consecutive DR1 injections (Fig. 1B, inset), suggesting that in the

SEH-DR1 and control DR1 only group, some binding was seen

between free DR1 from the second injection and peptide freshly

dissociated from DR1 from the first injection. However, the

addition of a molar equivalent of SEA-DR1 (red) to immobilized

DR1 resulted in an increase of 55 RUs, which was greater than the

RU change observed with SEH-DR1 or DR1 alone (,40 RUs).

MHC Small Clusters on B Cell
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Additionally, the slope of the SEA binding curve was greater than

the SEH curve, and there was 30% more ligand bound as

compared to controls at the end of the injection. The sudden

changes in RU at the start of the injection and linear association

curves are common SPR artifacts (see Materials and Methods).

Thus, at least for a fraction of the molecules present in solution,

SEA but not SEH can crosslink two molecules of DR1, forming

DR1-SEA-DR1 trimers.

SEA induces clustering of DR1 on the surface of B cells as
measured by FRET

We next attempted to visualize the interaction between SEA

and DR1 on the surface of cells. Here, we used Förster Resonance

Energy Transfer (FRET) as a tool to visualize the clustering of

DR1 on the surface of B cells. The primary advantage of FRET is

the ability to dissect molecular interactions that are spatially

separated by distances that are much smaller than the resolution

offered by light microscopy [30,31], ,50 Å for the fluorophore

pair used here. The methods and mathematical modeling of the

translation of efficiency of FRET into extent of clustering have

already been elucidated [30] and are explained briefly in Materials

and Methods. In order to monitor SEA-DR1 interactions on cell

membranes, we utilized a transgenic mouse that expressed the

human MHC class II molecule HLA-DR1 as the only MHC class

II molecule on the surface of its antigen presenting cells (DR1 tg

mice, [32] and Dalai, S and S. Sadegh-Nasseri, unpublished data).

Single cell suspensions of B cells negatively isolated from DR1 tg

mice spleens were incubated with or without SAg in the presence

or absence of excess EDTA for ,45 minutes at 37uC. The time of

incubation was presumably long enough to allow for membrane

clustering events to take place, since in the capping experiments

(see below), significant membrane DR1 aggregation had already

taken place within 15 minutes (Supplementary Fig. S1). The

incubation was short enough that internalization of SAg or DR1

itself was minimal [21,33,34,35]. Even at low resolution, it was

clear that the addition of SEA did not cause internalization of

DR1 on B cells, in agreement with published data from other

groups [33], nor did it mediate aggregation of these molecules,

whereas the addition of anti-DR1 and polyclonal secondary

antibodies at 37uC caused capping of these surface proteins

(Supplementary Fig. S1).

For the cells in each of the groups, FRET assays were

performed to gauge the presence of membrane clustering of

DR1. Here, DR1 molecules on the B cells were labeled with

‘‘donor’’ fluorophore Cy3-conjugated and ‘‘acceptor’’ fluorophore

Cy5-conjugated monoclonal antibodies at various Donor:Acceptor

(D:A) antibody ratios. We used the exact same monoclonal

antibody, L243, against DR1 as donor and acceptor, and added

the reagent at well above saturating concentrations to ensure that

the FRET measurements would accurately reflect the extent of

clustering of that receptor. This is an important point; the

bivalency of the whole antibody is rendered irrelevant at saturating

doses, so L243 mediated crosslinking of DR1 molecules (which

would have been a maximum of two molecules at any rate) is

minimal. Also, because we use the same antibody (separately

labeled by donor or acceptor fluorophores) against DR1, we

neither induce large-scale antibody mediated aggregation of DR1

nor generate false FRET signals, since each DR1 molecule can be

bound only by one antibody molecule. An antibody binding

experiment showed that there was no significant change in the

affinity (Kd) and only a small change in maximal binding (Bmax)

of labeled L243 to HLA-DR1 in the presence or absence of

enterotoxin (Table 1). The addition of SEA over time caused a

very modest reduction in the labeling of DR1 by the antibodies

(Supplementary Fig. S2), suggesting that any changes in

receptor density or receptor labeling upon this treatment were

minimal. Shown in Fig. 2 is one cell (in this case, expected to show

clustering) out of at least 50 cells that were imaged for each

experimental group, in one out of at least two experimental runs.

The surface labeling of DR1 was slightly variable across various

areas of each cell, but there was no evidence of receptor capping

(Fig. 2A). In cells imaged before and after photobleaching the

Figure 1. SEA and SEH bind HLA-DR1 in solution. (A) SEA-DR1 and SEH-DR1 complexes are SDS stable. Various Enterotoxins in the presence or
absence of HLA-DR1/peptide complexes were incubated in PBS with a final SDS concentration of 0.1%, for 5 min at room temperature and subjected
to electrophoresis in a 12% polyacrylamide gradient gel. The gel was silver stained by standard protocols. There was no evidence of multimer
formation (*) Lane 1: empty DR1. Lane 2: DR1/HA306-318 complex. Lane 3: DR1/HAY308A complex. Lane 4: SEA+DR1/HAY308A Lane 5: SEA only Lane 6:
SEA+DR1/HAY308A Lane 7: SEH only. (B) SEA-DR1 but not SEH-DR1 complexes can bind an additional DR1. A solution of DR1 was injected on a HA306-318

peptide decorated BIAcore CM5 chip (*) and allowed to dissociate for 3 minutes. A second injection (**) of preformed SEA-DR1 (red) resulted in a 30%
greater RU change than SEH-DR1 (blue), as measured by the difference between the solid and dashed arrows. Two consecutive injections of DR1
alone on a control flow cell (inset) showed the same fold increase in RUs as SEH-DR1. m, start of injection.
doi:10.1371/journal.pone.0006188.g001
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acceptor fluorophore (Fig. 2A, boxed), some but not all of the

photobleached areas showed significant increases in donor

intensities, indicative of high DR1 clustering (Fig. 2B, iii, iv),

while unbleached sections showed no change, as expected (v, vi).

The changes in Donor and Acceptor Intensities upon photo-

bleaching were used to compute the FRET efficiency for each

region or cell imaged (ii). Plotting the FRET efficiency against the

brightness of the acceptor before photobleaching, i.e. the density

of acceptor labeled antibody bound to HLA-DR1, for all cells

allows for the estimation of the extent of clustering of the HLA-

DR1 for each group. Based on the theory detailed in Materials

and Methods and [30], an increase in the extent of non-random

clustering of HLA-DR1 on the surface of the B cells imaged would

result in the following trends in the FRET % vs. [Acceptor] plots:

(i) a lack of dependence of FRET % on [Acceptor] irrespective of

the D:A ratio, and (ii) an increase in FRET % with an increase in

molar fraction of the donor. For clarity, only the group with D:A

ratio of 1:4 is shown; the data with D:A ratios of 1:1, 1:2 and 1:4

are included in Supplementary Fig. S3.

On inspection of the FRET % vs. [Acceptor] graphs for the

various groups, some trends are clearly visible. In the absence of

SEA treatment (Fig. 2C, i) there is an obvious dependence of

FRET % on [Acceptor]. The addition of the control SAg SEH

does not increase clustering of surface DR1 on B cells in the

presence or absence of EDTA (Fig. 2C, ii, iii). However, the

addition of 10 mg or 2.5 mg SEA per 106 B cells per mL decreases

the dependence of FRET % vs. Acceptor density, resulting in

lower curvilinearity and a smaller slope in the best fit line that

defines the FRET % for a given D:A ratio (Fig. 2C, iv, vi). The

efficiency of energy transfer is especially high at the higher dose of

SEA, indicating substantial clustering of surface DR1 at this dose

of SAg. This increase in clustering is reversed by the inactivation of

the Zn2+ dependent binding site with EDTA (Fig. 2C, v).

Inspection of the plots of FRET% vs. various D:A ratios also

support these conclusions. Treatment with SEA causes an

increased correlation between FRET % and D:A ratio, resulting

in greater separation between FRET % values, or a greater

difference between the intercepts for the fits, for the various ratios.

This is reversed by either the addition of EDTA or treatment with

SEH (Supplementary Fig. S3A, B), suggesting that SEA but

not SEH mediates the formation of clusters of DR1 molecules on

B cells via both its binding sites.

SEA does not induce large-scale aggregation of
immunogold labeled DR1

We employed electron tomography and electron microscopy of

thick and thin sections respectively, of immunolabeled, fixed,

plastic-embedded cells to independently test the conclusions from

the FRET experiments, and in addition, gain insights into the size

of the clusters induced by SEA. We isolated B cells and treated

them with various superantigens in the presence or absence of

EDTA as before. We then used excess unlabeled anti-DR1

antibody L243 to bind surface HLA-DR1 on these B cells,

followed by fixing and then staining with 6 nm gold bead

conjugated secondary antibodies to prevent antibody mediated

clustering. To assess the three dimensional surface distribution of

DR1 on the surface of B cells, we performed electron tomography

on 250 nm thick sections obtained from labeled cells (see Materials

and Methods). Electron tomography allows visualization of sub-

cellular assemblies in 3D at resolutions higher than light

microscopy [25] and is ideally suited to determine the spatial

distribution of the 6 nm gold markers at the B cell membrane

(Supplementary Movie S1). The tomograms generated were

segmented to highlight the locations of the gold particles on the

surface of treated or untreated cells (Fig. 3, Supplementary
Movie S2). There was no obvious indication of large-scale

aggregation or capping of surface DR1 induced by SEA. Indeed,

there were no striking differences in clustering between the various

control groups (Fig. 3A–D). It is noteworthy that even in the

stretches of membrane with a high density of gold-labeled DR1

(Fig. 3E, F), the addition of SEA did not produce an obvious

change in the degree of clustering. In sharp contrast, the addition

of primary antibody followed by gold-labeled polyclonal secondary

at 37uC caused the formation of large aggregates or capping of

MHC class II on the B cell surface (Fig. 3G). The capping is not

because of unnaturally high surface expression of DR1 because

there are areas that have baseline levels of DR1 (arrowheads)

immediately adjacent to the areas that have large aggregates of

DR1 (arrows with asterisks). This forced capping also caused an

increased incidence of membrane ruffling of the cell and

internalization of DR1 (Supplementary Fig. S4A, B), which

was not observed with the SEA treated cells.

While there were no dramatic changes in the clustering of gold-

labeled DR1 among the various groups of B cells, there were

subtle differences in the distribution of gold beads that suggested

that inspection of a greater number of cells may give rise to

statistically significant differences in clustering between the

experimental groups. Since this could be achieved at higher

throughput with 2D imaging, we obtained projection electron

microscopic images of thin sections (,80 nm) of the B cells treated

as above (Fig. 4A i, ii). In a ‘‘blinded’’ experiment, many such

slices (.30/group) were examined, and the distances between

adjacent gold beads were measured along the contour of the cell

membrane. With both the tomographic (3D) and projection (2D)

imaging experiments, the addition of SEA or SEH did not appear

to have altered the gross morphology or the overall extent of

staining of DR1 molecules on the cell membrane (Fig. 4A).

A ‘‘nearest neighbor’’ analysis of 200 measurements from each

group showed that untreated and SEH treated B cells showed a

similar distribution of gold beads with comparable distances

between adjacent gold beads (Fig. 4B yellow, blue). However,

SEA treated cells (red) showed a marked increase of ,1.8 fold in

the proportion of closely apposed gold beads as compared to

untreated or SEH-treated cells. The addition of SEA/EDTA

(green) showed an intermediate distribution. The differences in

gold bead distribution between the various groups were greatest

when the distance between nearest neighbors was 60–80 nm, and

these differences diminished at greater inter-bead distances.

Taking into consideration these data and the approximate

molecular sizes of DR1 and SEA, we chose 75 nm as our

‘‘clustering cut-off’’, i.e., the farthest distance possible between two

adjacent gold beads that labeled DR1 molecules actively clustered

Table 1. Presence of SEA or SEH does not significantly alter
the affinity of the anti HLA-DR1 probe L243.

Kd(nM) Bmax

untreated 7.9060.41 295.6063.69

SEH 10.7960.60 286.9564.01

SEA 9.7060.77 260.2565.15

B cells from DR1tg mice incubated with no enterotoxin or 2.5 mg SEA or SEH for
1 hour at 37uC were stained with various dilutions of Cy3-L243 and analyzed by
flow cytometry. Plots of L243 concentration vs. Mean Fluorescence Index were
then fitted to a two-step binding equation (see data analysis) to obtain Kd,
Bmax values. Standard deviations are in parentheses.
doi:10.1371/journal.pone.0006188.t001
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by SEA (Fig. 4B, arrowheads). Thus adjacent beads less than

75 nm apart are counted as ‘‘clustered’’.

Untreated B cells showed a wide spread in % beads clustered

(Fig. 4C, yellow). On examination of over 200 cell sections

individually, we saw that SEA caused a significant increase in non-

random distribution or clustering of HLA-DR1 on the surface of B

cells in the presence of Zn2+ with a mean of 58% beads clustered

(Fig. 4C, red). The addition of EDTA to disrupt the zinc-

dependent high affinity binding site significantly lowered the

proportion of clustered beads, as expected (mean ,46%), while

the addition of the control SAg SEH caused a small, but

insignificant decrease in DR1 clustering on the B cells (Fig. 4C,

green, blue). Finally, we found that the number of higher order

clusters on the B cells (clusters with more than two gold beads) was

not dramatically altered by the addition of SEA (Fig. 4D). There

was only a small shift towards higher order clusters; most of the

clusters imaged were labeled by 2–4 gold beads, and this was

partially reversed by EDTA. We thus conclude that SEA, even in

the absence of anti-DR1 antibodies or T Cells, can crosslink DR1

molecules to form small clusters on the surface of B cells.

Discussion

SEA is an unusual bacterial superantigen in that it has two

binding sites for two corresponding sites on the MHC class II

molecule. Here, using specific probes in conjunction with powerful

imaging techniques of FRET, electron microscopy and tomogra-

phy, we visualize the generation of small clusters of DR1 molecules

on the surface of primary B lymphocytes upon SEA treatment. It is

important to clarify here that in using the term ‘‘clustering’’, we do

not imply the covalent cross-linking of various proteins described

in this study. Rather, we wish to convey the accretion of SEA and

DR1 molecules on the B cell membrane, mediated by moderate to

high affinity non-covalent interactions between these two proteins.

The term ‘‘clustering’’ has indeed been increasingly utilized to

mean as such by Immunologists who study the spatial re-

organization of various cell-surface receptors [36,37]. Our FRET

studies showed a high degree of clustering of DR1 molecules

induced by SEA; this was dependent on the dose of SEA and the

presence of both binding sites. We also observed that FRET

efficiency dropped off dramatically at lower concentrations of SEA

(data not shown). This sharp increase in MHC class II clustering

with increasing SEA concentration was predicted by a cooperative

model of SEA-DR binding [13,38]. Initially, with our electron

microscopic studies, there appeared to be only subtle differences in

the clustering between the SEA-treated B cells and controls. On

the inspection of large areas of the B cell membrane in three

dimensions and at nanometer resolution by electron tomography,

we observed no large aggregates of gold-labeled DR1 in the SEA

treated cells. On the other hand, forced clustering of DR1 by

polyclonal antibodies resulted in large aggregates or ‘‘capping’’ of

DR1, along with internalization of DR1 into intracellular vesicles

and extensive ruffling of the B cell membrane; neither of these

were observed with SEA treatment. However, when we inspected

large numbers of B cells, there emerged significant differences

between the groups. Treatment of B cells with SEA but not SEH

resulted in an increase in DR1 clusters, most of which were labeled

by no more than 4 gold particles, and this increase in clustering

was partially reversed by the inactivation of one of the two SEA

binding sites by EDTA.

How can we reconcile the FRET data that suggested strong

clustering, with the results from the electron microscopic imaging?

We argue that these data are in fact internally consistent; the

FRET assay as performed is not sensitive to the size of the DR1

cluster. While we can show that DR1 molecules on the B cell

surface are clustered, we cannot establish whether these molecules

form a few large clusters, i.e. aggregates of DR1, or many small

independent clusters. The electron microscopic imaging experi-

ments suggest that the latter is the case, and strongly argue against

extensive aggregation of surface DR1. The precise size of these

small clusters cannot be resolved at present because the

immunogold experiments only result in the labeling of a small

fraction of the total antigen population. A recent study of CD19

clustering on B cells suggested microclusters of anywhere between

100–500 molecules of B Cell Receptors upon activation [39].

However, modeling studies of SEA-DR2 trimers [40] reveal an

almost orthogonal ‘‘kink’’ in the trimer, such that one can imagine

that the extent of cross-linking of DR1 by SEA on a cell

membrane could potentially be self-limiting to no more than 4–5

DR1 molecules due to steric constraints. Thus, we conclude that

our results can be explained by a model where SEA clusters DR1

to form many small microclusters or ‘‘daisy-chain’’ oligomers [38],

but do not result in the coalescence or aggregation of MHC class

II molecules on the surface of B cells [12,21].

How do these observations translate into explaining the

functionality of SEA? Firstly, clustering of membrane proteins is

an oft-repeated theme in biological signaling, A central event in T

cell activation for example, is the formation of the immune synapse

(IS), where sustained cell signaling results from an orchestrated set

of clustering events of various receptors on both the T cell and

Antigen Presenting Cell membranes [43]. It is certainly likely that

a similar set of clustering events, in this case on the DR1

expressing B cell membrane, could be initiated by SEA binding

and crosslinking DR1 molecules. The intracellular signaling

observed in DR1 expressing cells only when they were treated

with SEA that had both functional binding sites [19] was

construed to mean that SEA could crosslink DR1 molecules,

and that this was necessary to initiate cell signaling. Our results are

compatible with these hypotheses, and go one step further to show

that the SEA-mediated crosslinking results in the formation of

small clusters of DR1 on the cell surface. While we required excess

SEA to visualize a statistically significant number of instances of

these clusters, it must be noted that SEA exerts its toxic effects at

far lower concentrations [2,5,6]. Thus it is possible that the

induction of only a few small-scale clusters per cell by SEA could

suffice to initiate downstream intracellular signaling. Given that

DR1 molecules are also retained at the cell surface and not

endocytosed for long periods of time when bound by functional

Figure 2. SEA induces clustering of HLA-DR1 on the B cell surface. (A) Acceptor Photobleach experiments can quantitatively measure energy
transfer. Images of B cells isolated from wtDR1 transgenic mice were stained with Donor (Cy3) and Acceptor (Cy5) conjugated anti-DR monoclonal
antibodies (L243) at Donor:Acceptor ratios of (1:1) before (i, ii) and after (iii, iv) acceptor photobleaching, indicated by arrow. Donor channel, i, iii;
acceptor channel, ii, iv. The photobleached area is boxed in the range indicator (to the right of each image). (B) FRET in the various regions of interest
(ROI) on the cell surface (overlay, i) can be quantified from changes in the intensity in the Donor and Acceptor channels (ii). Acceptor photobleach
(red) results in variable increase in Donor intensity (green; ROI 1, iii; ROI 1a, iv), while control ROIs 2 and 3 (v,vi) show little change in donor and
acceptor intensities. (C) SEA induces clustering of HLA-DR1 on B cells. Energy Transfer (E%) values were plotted against acceptor Fluorescence ([A] pre-
bleach) for untreated B cells (i), B cells treated with with SEH +/2 EDTA (ii,iii), SEA in the presence of EDTA (iv) or B cells treated with 10 mg or 2.5 mg
SEA (v,vi) for 45 minutes, here, at Donor:Acceptor molar ratio 1:4. Data from one of two experiments.
doi:10.1371/journal.pone.0006188.g002
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Figure 3. SEA does not mediate large-scale clustering of HLA-DR1 on B cells. B cells treated as in Fig. 2 were stained using anti-HLA-DR
primary and gold-labeled secondary antibodies, fixed and analyzed. Representative tomograms of 250 nm thick sections of these cells were
generated and segmented to highlight the 3D distribution of DR1 labeled by 6 nm gold beads (gold spheres) on the B cell membrane (purple). B cells
were untreated (A), treated with SEA+Zn2+ (B), SEA+EDTA (C) or SEH (D). Representative stretches of cell membrane with a higher density of DR1 in
cells treated with SEA (E), or untreated B cells (F) also showed no aggregates. Forced crosslinking of DR1 (G) caused aggregation (capping) of DR1 in
some areas (black arrow/asterisk) but not others (white arrowhead).
doi:10.1371/journal.pone.0006188.g003
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SEA [35], it is also possible that these clusters, if they continued to

exist as stable clusters over time, could also serve to sustain cell

signaling. This would explain the downstream signaling seen in

cells exposed to very low doses of SEA. Thus, it is certainly

tempting to view a single small cluster of 4–5 MHC class II

molecules as the smallest ‘‘signaling unit’’ of an Antigen Presenting

Cell, although the direct observation of these rare small clusters

over time is impossible with current technologies.

In the case of T cells, these cells require only a small number of

ligands (here, potentially both SEA and DR1) to trigger T Cell

Receptors (TCR) clustering and downstream activation [41,42]. In

this study, we deliberately excluded T cells so as to exclusively

study the effect of SEA on B cells expressing DR1 alone. However,

we posit that the small-scale clustering of DR1 molecules by SEA

that we observed on the surface of Antigen Presenting Cells may

serve to increase the local concentration of TCR ligands and thus

Figure 4. SEA induces small clusters of HLA-DR1 on the B cell surface. B cells were treated, stained and fixed as in Figure 3, and thin sections
(80 nm) analyzed by transmission electron microscopy. (A) Images of untreated B cells (i) or B cells treated with 2.5 mg SEA (ii) showed varying
degrees of clustering of HLA-DR1. arrow/asterisk, ‘‘clustered’’ gold beads; arrowhead, ‘‘unclustered’’ gold beads. (B) Nearest neighbor analysis of B
cells treated with SEA (red) shows an increased number of closely apposed gold beads compared to B cells treated with no enterotoxin (yellow) or
SEH (blue). SEA+EDTA (green) has an intermediate distribution, and these differences disappear when nearest neighbors are separated by large
distances. m, separation at 75 nm. (C) B cells treated with SEA show a statistically significant increase in the fraction of beads that are within 75 nm of
each other, when compared to cells that were untreated or treated with SEH or SEA+EDTA. Same color scheme as above. (D) SEA treatment does not
mediate higher order aggregation of HLA-DR1. Equivalent stretches of B cell membranes of various groups were evaluated for number of instances of
‘‘higher order’’ clusters (clusters of .2 gold beads). There was an increase in the fraction of cells with higher order clusters on SEA treatment, but no
dramatic change in the distribution profile between the groups. Data pooled from two experiments.
doi:10.1371/journal.pone.0006188.g004
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the avidity of the TCR-SEA-DR1 interaction. The clustering of

MHC II molecules to facilitate antigen presentation is not an

entirely new concept in Immunology, and indeed has been

previously studied in conjunction with lipid rafts [43,44]. While we

have not studied the re-organization of lipids in this study, we

subscribe to the possibility that small clusters of TCR-SEA-DR1

may be sufficient to recruit and perhaps cluster signaling

molecules, and initiate signaling downstream of TCRs. It is

noteworthy that the addition of such a potent T cell activator only

results in the formation of small clusters of MHC class II molecules

on B cell surfaces. The implicit suggestion from our studies that

small-scale membrane receptor clustering might be sufficient to

initiate downstream makes it interesting to speculate that in the

absence of superantigens, such clustering, possibly even without

the formation of large-scale ordered ‘‘immune synapses’’, could

initiate T cell signaling and perhaps explain the sensitivity and

non-linearity of the T cell response to low concentrations of

antigen. Certainly, in the case of SEA, the clustering of MHC class

II molecules on antigen presenting cells by this superantigen may

be the underlying mechanism behind the extremely low

concentration of SEA required to trigger the hyperactive, and

sometimes lethal, immune response.

Supporting Information

Figure S1 SEA treatment does not cause capping of surface

DR1 on B cells. (A) Freshly isolated B cells treated with SEA for

various lengths of time and stained for DR1 using L243-FITC

showed fairly even receptor distribution around the cell. (B) Cells

stained with anti-DR1-FITC and polyclonal secondary antibodies

at 37oC showed typical receptor aggregation or ‘‘capping’’.

Found at: doi:10.1371/journal.pone.0006188.s001 (0.56 MB PPT)

Figure S2 SEA treatment does not cause significant internali-

zation of surface DR1 on B cells (A) Cells isolated from the spleens

of DR1 transgenic mice and negatively selected on a CD43

column were 90–95% B220+ B lymphocytes. (B) These cells

incubated for various time points with 2.5 mg/mL/106 B cells

SEA, and stained for surface DR1 with L243-FITC.

Found at: doi:10.1371/journal.pone.0006188.s002 (0.10 MB PPT)

Figure S3 SEA but not SEH increases clustering of surface DR1

on B cells. (A) Shown is the data from all the D:A ratios used for

Figure 2c. The addition of SEA causes an increase in dependence

of FRET (E%) values to the D:A ratio, resulting in a greater

separation between the groups, which is visually apparent. This

separation is markedly reduced in the control groups. (B) The

intercepts of the linear fits applied to these data showed a dose

dependent increase in E% for SEA treated cells as would be

predicted, but not in the control groups. Again, EDTA reduces the

SEA induced clustering of DR1.

Found at: doi:10.1371/journal.pone.0006188.s003 (0.33 MB

DOC)

Movie S1 Acquisition of Tilt series. A thick section of embedded

and stained B cell (see Materials and Methods) was imaged at tilt

angles ranging from 260u to +60u at 2u increments, cross-

correlated and the individual images sequentially output as a

movie. The gold fiducials appear as large dark dots, while the

5 nm gold markers which label the surface MHC class II appear as

small dots on the cell membrane (the nucleus is on the bottom

right). The latter are easier to visualize when the movie is allowed

to play at normal speed, and appear most prominently at lower tilt

angles, e.g. a group of gold beads near the centre of the image, to

the top-left of the small spherical vesicle.

Found at: doi:10.1371/journal.pone.0006188.s004 (3.85 MB

MPG)

Movie S2 Tomogram. A dataset comprising of images of the

thick section of the gold bead decorated B cell taken at different tilt

angles was used to generate a tomogram. The same dataset used to

make movie S1 was used to generate the volume shown in S2. As

one ‘‘walks through’’ the 3D volume, the gold beads appear

transiently at high contrast at appropriate z slices. The fiducials

appear as the larger black dots towards the start and end of the

volume, while the 5 nm gold particles appear throughout the

volume and are restricted to the membrane, where they

presumably have bound MHC class II molecules

Found at: doi:10.1371/journal.pone.0006188.s005 (7.26 MB

MPG)

Movie S3 Image segmentation. The tomogram generated above

was segmented by Amira to highlight a section of the B cell

membrane (purple) and the 3D distribution of some of the gold

bead labeled DR1 molecules. Gold spheres with a diameter of

,15 nm were placed at the xyz coordinates corresponding to

location of the gold beads in the tomogram. For clarity, the other

aspects of the tomogram such as the nuclear membrane etc were

left unhighlighted. Still images from segmented 3D volumes such

as these are represented in Figure 3 in the main manuscript.

Found at: doi:10.1371/journal.pone.0006188.s006 (5.81 MB

MPG)
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