N-Terminal Pro-B-Type Natriuretic Peptide Is a Predictor of Chronic Kidney Disease in an Asian General Population

- The Ohasama Study -

Shingo Nakayama, MD; Michihiro Satoh, PhD; Hirohito Metoki, MD, PhD; Takahisa Murakami, PhD; Kei Asayama, MD, PhD; Azusa Hara, PhD; Takuo Hirose, PhD; Ryusuke Inoue, MD, PhD; Megumi Tsubota-Utsugi, PhD; Masahiro Kikuya, MD, PhD; Takefumi Mori, MD, PhD; Atsushi Hozawa, MD, PhD; Koichi Node, MD, PhD; Yutaka Imai, MD, PhD; Takayoshi Ohkubo, MD, PhD

The authors apologize for the mistakes in the Results section. In Table 4, sex, current or ex-smoker, current or ex-drinker, hypercholesterolemia, diabetes mellitus, history of CVD, and antihypertensive medication should have been treated as binary variables coded as 1 or 0 . However, the authors used the binary variables divided by 1 -standard deviation. This error caused an underestimation of the hazard ratios of the binary variables. For example, the standard deviation of $\operatorname{sex}(\operatorname{men}=1$ and women $=0)$ was calculated as 0.47 , although it is an inappropriate calculation. Thus, the correct hazard ratio of men is calculated as follows: 0.80 [the value before correction] ${ }^{(10.47)}=0.62$ [after correction]. All corrections are shown below.

Page 29, Table 4

Table 4. HR for CKD Development of Covariates			
\quad Variables	HR (95\% CI)	X 2	P-value
Sex (men=1, women=0)	$0.62(0.34-1.14)$	2.37	0.12
Age (1-SD [10.2 years] increase)	$1.22(0.97-1.52)$	2.95	0.086
BMI (1-SD [3.02 kg/m²] increase)	$1.03(0.88-1.21)$	0.17	0.68
Current or ex-smoker (=1, non-smoker=0)	$1.92(1.05-3.49)$	4.53	0.033
Current or ex-drinker (=1, non-drinker=0)	$1.16(0.79-1.70)$	0.55	0.46
Hypercholesterolemia (=1, non-hypercholesterolemia=0)	$0.83(0.59-1.17)$	1.10	0.29
Diabetes mellitus (=1, non-diabetes mellitus=0)	$1.61(0.94-2.77)$	2.98	0.085
History of CVD (=1, no history of CVD=0)	$0.93(0.34-2.58)$	0.017	0.90
Antihypertensive medication (=1, no antihypertensive medication=0)	$1.02(0.70-1.48)$	0.0097	0.92
SBP (1-SD [=13.4-mmHg] increase)	$1.06(0.91-1.24)$	0.57	0.45
eGFR (1-SD [=17.2-mL/min/1.73 m²] decrease)	$3.18(2.47-4.09)$	81.1	<0.0001
InNT-proBNP (1-SD [=0.87] increase)	$1.26(1.05-1.51)$	5.97	0.015

We calculated the HR ($95 \% \mathrm{CI}$) for CKD development per 1-SD increase in age, BMI, SBP, baseline eGFR, and InNT-proBNP. For binary variables, the hazard ratio of code " 1 " (vs. "0") is indicated. Abbreviations as in Table 1.

[^0]
[^0]: Original article: Circ Rep 2020; 2: 24-32 doi:10.1253/circrep.CR-19-0044
 Mailing address: Michihiro Satoh, PhD, Division of Public Health, Hygiene and Epidemiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan. E-mail: satoh.mchr@gmail.com All rights are reserved to the Japanese Circulation Society. For permissions, please e-mail: cr@j-circ.or.jp ISSN-2434-0790

