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Endocrine disrupting chemicals (EDC) abound in the environment sincemany compounds
are released from chemical, agricultural, pharmaceutical, and consumer product indus-
tries. Many of the EDCs such as Bisphenol A (BPA) have estrogenic activity or interfere with
endogenous sex hormones. Experimental studies have reported a positive correlation of
BPA with reproductive toxicity, altered growth, and immune dysregulation. Although the
precise relevance of these studies to the environmental levels is unclear, nevertheless,
their potential health implications remain a concern. One possible mechanism by which
BPA can alter genes is by regulating epigenetics, including microRNA, alteration of
methylation, and histone acetylation. There is nowwealth of information on BPA effects on
non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune
system. In this mini review, we will highlight the BPA regulation of estrogen receptor-
mediated immune cell functions and in different inflammatory conditions. In addition,
BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize
that most of these studies are on non-lymphoid cells, and given that BPA also affects
the immune system, it is plausible that BPA could have similar epigenetic regulation in
immune cells. It is hoped that this review will stimulate studies in this area to ascertain
whether or not BPA epigenetically regulates the cells of the immune system.

Keywords: bisphenol A, EDC, immune, epigenetics, estrogenic

Introduction

Exposure to environmental chemicals is suspected in increase in the incidence of allergies and
autoimmune diseases (1, 2). Among these compounds that are released in the environment, a
group of compounds that alter the endocrine functions of body are termed as endocrine disrupting
chemicals (EDCs). EDCs can interferewith synthesis, transport, function and activity, or elimination

Abbrevations: AKT, protein kinase B (PKB); COMT, catechol-O-methyltransferase; CXCL, chemokine (C-X-C motif) ligand;
DPPIII, dipeptidyl-peptidase 3; ERE, estrogen response element; Gata, GATA family transcription factor; IFN, interferon;
Igf2r, insulin-like growth factor 2 receptor; IL, interleukin; iNOS, inducible nitric oxide synthase; IRAK, interleukin-1
receptor-associated kinase; Mest, mesoderm-specific transcript homolog protein; MyD88, myeloid differentiation primary
response gene 88; Oct4, octamer-binding transcription factor 4; PTEN, phosphatase and tensin homolog; Slc22a18, solute
carrier family 22, member 18; Snrpn, small nuclear ribonucleoprotein particles; Sox, SRY (sex determining region Y)-box;
SULT2A1, sulfotransferase family, cytosolic, 2A; TNF, tumor necrosis factor; TRAF, TNF receptor associated factor; TRIF,
TIR-domain-containing adapter-inducing interferon-β.

Frontiers in Endocrinology | www.frontiersin.org June 2015 | Volume 6 | Article 911

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://dx.doi.org/10.3389/fendo.2015.00091
https://creativecommons.org/licenses/by/4.0/
mailto:ansrahmd@vt.edu
http://dx.doi.org/10.3389/fendo.2015.00091
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00091/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00091/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00091/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00091/abstract
http://loop.frontiersin.org/people/171671/overview
http://loop.frontiersin.org/people/201269/overview
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Khan and Ahmed Estrogenic endocrine disruptors regulate epigenetics

of natural hormones such as estrogen. Thismini-review is focused
onBisphenolA (BPA; 2,2-bis (4-hydroxyphenyl) propane), a ubiq-
uitous EDC, known to possess both agonistic and antagonistic
estrogen action. It interferes with estrogen-regulated endocrine
and physiological functions (3, 4). There is now growing evidence
that BPA can alter epigenetics in various non-lymphoid cells.
There is paucity of similar data on epigenetic regulation of BPA on
the cells of the immune system. Given that BPA can modulate the
immune system, it is plausible that the findings of BPA regulation
of epigenetics in non-lymphoid cellsmay also apply to the immune
system.

Bisphenol A, a xenoestrogen, is found in a variety of daily
consumer products such as polycarbonate plastics, food can lin-
ers, epoxy resin, and flame retardant (5, 6). Nearly eight bil-
lion pounds of BPA is produced/year and more than 100 t is
released in atmosphere (5). In 2003–2004 National Health and
Nutrition Examination Survey, around 92.6% of 2517 subjects
had detectable levels of BPA in their urine (7). In addition, BPA
is also detected in sera, amniotic fluid, placenta, umbilical cord
blood, ovarian follicular fluid, and colostrum (8–10). Although
BPA interacts with both estrogen receptors (ERα and ERβ), BPA
has 10 times higher affinity for ERβ (11, 12). Interestingly, BPA
estrogenic metabolite, 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-
1-ene is more potent (∼500 fold) (13, 14). BPA exposure in dif-
ferent experimentally and naturally exposed populations during
early developmental stages has been associated with reproductive
abnormalities such as infertility in bothmales and females, altered
male sexual function, spermatogenesis, endometrial disorders,
polycystic ovary syndrome, interference of embryonic develop-
ment programs, sex differentiation of the brain and behavior,
metabolic disorders, and immune responsiveness (15–22).

BPA a Potent Immunomodulator

It is well established that estrogen is a natural target of the immune
system since both ERα and ERβ are present on cells of the
immune system (23–25). Extensive studies have documented the
immunomodulatory role of estrogen (23, 26–31). Increasing evi-
dence suggests that BPA also modulate immune pathways, which
may contribute to the development of inflammatory conditions
and autoimmune diseases (1, 2, 32). BPA exposure modulates
estrogen-associated immune signaling, molecular mimicry (33),
disruption of cytochrome p450 enzyme (34), alteration of immune
signaling in cells of innate and adaptive immune system, cytokine
polarization to Th1 and Th2 (35), inhibition of Tregs (36),
dysregulation of immunoglobulin (37), and hyperprolactinemia
reviewed in detail previously (38, 39).

BPA Binds to ER to Modulate Immune Cell
Signaling and Function
Bisphenol A binds and stimulates ERα and ERβ transcriptional
activity at concentrations of 100–1000 nM (12). However, BPA
potency is 10–1000-fold less than other EDCs such as diethyl-
stilbestrol (DES) and ethinyl estradiol (40). BPA treatment had
opposing effects on ERα expression with decreased expression
in males and increased expression in females F(0) and F(1) off-
spring rats (41). In a proteome study, apo-AI, DPPIII, and VAT
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FIGURE 1 | Bisphenol A interaction with estrogen receptors. Bisphenol
A (BPA) interacts with estrogen receptor (ER)-α and β to regulate different
proinflammatory cytokines such as TNFα, IL-6, and IFNγ and
anti-inflammatory cytokines TGFβ and IL-10. In addition, it upregulates DNA
methyl transferase enzymes (DNMTs) to epigenetically regulate gene
expression. Abbreviation: IL: interleukin; ERK: extracellular signal-regulated
kinases.

were identified as protein biomarkers for BPA-induced endocrine
disruption in spleen and thymus from mice prenatally exposed to
BPA (42). Interestingly, female and young offsprings were more
susceptible to alterations in these proteins suggesting gender and
age interplay in BPA (42). Furthermore, there was decreased IL-2,
IL-12, IFNγ, and TNFα expression in the spleen of BPA-treated
rats when compared to control rats (41).

It has been recently shown that treatment of BV2 murine
microglial cell line, THP1 macrophage and primary human
macrophages with BPA increased TNFα and IL-6 but decreased
IL-10 and TGFβ (Figure 1) (43, 44). This was mediated through
ERα/β and extracellular-regulated protein kinases (ERK)/nuclear
factor κB (NF-κB) signal cascade (43, 44). Interestingly, treatment
of LPS-activated RAW 264.7 cells and murine macrophages with
BPA decreased nitric oxide production (45–47). These effects are
potentially mediated through BPA-ER mediated downregulation
of NF-κB transactivation (48). However, BPA-exposed zebra fish
embryos have increased expression of iNOS, IFNγ, IL-1β, IL-10,
TNFα, CC-chemokine, and CXCL-clc. In addition, BPA altered
expression of members of Toll-like receptors (TLRs) signaling
pathway TLR3, TRIF, MyD88, IRAK4, and TRAF6 (49). The
above studies show that the pathophysiological outcome of exper-
imental exposure to BPA varies with routes, concentration and
dose, cell culture systems, and organisms. Since, the majority of
these studies are performed on experimental animals or are cell-
culture based studies, it is likely that there is some heterogeneity
between the effects of BPA in the different experimental designs
and organisms studied.

BPA Effects on Allergic and Autoimmune
Conditions
Different studies have reported BPA altered Th1, Th2, and Tregs
profile. Majority of these studies have demonstrated augmenta-
tion of Th1 type response in BPA-exposed subjects (35, 50–52).
Offsprings of C57B6/129svjmice exposed to BPAduring gestation
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have altered cytokine profile with increased Th1 profile and skew-
ing toward Th17 responses (53). Maternal exposure to environ-
mentally relevant BPA dose results in decreased innate immune
responses in influenza A-infected adult offspring (54). Perinatal
exposure to low doses of BPA from 15th day of pregnancy to
pups weaning age, increased anti-ovalbumin (OVA) IgG titers
in OVA-tolerized rats accompanied with increased activation of
T cells and IFNγ secretion. Oral OVA challenge in these mice
increased colonic inflammation, neutrophil infiltration; IFNγ and
decreased TGFβ suggesting perinatal exposure of BPA in low
doses can make neonatal immune system susceptible to food
intolerance (55). BPA exposure via in utero and through breast
milk promotes development of allergic asthma in BALB/c mice
pups sensitized to low dose of OVA (56). However, postnatal
BPA exposure alone (through breast milk) was not sufficient
to induce allergy in the mouse pups indicating the importance
of identification of critical period of BPA exposure in studying
different inflammatory conditions (56). In contrast, a recent study
showed that BPA intake during pregnancy and breastfeeding or
orally did not have significant effect inmurine offsprings in exper-
imental allergic asthma (57) and inflammatory bowel disease
(IBD) (58).

Contrasting effect of perinatal exposure BPA in different
mousemodels ofMS, experimental autoimmune encephalomyeli-
tis (EAE) disease expression has also been recently reported
(59, 60). In Theiler’s-virus induced demyelination, perinatal BPA
exposure resulted in decreased anti-viral antibodies, increased
onset of disease, and increased inflammation in spinal cord and
digestive tract (60). Whereas, in EAE models, C57BL/6J mice
(chronic progressive) and SJL/J mice (relapsing-remitting), pre-
natal BPA exposure did not have significant effect on EAE disease
severity and progression (59). These reports suggest that biologi-
cal effects of BPA exposure vary with age, gender, route and dose,
and model of disease. These are important variables to consider
when studying immunomodulatory role of BPA.

There was increased autoantibody production by B1 cells from
BPA-treated BWF1 mice, a murine model of systemic lupus ery-
thematous (SLE) (61). However, other studies have demonstrated
that BPA-fed NZB X NZW F(1) mice had late onset of protein-
uria and lowered IFNγ and IL-10 production suggesting protec-
tive effect of BPA on SLE (62). Trans-maternal BPA exposure
increased diabetes type-1 development in theNODmice offspring
by increasing apoptotic cells and Tregs and decreasing resident
macrophages in islets and by inducing systemic immune changes
including altered cytokine production (63). Together these studies
indicate the importance of critical windows of exposure since early
exposure to BPA has modulatory effects on the immune system
later in life.

BPA an Epigenetic Regulator

An important mechanism by which environmental agents can
modify gene expression is through altering epigenetics, DNA
methylation, histone modification, and microRNA (miRNA). In
this regard, several recent studies have confirmed epigenetic reg-
ulation by BPA, although most of these studies have focused on
epigenetic regulation in non-lymphoid tissues.

BPA and DNA Methylation
Long-lasting effects of perinatal and trans-generational BPA expo-
sure suggest the potential disruption of epigenetic programing
of gene expression critical in development, cancer, behavioral,
ovarian, and other reproductive functions (64–67). Studies have
demonstrated that BPA exposure results in alteration in DNA
methylation and expression of specific genes (68). Whether these
BPA-mediated alteration in methylation are related to its estro-
genic activity remains still unclear. However, a recent study has
demonstrated that BPA regulation of methylation was medi-
ated through BPA-ERα regulation of DNA methyltransferase
(DNMT)-1 and DNMT-3a expression (Figure 1) (64). BPA expo-
sure of neonatal male rats increased DNMT-3a and -3b expres-
sion and also increased methylation at promoter region of ERα
and ERβ in testis (69). Different independent groups have also
reported BPA-mediated alteration in DNMTs and methyl-CpG
binding protein 2 (MECP2) levels and in genome-wide methy-
lation level (70–73). Exposure of BPA promotes global and
cytochrome P450 aromatase (cyp19a1a gene-specific) methyla-
tion in gonads of adult rare minnow Gobiocypris rarus (74). This
was also associated with alteration of DNMT mRNA levels. In
ovaries, the methylation levels at four CpGs at the 5′ flanking
region of cyp19a1a variedwith the time of BPA exposure; suppres-
sion by 7 days and augmentation by 35 days of BPA exposure (43).

In a recent cross-sectional epidemiological study of pre-
pubescent girls in Egypt, it was found that BPA exposure resulted
in alteration of methylation profiles. Higher urinary BPA levels
were associated with hypomethylation of CpG islands on the
X-chromosome and lowered methylation of genes involved in
immune function, transport activity, metabolism, and caspase
activity (75). Further, it has been found that there is hypomethyla-
tion of long interspersed nucleotide elements (LINE 1) in sperms
of men exposed to BPA when compared to control group indi-
cating potential of BPA in epigenetic reprograming (76). Non-
monotonic dose-dependent effects of DNA methylation patterns
were observed in mouse liver following perinatal BPA exposure
(77). There was enrichment of regions of altered methylation
(RAMs) within CpG island shores (77).

Bisphenol A exposure of F(0) pregnant rats during gestation
and lactation, resulted in decreased global DNA methylation in
F(1) offspring sperms. In addition, glucokinase (Gck) promoter
was completely methylated in F(2) offspring hepatic tissue. There
were five unmethylated sites in control offspring indicatingmater-
nal BPA exposure can have multigenerational effects on glucose
metabolism (78). BPA- and DES-induced antisense transcript,
long non-codingRNAHOTAIR in breast cancer cells and inmam-
mary gland of rats, which was mediated by ER-ERE pathway and
by chromatin modification (histone methylation and acetylation)
(79). BPA increases the expression of Enhancer of Zeste Homolog
2 (EZH2), a histone methyl transferase, in breast cancer cell line
(79, 80). Furthermore, EZH2-regulated histoneH3 trimethylation
was also increased in MCF-7 cell line and in mammary glands
of mice exposed to BPA in utero (80). In utero BPA exposure
decreased the expression of phase I and II xenobioticmetabolizing
enzyme (XME) genes. This was associated with increased site-
specific methylation at COMT and increased average methylation
at SULT2A1 promoters (81).
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BPA Epigenetic Modulation of Gamete, Embryo and
Placenta
Epigenetic trans-generational inheritance (ETI) or Germline
transmission of epigenetic information between generation is
modulated by different environmental stimuli including BPA.
These epimutations are changes in methylation and histone mod-
ification in germ line and are passed on to subsequent gener-
ations (82). Imprinted genes are regulated by differential DNA
methylation. Maternal BPA exposure during late stages of oocyte
development and early embryonic stages significantly reduced
genome-wide methylation levels in placenta and altered methy-
lation of differentially methylated regions (DMRs) such as Snrpn
imprinting control region (ICR) and Igf2 DMR1 (83). Low-dose
BPA exposure during follicle culture from preantral to antral
stage resulted in significant increase in allele methylation errors
in DMRs of maternally imprinted genes (Snrpn, Igf2r, and Mest)
and decreased in histone H3K9 trimethylation and interkineto-
chore distance and epigenetic changes in germinal vesicle and
metaphase II oocyte, which potentially contribute to chromosome
congression failure, meiotic errors, and overall health of offspring
(84). BPA exposure of neonatal male rats (F0) resulted in signif-
icant hypomethylation at the H19 ICR in sperms of F(0) and in
resorbed embryo (F1) (85). In addition, there were decreased Igf2
and H19 mRNA levels in BPA resorbed embryo (F1) compared
to viable control embryo. Murine N2A cells exposed to BPA had
modest decrease in global DNA methylation accompanied with
increased adipocyte differentiation (86). Together, these studies
indicate that BPA exposure epigenetically modulates gametes,
embryo and placenta, which potentially results in defects in fetal
and postnatal development.

Bisphenol A decreased methylation upstream of Agouti gene
in viable yellow agouti [A(vy)] mice (87, 88). In BPA-exposed
human mammary epithelial cells (HMEC), there was hyperme-
thylation of genes related to the development of most or all tumor
types indicatingmodulatory effect of BPA onHMEC proliferation
and senescence (89). In utero BPA exposure decreased methyla-
tion at Hoxa10 promoter, resulting in increased ERα binding to
Hoxa10 ERE thereby increasing ERE-driven Hoxa10 expression
(90). These epigenetic modifications result in alteration in ERE
sensitivity of different genes and could possibly be a general
mechanism of BPA-mediated gene expression.

BPA and MicroRNAs
Different studies have demonstrated that BPA exposure results in
aberrantmiRNAexpression profile. ThesemiRNAs are believed to
target gonadal differentiation, folliculogenesis, and insulin home-
ostasis (91, 92). Estrogen, BPA, and DDT similarly altered the
expression of multiple miRNAs including miR-21 in ER(+) and
hormone sensitive MCF-7 breast cancer cell line (93). Placental
cell line exposed to BPA had significantly increased miR-146a
levels (94). BPA upregulated the expression of oncogenic miR-19a
and miR-19b accompanied with the downregulation of miR-19-
related downstream proteins such as PTEN, p-AKT, p-MDM2,
p53, and proliferating cell nuclear antigen (78). Interestingly, cur-
cumin, which is clinically used for cancer treatment modulated
miR-19/PTEN/AKT/p53 axis to protect against BPA-associated

breast cancer promotion (95). BPA treatment decreased miR-
134 and upregulated the expression of miR-134 targets including
pluripotencymarkers (Oct4, Sox2, andNanog) in embryonic stem
cells (ESC) and embryoid bodies (EB) (96).

BPA and Histone Acetylation
Long-term BPA exposure increased N-methyl--aspartic acid
(NMDA) receptor levels and enhanced the expression and func-
tion of histone deacetylase 2 (HDAC2) in hippocampus of adult
mice (97). Prenatal exposure of Wistar-Furth rats to BPA resulted
in increased pro-activation histone H3K4 trimethylation at the
promoter region of alpha lactalbumin gene at postnatal day 4
(PND4) and increased alpha lactalbumin mRNA expression in
mammary gland (98). Interestingly, majority of differences in
gene expression in BPA vs. vehicle-treated group were evident
at later stage of life (PND50). These results indicate that fetal
BPA exposure can modify postnatal and adult mammary gland
epigenome and gene expression, which may contribute to devel-
opment of pre-neoplastic and neoplastic lesions in adult rat mam-
mary gland (98). To date, there is no information onBPAeffects on
methylation,miRNAs, and histone acetylation in specific immune
subsets.

Conclusion

Bisphenol A, a model EDC has been shown to modulate not only
reproductive and non-lymphoid systems, but it can also affect
the immune system. One potential mechanism by which EDC
can physiologically affect tissue functioning is by epigenetically
regulating ER-targeted genes. While there are only limited studies
on epigenetic regulation of BPA on the immune system, studies
on many non-lymphoid tissues clearly demonstrate that BPA can
alter methylation, histone modification, and miRNAs. Together
by integrating current knowledge of trans-generational effect of
EDCs on developmental biology, immune function, and epige-
netic regulation, it is imperative to design thorough systematic and
comprehensive studies to further define the dose, route, and criti-
cal windows of exposure of these EDCs and their effects on differ-
ent chronic inflammatory conditions. A better understanding of
BPA regulation of epigenetic mechanism will add to our current
understanding about estrogens and their potential contribution in
etiopathogenesis in immune-altered states including autoimmune
diseases. By extrapolation, it is likely that other EDCs may also
epigenetically regulate immune cells, whichmayhave implications
in immune conditions including response to infectious agents or
susceptibility to autoimmune diseases. There is a distinct gap in
this area that warrants studies. These studies will help in establish-
ing safe levels of EDCs in environment especially during the vul-
nerable fetal life, during which critical immunological education
occurs.
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