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Gene expression patterns can diverge between species due to changes in a gene’s regulatory DNA or
changes in the proteins, e.g., transcription factors (TFs), that regulate the gene. We developed a
modeling framework to uncover the sources of expression differences in blastoderm embryos of
three Drosophila species, focusing on the regulatory circuit controlling expression of the hunchback
(hb) posterior stripe. Using this framework and cellular-resolution expression measurements of hb
and its regulating TFs, we found that changes in the expression patterns of hb’s TFs account for
much of the expression divergence. We confirmed our predictions using transgenic D. melanogaster
lines, which demonstrate that this set of orthologous cis-regulatory elements (CREs) direct similar,
but not identical, expression patterns. We related expression pattern differences to sequence
changes in the CRE using a calculation of the CRE’s TF binding site content. By applying this
calculation in both the transgenic and endogenous contexts, we found that changes in binding site
content affect sensitivity to regulating TFs and that compensatory evolution may occur in circuit
components other than the CRE.
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Introduction

Changes in gene expression patterns drive phenotypic change
between both individuals and species (Gompel et al, 2005;
McGregor et al, 2007; Wittkopp et al, 2008; Chan et al, 2010;
Frankel et al, 2011). Many studies have identified dramatic
gene expression changes, such as the gain or loss of an
expression pattern, that underlie morphological phenotypes.
Though more difficult to detect, small quantitative changes in
gene expression may also lead to phenotypic variation
between individuals and the evolution of new phenotypes
between species (Brem et al, 2002; Wittkopp et al, 2009;
Rockman et al, 2010). Indeed, quantitative variation in gene
expression is pervasive within and between species, for
example (Hutter et al, 2008; Nuzhdin et al, 2008; Cheung
and Spielman, 2009; Muller et al, 2012). A fundamental
challenge is to contextualize quantitative expression variation:
what are its sources and its phenotypic consequences?

Gene expression occurs in the context of a network. The
expression pattern of any given gene is dependent on the
expression of its regulators. Information about the position
and level of regulators is integrated by regulatory DNA, e.g.,
promoters, cis-regulatory elements (CREs or enhancers), and
30 and 50 untranslated regions (UTRs). Any part of a regulatory
network can change between species, obscuring the under-
lying mechanism of expression pattern conservation and
divergence. For example, if the expression pattern of a gene

has changed, then this could be due to changes in the
expression of upstream regulators or changes in any of the
relevant pieces of regulatory DNA. Reciprocally, if an expres-
sion pattern is conserved, then either the expression patterns
of upstream regulators and the function of regulatory DNA are
conserved or changes in one component have been compen-
sated for by changes in another.

To contextualize gene expression changes between species,
it is therefore ideal to examine the expression patterns of the
entire network simultaneously. Practically, there is a trade-off
between measuring all network components comprehensively
and measuring them in multiple cell types. Single-celled
organisms are amenable to comprehensive measurements of
gene expression using genome-wide techniques, i.e., RNA-seq.
These types of studies have revealed widespread rewiring of
transcriptional networks, even in cases where the output of the
circuits is conserved, reviewed in Li and Johnson (2010).
Making comprehensive measurements in animals is more
technically challenging since an organism is composed of
multiple cell types with distinct gene expression profiles.
Genome-scale techniques are not spatially resolved, as they
require whole organisms or tissues to be homogenized.
Imaging techniques offer spatial resolution and are increas-
ingly quantitative but are often limited to only a few genes. For
example, in insects, comparative studies of small numbers of
genes have shown both cases where gene expression patterns
appear conserved in the face of changing regulatory sequence
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(Lukowitz et al, 1994; Ludwig et al, 2000; Wittkopp et al, 2003;
Wratten et al, 2006; Hare et al, 2008a; Swanson et al, 2011) and
cases where expression patterns diverge (Ludwig et al, 2005;
Zinzen et al, 2006; Goltsev et al, 2007; Lott et al, 2007; Crocker
et al, 2008; Fowlkes et al, 2011). Here, we pursue a strategy that
is intermediate between these two extremes—simultaneous
measurement of a small number of relevant network
components, in multiple species, at cellular resolution.

As a model system to develop this approach, we use the
conserved developmental transcriptional network that patterns
the anterior-posterior axis in Drosophila embryos. This network
exhibits quantitative differences in spatial and temporal
expression patterns across multiple closely related species
(Fowlkes et al, 2011). We recently completed a survey of gene
expression in blastoderm embryos of D. yakuba (dyak) and
D. pseudoobscura (dpse) (Fowlkes et al, 2011), which comple-
ments the existing data set for D. melanogaster (dmel) (Fowlkes
et al, 2008). Our high-resolution imaging methods produce a
gene expression atlas in which the relative expression levels for
an arbitrary number of genes are mapped onto each cell in
an average 3D embryo. These data are uniquely suited for
identifying quantitative expression differences, as subtle differ-
ences in expression can be accurately measured. Our global
analysis of these three data sets showed that individual genes
differ quantitatively in their spatiotemporal gene expression
patterns. However, cellular gene expression profiles, consisting
of 13 genes in the anterior-posterior patterning network,
are mostly conserved, implying that regulatory relationships
between these genes are also largely conserved.

Here, we develop and apply a computational framework to
assess the sources of expression divergence for an individual
regulatory circuit in this network. We define a regulatory
circuit to be the inputs and output of an individual CRE
(Ben-Tabou de-Leon and Davidson, 2007). A gene can be
controlled by multiple CREs, each of which controls a portion
of the gene expression pattern in space and time. In this study,
we define the inputs to be the regulating transcription factors
(TFs) of a CRE and the output to be the portion of the
expression pattern directed by the CRE. However, our general
strategy can also be extended to accommodate other compo-
nents of transcriptional regulatory circuits. This approach
allows us to: (1) quantify the behavior of the circuit across
species; (2) attribute the sources of expression divergence
either to changes in the expression patterns of upstream
regulators or to changes in the regulatory logic of the circuit;
and (3) assess the contributions of changes in CRE sequence to
the expression output.

As a case study, we examine the circuit that controls the
hunchback (hb) posterior stripe. hb is a widely conserved zinc-
finger TF near the top of the anterior-posterior segmentation
network hierarchy (Lehmann and Nüsslein-Volhard, 1987;
Struhl et al, 1992; Lukowitz et al, 1994; Lynch and Desplan,
2003). hb is expressed in two regions at the blastoderm stage: a
broad anterior domain, which is largely maternally controlled,
and a posterior stripe, which is solely due to zygotic
transcription (Figure 1A; Lehmann and Nüsslein-Volhard,
1987; Tautz et al, 1987; Schröder et al, 1988). The hb posterior
stripe expression pattern varies quantitatively between dmel,
dyak, and dpse (Fowlkes et al, 2011). From extensive
experimental data, we know hb’s input TFs and the structure

of the CREs in its locus (Jäckle et al, 1986; Casanova, 1990;
Margolis et al, 1995; Kosman and Small, 1997). Like many
other CREs in the network, the TF binding site content of the
hb posterior stripe CRE varies significantly across these three
Drosophilids (Moses et al, 2006; Kim et al, 2009), whose last
common ancestor lived B25 million years ago (Figure 1B;
Richards et al, 2005).

Our approach is to first define an input/output function that
relates the concentration of regulating TFs to the observed
expression pattern in individual cells. We then assess the
degree of conservation of the circuit’s input/output function
by fitting the function in each of the three Drosophila species.
Because these functions operate at cellular resolution, we can
quantify the extent to which expression divergence is due to
upstream changes in the expression patterns of regulating TFs.
We validate our predictions using CRE reporter constructs in
transgenic animals in which all inputs are constant and only
the sequence of the CRE is changing. We also use these
transgenic data to calculate the CRE sequence contribution to
the input/output function without fitting additional para-
meters; this calculation is based on predicted TF binding sites
in the set of orthologous CREs. Finally, we add this calculation
of CRE sequence contribution to the input/output function in
the endogenous context to assess the contribution of CRE
sequence to the behavior of the native regulatory circuit.

Using this strategy, we found that there is a large degree of
functional conservation in the hb posterior stripe circuit. The
majority of the endogenous gene expression divergence is due
to positional shifts in expression of hb’s regulators. We found
that the calculated CRE sequence contribution improves the fit
of the input/output function in the transgenic context. We
conclude that small changes in CRE sequence do have
functional consequences; they alter sensitivity to regulating
TFs. This has implications for current models of CRE function,
where the degree of flexibility in the arrangement of TF
binding sites is a matter of debate (Crocker and Erives, 2008;
Hare et al, 2008a, b). We found that adding the CRE sequence
contribution to the input/output function in the endogenous
context leads to mixed results, implying that orthologous TFs
in these species may not be functionally identical, as is widely
assumed, or that compensatory evolution has occurred
outside of the CRE. We discuss the implications of these
results for understanding transcriptional circuit evolution with
quantitative precision.

Results

There are quantitative differences in the hb
expression pattern between species

The endogenous expression pattern of hb was previously
measured at cellular resolution in dmel, dyak, and dpse
(Fowlkes et al, 2008, 2011; Figure 2A). Briefly, expression was
visualized using RNA fluorescent in-situ hybridization against
hb and a fiduciary marker (see Materials and methods). The
in-situ protocol uses an amplification step to improve the
signal to noise ratio. We find no evidence that this protocol
results in non-linear amplification of signal (Supplementary
Figure 1). The stained embryos were imaged using 2-photon
laser scanning microscopy, and automated image analysis
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techniques were used to convert image data into PointClouds,
text files that contain the spatial coordinates and expression
levels of hb and the fiduciary marker in each nucleus (Luengo
Hendriks et al, 2006). Each of the PointClouds was then
matched to a species-specific embryo template using the
fiduciary marker (Fowlkes et al, 2008). Once all the embryos
are mapped onto the template, average hb expression values
are calculated for each cell at each time point. Since expression
can only be measured in relative units with this in-situ
protocol, each gene’s expression values are normalized so that
the minimum value is 0 and the 95th percentile value
corresponds to 1. The resulting gene expression atlases
contain the average values of hb expression derived from 5
to 29 embryos for each of six time intervals during the hour of
blastoderm-stage development. The resulting gene expression
patterns are qualitatively similar: each species has a hb
posterior stripe, but they vary quantitatively in relative
position, particularly in the earlier time points, and in the
width of the stripe (Figure 2B and C).

A modeling framework to understand the origins of
hb gene expression divergence between species

Many factors may cause the observed inter-species divergence
in the hb expression pattern. Changes in any part of a gene’s
regulatory DNA or the expression patterns of the regulatory
molecules that bind this DNA can influence a gene’s
expression pattern (Maston et al, 2006; Consortium et al,
2010). Given our cellular resolution data set, we are best
equipped to assess the influence of spatially varying inputs on
a gene’s output. We therefore restrict our considerations to
hb’s input TFs and the CRE that integrates these inputs. We
then separate potentially influential changes in the circuit
into two categories: differences in the expression patterns of
hb’s input TFs, which we call positional information, and
differences in hb’s sensitivity to its inputs, which we call
regulatory logic. The terms trans and cis are often used to
denote these contributions to expression divergence, but we
decided against these terms for two reasons. First, in studies
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Figure 1 The two spatial domains of the hb expression pattern are driven by two CREs. (A) hb is expressed in a broad anterior domain and a posterior stripe in
blastoderm-age embryos. We show two views of the dmel hb mRNA expression pattern at the first time point from the dmel atlas (Fowlkes et al, 2008). On top is a
rendering in a typical dorsolateral embryo view, where expression is in red with brightness proportional to level. On bottom is a cylindrical projection, where high
expression is in red and low expression is in blue. In both views, anterior is to the left and dorsal is up. Below the expression patterns, we show the structure of the hb
locus, with regulatory elements in purple and transcripts in red. The expression pattern is controlled by two CREs, one driving the anterior domain (ii) and one driving the
posterior stripe (i). The two hb transcript isoforms are functionally identical, and both transcripts contribute to both spatial expression domains (Margolis et al, 1995).
(B) The binding site content of the hb posterior stripe CRE varies between species. We plot the predicted TF binding sites of hb’s regulators in the sequences of
orthologous hb posterior stripe CREs from D. melanogaster (dmel), D. yakuba (dyak), and D. pseudoobscura (dpse) (see Materials and methods). hkb sites are
highlighted in orange and tll, kni, Kr, and gt sites are shown as light blue, dark blue, light green, and dark green rectangles, respectively. The height of the rectangle is
proportional to binding site strength and the width of the rectangle is proportional to the length of the binding site.
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that concern gene expression divergence, trans is often used to
connote changes in TF coding sequences. Here, positional
information only refers to changes in the expression pattern of

the TFs. Second, our use of positional information is consistent
with the definition traditionally used in developmental
biology, i.e., the spatially varying expression patterns of
molecules that determine cell type.

Our modeling framework is designed to disentangle the
contributions of changes in positional information and
regulatory logic to hb expression divergence by modeling
gene expression in single cells. We first define a function that
relates inputs to outputs in individual cells, Equation (1). If the
change in the output expression pattern between species is due
to a change in the position of an upstream regulator, i.e., a
change in positional information, then we expect this function
to accurately predict expression of the output based on the
concentration of inputs across all cells in each species.
However, the cells will occur in different locations because
the spatial pattern of the inputs differs.

hbði; sÞ¼ f ðrði; sÞ; kÞ ð1Þ

Here, hb(i, s) is the measured hb gene expression level in
cell i in species s, r(i, s) is a vector containing the corres-
ponding expression levels of hb’s regulators, k is a vector
consisting of coefficients describing the effect of each TFon hb,
i.e., the strength of repression or activation per expression unit
of the TF, and f is a function relating r and k to hb.

In contrast, if the expression difference is due to a change in
regulatory logic, i.e., the circuit is responding to an upstream
input differently, then we would expect a difference in the
relationship of input and output concentrations. We can
incorporate this into Equation (1) by including a species-
specific vector k(s) to relate the levels of regulators to the level
of hb. Equation (2) therefore describes the scenario in which
the divergence in the hb pattern is caused by both changes in
positional information and regulatory logic.

hbði; sÞ¼ fðrði; sÞ; kðsÞÞ ð2Þ

Given a functional form, we call the fit of Equation (2) to
each species’ own data the best fit; it is the best performance
possible given that functional form. To determine whether a
regulatory circuit is conserved, we can fit the function in one
species using Equation (1), use those fit parameters to predict
expression in the other species (we call this the applied fit),
and compare the performance of the model to the best fit. If the
contribution of positional information is large relative to
changes in regulatory logic, then these two fits will be similar.
If the contribution of positional information is small, then the
best fit will be much better than the applied fit.

To implement this framework for the hb posterior stripe, we
must make several choices regarding the inputs of the circuit,
the use of the six time points in our data set, and the form
of the function f. We chose the five primary regulators of
hb’s posterior stripe defined by genetic analyses: giant, gt;
huckebein, hkb; knirps, kni; Krüppel, Kr; and tailless, tll
(Jäckle et al, 1986; Casanova, 1990; Margolis et al, 1995;
Kosman and Small, 1997). These genes are all in gene
expression atlases for dmel, dyak, and dpse (Fowlkes et al,
2008, 2011). We excluded caudal, a potential activator of hb,
because caudal is not in the dpse atlas due to low level staining
(Fowlkes et al, 2011). Thus, caudal’s contribution is not
spatially localized in our model and is instead included in the
constant term in Equation (3) (see Discussion). The time
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Figure 2 hb patterns differ between three Drosophila species. (A) The hb
posterior stripe expression pattern diverges between three species. We show the
average expression patterns in the posterior 36% of embryos for the endogenous
hb pattern in dmel, dyak, and dpse, at six time points spanning the hour of
blastoderm-stage development. The panels are oriented with the anterior end to
the left and the dorsal side on the top, and the levels are indicated by the color,
where black is no expression and red is high expression. The shape and
dynamics of the hb posterior stripe expression pattern vary between the three
species. (B) The average hb posterior stripe boundary locations vary between
species at early time points. We plot the average boundary locations of the hb
posterior stripe in percentage egg length. The panels are oriented in the same
manner as (A). Average boundary positions are shown for dmel in black, dyak in
purple, and dpse in red, for six time points. Error bars denote the standard error of
the mean. (C) The average number of cells in the hb posterior stripe varies
between species at all time points. We plot the average number of cells in the hb
posterior stripe for dmel, dyak, and dpse for six time points. Error bars denote the
standard error of the mean. dpse embryos have fewer total cells than dmel and
dyak embryos. Therefore, the number of cells in the dpse hb posterior stripe is
much smaller than in dyak and dmel stripes, even though its size as a fraction of
egg length is similar. Source data is available for this figure in the Supplementary
information.
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points in the atlases correspond to B10 min intervals. Because
transcription can occur on the timescale of a few minutes
(Ardehali and Lis, 2009), we assume that target expression levels
can be predicted from regulators’ expression levels at the same
time point and therefore use all time points to fit our function
simultaneously. Adding a time delay of one 10 min time step
between the inputs and outputs improved the modeling
accuracy but reduced the total size of our data set. Because
excluding a single time point can create a similar increase in
modeling accuracy, we did not use a time delay in subsequent
analyses (Supplementary Figure 2). There are many functional
forms we could use for f. We first consider a simple linear form.
Explicitly, Equations (1) and (2) correspond to

hbði; s; tÞ¼ rði; s; tÞ � kþ a

¼ kgt � gtði; s; tÞþ khkb � hkbði; s; tÞ
þ kkni � kniði; s; tÞþ kKr � Krði; s; tÞ
þ ktll � tllði; s; tÞþ a

ð3Þ

hbði; s; tÞ¼ rði; s; tÞ � kðsÞþ aðsÞ
¼ k

gt

s � gtði; s; tÞþ k
hkb

s � hkbði; s; tÞþ k
kni

s � kniði; s; tÞ
þ k

Kr

s � Krði; s; tÞþ k
tll

s � tllði; s; tÞþ aðsÞ
ð4Þ

The constants a and a(s) and the coefficients k and k(s) were
fit using standard methods for multiple linear regression.

To evaluate the model fits, we compared the predicted levels
of hb expression with the measured values using the area
under a receiver operating characteristic curve (ROC AUC)
(Swets, 1988). ROC curves compare the predictions from the
model with the experimental data in a binary manner; this
requires us to threshold both the experimental data and the
predictions to score them relative to one another. Importantly,
we did not threshold the data for the purpose of prediction,
only for the purposes of scoring. For each cell, we determined
whether hb is ‘on’ or ‘off’ in the experimental data using a
different threshold for each species or transgenic line
(Materials and methods). For the modeling results, we varied
the threshold separating ‘on’ from ‘off’ cells. For each
threshold, we calculated true positive and false positive rates,
plotted these rates against each other to create the ROC curve,
and calculated the area underneath it (Supplementary
Figure 3). An AUC of 1 corresponds to a perfect classifier,
and an AUC of 0.5 corresponds to a random classifier. We used
this measure because it is not influenced by the experimental
noise in ‘off’ cells and potential global changes in levels
between species. Furthermore, though we find no evidence
for non-linearities in our measurements (Supplementary
Figure 1), the ROC AUC is not very sensitive to potential
non-linearities (Supplementary information). An alternate
measure of model performance (the r2 value) also supports
our conclusions (Supplementary Figure 4).

The majority of hb expression pattern divergence
is due to changes in positional information

To test the capability of a linear model to recapitulate each
species’ hb pattern, we fit the k(s) vector in Equation (4) using
the posterior 36% of the each species’ embryo, which

corresponds to the location of the endogenous dmel hb
posterior stripe ±10% of the egg length. The linear model
fits the endogenous hb expression in each species with
AUC¼ 0.95, 0.96, and 0.95 for dmel, dyak, and dpse,
respectively (Figure 3A; P-valueso0.001 using the Mann–
Whitney U-test). The coefficients resulting from this fit are
shown in Table I.

To assess the contribution of changing positional informa-
tion to expression pattern divergence, we compared the
performance of the linear model using a single set of k values,
the applied fit, to the performance using species-specific k(s),
the best fit. Specifically, we fit the model in dmel, and applied
the fit parameters to the other species. We found that using the
dmel parameters, k(dmel), recapitulates most of the perfor-
mance in dyak and dpse (AUC¼ 0.93 and 0.94, respectively;
Figure 3A; P-valueso0.001 using the Mann–Whitney U-test).
We also conducted an error propagation analysis to ensure that
differences in the applied fits are not due to differences in
measurement error between species. We find that a conserva-
tive estimate of the effect of measurement error on the AUC is
smaller than the differences we interpret as significant
(Supplementary information).

These results indicate that a large fraction of hb expression
divergence is explained by changes in the positional informa-
tion of hb’s upstream regulators. A detailed view of the model
performance (Figure 3B) shows that changes in positional
information cause notable differences between species, e.g.,
the narrow stripe at the first time point of dpse and the wide
stripe at the second two time points of dyak (see columns 1–3
of Figure 3B). This result implies that the regulatory logic
between hb and its regulators is largely conserved between
dmel, dyak, and dpse.

Though the applied fit is an excellent predictor of hb
expression, a statistical comparison shows that there is a
significant difference between the best fits and applied fits
for both dyak and dpse (P-valueso0.001 using the Mann–
Whitney U-test), indicating there is not complete conservation
of the regulatory logic. We explore the contributions of
sequence divergence in the orthologous CREs to these
differences in later sections.

We performed several additional calculations to test the
assumptions of our model. When we fit the linear model to the
entire embryo at once, the performance of the model drops
substantially (Supplementary Figure 5), implying that there is
more than one input/output function creating the endogenous
hb pattern. We expect this because there are multiple CREs in
the locus. The model performance did not improve substan-
tially upon the addition of higher order terms and is worse
when any regulator is excluded (Supplementary Figure 6).
Ten-fold cross-validation confirms that the model is not
over-fit to the data (Supplementary Figure 7).

Transgenic experiments show the changes in
regulatory logic encoded by orthologous hb
posterior stripe CREs

Our model indicates that the regulatory logic of this circuit
is largely conserved but exhibits quantitative differences
between species. These differences could be due to changes
in activity or level of input TFs or changes in the CRE,
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promoter, or UTRs. Indeed, all of these sequence components
differ between species. We tested whether sequence variation
in the hb posterior stripe CRE leads to quantitative expression
differences for two reasons. First, CREs dictate the wiring of

the circuit; they integrate information about the input TF
concentrations to produce a particular output. Second, they
are a well-characterized regulatory component of the circuit,
making comparative bioinformatics analysis tractable.

We tested whether this set of orthologous CREs direct
quantitatively different expression patterns by making trans-
genic reporters in dmel, where all inputs are identical and only
the CRE sequences differ. These reporters drive the expression
of lacZ. All constructs were integrated into the dmel genome at
the same site (Materials and methods). We created transgenic
lines for the dmel, dyak, dpse, and D. persimilis (dper) hb
CREs. Because dpse and dper are closely related, we expect the
expression driven by these two CREs to be more similar to each
other than to dmel or dyak. This comparison gives an informal
sense of the error in our experimental and analytical
techniques. For each transgenic line, we measured lacZ
expression levels in four or more embryos per time point
(Materials and methods). We combined the data for the
transgenic constructs with the existing dmel expression atlas
(Fowlkes et al, 2008), resulting in a data set that includes
cellular resolution measurements of both the inputs and
output of each CRE. This data set allowed us to measure the
input/output function of each CRE and detect quantitative
differences in their regulatory logic.

The expression patterns driven by these orthologous CREs
are similar but differ quantitatively in stripe location and width
(Figure 4). The orthologous CREs also drive variable amounts
of expression in the anterior (Supplementary Figure 8, see
Discussion). Given the common positional information,
observed differences must be entirely due to sequence changes
between the CREs.

We tested the effects of these sequence changes on the
regulatory logic of the circuit using our computational frame-
work. To do this, we write Equation (1) as

lacZði; s; tÞ¼ rði; tÞ � kþ a ð5Þ

where lacZ(i, s, t) is the expression value of lacZ driven by the
CRE from species s in cell i at time t, r is a 1� 5 vector of the
expression values of hb’s five regulators in the corresponding
cell, k is a 5�1 vector of coefficients describing the effect of
each regulator on lacZ’s expression pattern, and a is a
constant. We fit the k vector in Equation (5) to the dmel
transgenic data set using the posterior 36% of the embryo.

The linear model fits the dmel data with AUC¼ 0.94
(Figure 5; P-valueo0.001 using the Mann–Whitney U-test).
We applied the same coefficient vector k to the other
transgenic data sets without re-fitting. The range of AUCs
resulting from this analysis, 0.88–0.91 (P-valueso0.001 using
the Mann–Whitney U-test), indicate that though largely

Table I Coefficient values resulting from the multiple linear regression to the
endogenous data sets (best fit)

s dmel dyak dpse

a(s) 0.483 0.569 0.429
ks

hkb � 0.497 � 0.293 � 0.306
ks

gt � 0.566 � 1.05 � 0.730
ks

kni � 0.418 � 0.913 � 0.435
ks

Kr � 0.429 � 0.628 � 0.0914
ks

tll 0.170 0.0707 0.0272
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Figure 3 A linear model fits endogenous hb expression patterns with high
accuracy. (A) Changes in positional information account for a large portion of hb
expression pattern divergence. Here, we show the results of fitting a multiple
linear regression model to the endogenous hb pattern in each species (dotted
line, best fit) and by fitting to dmel and applying the resulting coefficients to the hb
patterns in dyak and dpse (orange bars, positional information). Performance of
the model was measured using the area under the ROC curve (AUC), and the
results are plotted for the species in order or increasing phylogenetic distance
from dmel. (B) Differences in the hb expression pattern can be explained using a
common parameter set. We show the detailed results of the positional
information model, using k(dmel). For the sake of visualization, we found a
threshold for each species that yielded an 80% true positive rate. This
corresponds to a single point on the ROC curve that we integrated to calculate
the AUC scores shown in (A). Each circle in the subpanels corresponds to a cell,
with green and light gray circles corresponding to correct predictions in which the
cell is on (green) or off (light gray) in the experimental data. The red and dark gray
cells correspond to incorrect predictions, in which the cell is off (red) or on (dark
gray) in the experimental data.
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similar, there are quantitative differences between the reg-
ulatory logic encoded by the orthologous CREs. Cross-
validation showed that the linear model is not over-fit to the
data (Supplementary Figure 9).

A simple sequence-based calculation accounts for
changes in the regulatory logic encoded by
orthologous CREs

In the transgenic experiments, the only possible source of
regulatory logic divergence is sequence divergence in the

CREs. We therefore attempted to calculate the sequence contri-
bution to k(s) using predicted TF binding sites in the CREs.

Theoretically, k reflects a combination of each regulator’s
intrinsic potency and its capacity to act on the CRE, e.g., the
number and strength of its binding sites. Since all transgenics
share the same dmel environment, the potency of the
regulators is the same for all lines, and only their capacity to
act changes. We express each element i of k(s) as

kiðsÞ¼ pi � ciðsÞ ð6Þ

where pi is the potency of regulator i, and ci(s) is its capacity.
We set all the values of c(dmel) to 1, so k(dmel)¼ p and is
unchanged from the calculation done for Equation (5). To
calculate c(s), which we call a ‘sequence weight,’ for the other
transgenic lines, we use a formula that corresponds to the
total strength of each regulator’s predicted binding sites
in each CRE, normalized to the total strength in the dmel
CRE (Materials and methods; Figure 5B). In principle, the
sequence weight could be calculated in other ways; however,
as we show below, this simple calculation is informative in our
framework.

The addition of this sequence weight improves the fit of the
input/output function to the data (Figure 5A and C;
AUCs¼ 0.92–0.97; comparison P-valueso0.001 using the
Mann–Whitney U-test). The most dramatic improvements of
prediction performance are for those species that are the most
diverged from dmel. Increasing the influence of gt and kni and
decreasing the influence of hkb in dpse and dper allows the
model to more accurately recapitulate the lacZ expression
pattern, specifically the extension of the stripe further to the
posterior of the embryo, where hkb is expressed. The increase in
model performance indicates that these orthologous CREs differ
in sensitivity to their inputs, and we conclude that sequence
changes in these CREs have functional consequences.

Though simple, the sequence weight is a useful calculation
for predicting the effects of sequence changes on expression
output. This is notable because the improvement in fit does
not require fitting any extra parameters and because the
sequence weight does not include any information about the
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Figure 4 Orthologous CREs drive similar, but not identical expression patterns
in transgenic dmel lines. (A) Expression patterns driven by orthologous hb
posterior stripe CREs vary quantitatively. We show the average lacZ expression
pattern in the posterior 36% of transgenic flies using the same conventions as
Figure 2A. These patterns are measured in transgenic dmel lines containing the
hb posterior stripe CRE from each of four species, driving a lacZ reporter. (B) The
transgenic and endogenous dmel hb posterior stripe patterns are not identical. A
comparison of the stripe boundary locations of the endogenous and transgenic
hb posterior stripe indicate that the patterns are different, particularly at early time
points. Here, we plot the average stripe boundary position for the dmel
endogenous (black) and transgenic (olive) patterns, relative to total egg length,
for six time points. The error bars show the standard error of the mean. (C) The
transgenic hb posterior stripe boundary locations vary subtly between species.
We plot the average boundary locations of the hb posterior stripe CRE in
percentage egg length. Average boundary positions are shown for the dmel CRE
in black, dyak in purple, and dpse in red, and dper in orange, for six time points.
Error bars denote the standard error of the mean. (D) The average number of
cells in the hb posterior stripe varies between some species at all time points. We
plot the average number of cells in the hb posterior stripe CRE for dmel, dyak,
dpse, and dper CREs for six time points. Error bars denote the standard error of
the mean. This plot shows that a change in boundary position of B1% egg length
corresponds to a change of B100 cells contained within the stripe. Source data
is available for this figure in the Supplementary information.
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arrangement of sites relative to one another. We presume this
is not because local arrangement of sites is unimportant but
rather because these orthologous CREs all contain functional
arrangements of binding sites. If this is true, then an
alternative method for calculating the sequence weight would
be necessary to assess synthetic or non-orthologous CREs.

Sequence-based calculations of regulatory logic
are only effective in the endogenous context at
shorter phylogenetic distances

We applied the sequence weight calculation to the endogenous
data sets. As explained above, k represents both the potency, p,
of each TF, and its capacity to act, c, on the target. We assumed
that p is conserved between species because of the high degree
of coding sequence conservation of the TFs in this system. To
predict binding sites in the other species, we also assumed that
the DNA binding preferences determined for each dmel TF are
valid for its orthologs in dyak and dpse (see Discussion). We
then estimated the contribution of cis-regulatory changes by
calculating c(s) as we did for the transgenic lines and
multiplied these sequence weights to the corresponding values
of k(dmel).

We found that the addition of the sequence weight to the
predictions made using the k(dmel) parameter set improves
the dyak predictions, increasing the AUC from 0.93 to 0.95,
and worsens the dpse predictions, decreasing the AUC from
0.94 to 0.91 (Figure 6; comparison P-valueso0.001, using the
Mann–Whitney U-test). When compared with dmel, virtually
all of the hb expression divergence in dyak is explained by
changes in positional information and changes in regulatory
logic due to sequence changes in the CRE. dpse is further
diverged from dmel than dyak. Nearly all of hb expression
divergence in dpse is explained by positional information.
However, we cannot estimate all the changes in regulatory
logic using only the sequence weight for the CRE. This is not
because the sequence weight is ineffective for the dpse hb
posterior stripe CRE (see transgenic results in Figure 5). Rather
it may reflect the fact that many features of the locus, including
other hb CREs, the promoter, and the UTRs, contribute to hb
expression. These features are all presumably more diverged
in dpse than in dyak as compared with dmel. Changes in these
other components may overwhelm the effect of sequence
changes in the hb posterior stripe CRE in the dpse endogenous
context. Alternatively, dpse TFs may not be equivalent to their
dmel counterparts in terms of their potency, DNA binding
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Figure 5 The addition of sequence weights improves the fit of a linear model to
the transgenic data. (A) Including CRE sequence information improves the fit of
the linear model to the transgenic expression pattern. We show the results of
fitting a multiple linear regression model to the transgenic line expressing lacZ
under the control of the dmel hb posterior stripe CRE and applying the resulting
coefficients to the other transgenic lines (orange bars, positional information).
Adding a sequence weight, a scaling parameter that accounts for the differences
in binding site content of the different posterior stripe CREs, improves the fit of the
model to the data (purple bars, regulatory logic). (B) Sequence weights for the hb
posterior stripe CRE. We plot the sequence weight for each TF and CRE, which
roughly corresponds to the total binding potential for each TF along the CRE. The
sequence weights are normalized so that they are 1 in dmel (black bars). (C) The
addition of the sequence weight lowers the false positive predication rate. As in
Figure 3, we visualize the results of the model at the 80% true positive rate. In
each sub-panel, each circle corresponds to a cell, with the color indicating
whether or not the model is correct. Green circles are cells that are correctly
predicted to be on, light gray circles are cells that are correctly predicted to be off.
Red circles are cells that are incorrectly predicted be to on, and dark gray circles
are cells that are incorrectly predicted to be off. For each species, excluding dmel,
we show the model performance without (� , top row) and with (þ , bottom row)
the sequence weight.
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preferences, or absolute gene expression levels, limiting our
ability to fit the model or calculate the sequence weight.

Discussion

We present a method to investigate the origins of quantitative
divergence in gene expression patterns. Because gene expres-
sion occurs in the context of a network, to compare any one
component between species one must control for changes in
other parts of the network. In the context of a single
transcriptional circuit operating in a multicellular organism,
we must disentangle the influences of positional information
(where inputs are expressed) and regulatory logic (how inputs
are interpreted). By separating these influences we were able
to detect fine-scale differences in the functions of the
orthologous CREs that wire this particular circuit. Our method
can be applied to many such circuits and to regulatory
sequences other than CREs.

Our method uses cellular resolution measurements of both
the inputs and output of a transcriptional circuit in three
species. We found that expression pattern divergence is largely
explained by changes in the expression patterns of the input
TFs. We used transgenic experiments to confirm that these
orthologous CREs direct highly similar, but quantitatively
distinct expression patterns. We used this transgenic data set
to develop a sequence-based calculation of CRE regulatory
function. Applying this calculation in the transgenic context,
we showed that sequence changes in orthologous CREs alter

sensitivity to their input TFs. Applying this calculation in the
endogenous context, we attributed the observed expression
divergence between dmel and dyak to a combination of
changes in the expression patterns of regulating TFs and
sequence changes in the CRE. In the context of the dmel/dpse
comparison, we concluded that either (1) components in the
regulatory circuit other than the input TF expression patterns
and the CRE have diverged between dmel and dpse, or (2) TFs
functionally diverge between these species.

A framework for contextualizing quantitative gene
expression divergence

Our approach requires measuring expression in both endogenous
and transgenic contexts. Endogenous expression patterns are the
biologically relevant outputs of the entire transcriptional network,
but theyare difficult to compare across species since many parts of
the network change simultaneously. In transgenic animals, the
expression pattern of a reporter gene under the control of a
particular regulatory element is easier to interpret, since the
animals will only vary in the sequence of the test element.
However, in isolation, these elements may not function as they do
in the endogenous context. In fact, reporter constructs often do
not recapitulate the native expression pattern precisely (discussed
below). We combined these two types of measurements in a
unified computational framework to assess sources of quantita-
tive expression divergence between species. We used the
endogenous measurements to fit a function relating the concen-
tration of inputs to output for an individual transcriptional circuit
and assessed the conservation of this circuit across species. We
used the transgenic measurements to develop an appropriate
calculation for one component of this circuit—the underlying
CRE—and applied this calculation in the endogenous context to
learn how it contributes to the observed expression pattern.

Quantitating sensitivity to sequence perturbation

A major unresolved question is whether there is a ‘grammar’
to the arrangement of TF binding sites in CREs: are particular
binding site compositions, orders, or spacing more or less
effective in the control of gene expression? The answer to this
question is critical for understanding the molecular mechan-
ism by which CREs operate and the constraints under which
they evolve. Of the few CREs that have been dissected in detail
(Arnosti et al, 1996; Swanson et al, 2010; Struffi et al, 2011),
examples range from those with a stringent requirement for a
particular arrangement of sites, e.g., the enhanceosome
(Thanos and Maniatis, 1995), to examples where multiple
sequence arrangements appear to be functional, e.g., the even-
skipped stripe 2 enhancer (Ludwig et al, 2000; Hare et al,
2008a). Our finding that the set of orthologous hb posterior
stripe CREs vary quantitatively in their function emphasizes
that sensitivity to binding site arrangement is a continuous
rather than a discrete property. This is consistent with previous
work on neurogenic ectoderm CREs, which found that their
response to inputs could be fine-tuned over evolution (Crocker
et al, 2008). CREs therefore do not need to be classed as either
sensitive or insensitive to sequence changes; using our
computational framework, their sensitivity can be precisely
quantitated in terms of their response to individual inputs.
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Figure 6 The addition of the sequence weight improves endogenous dyak
predictions. We show the results of fitting a multiple linear regression model to the
endogenous hb pattern using a species-specific parameter vector k(s) (dotted
line, best fit), the dmel parameter vector (orange bars, positional information), the
dmel parameter vector and sequence weights (purple bars, regulatory
information). The addition of a sequence weight improves the model fit in dyak
and worsens the model fit in dpse.
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Regulatory information may be dispersed
throughout the hb locus

The pattern produced by the dmel transgenic line differs in
both dynamics and shape from the endogenous dmel hb
expression pattern (Figure 4B). This discordance might be due
to the differences between the reporter construct and the
endogenous locus: the constructs use a non-endogenous
promoter; the CRE is B40 bp away from the promoter in the
transgenic construct and B3000–6000 bp away in the endo-
genous locus; and the constructs use a reporter gene, lacZ,
which may show different transcription and degradation rates
compared with the hb transcript. Alternatively, the constructs
may omit relevant regulatory sequence. The use of transgenic
reporters is widespread (Ludwig et al, 2005; Crocker et al,
2008; Hare et al, 2008a), making these discrepancies notable,
especially for studies where quantitative differences are
important.

Several pieces of evidence suggest that transgenic constructs
may be missing relevant regulatory sequence. First, the CREs
from other species drive more expression in the anterior region
than the orthologous dmel CRE in the transgenic animals
(Supplementary Figure 8). This variability does not correlate
with variability in anterior expression in the endogenous
context (Supplementary Figure 5), implying that this addi-
tional expression is masked in the endogenous context by
repressive signals located elsewhere in the hb locus. Second,
the idea of dispersed regulatory information is consistent with
the recent identification of ‘shadow’ enhancers, or CREs in the
same locus that drive similar expression patterns, reviewed in
Barolo (2012). The discovery of many shadow enhancers
suggests that regulatory information is generally not limited to
the classically identified CREs (Kazemian et al, 2010). In
support of this view, experimental in-vivo binding measure-
ments show that regulatory TFs often bind outside annotated
CREs (Li et al, 2008), and it remains unclear why these binding
events would be non-functional. In addition, scattered blocks
of conservation have been found outside the annotated
regulatory elements in both the eve and bric-a-brac loci
(Hare et al, 2008a; Bickel et al, 2011).

A number of additional experiments may help elaborate the
location and mechanism of integration of regulatory informa-
tion in a locus like hb. To rule out the role of reporter construct
artifacts, reporters that more closely reflect the endogenous hb
locus with regard to promoter sequence, UTR sequences, and
promoter-CRE spacing can be constructed. These additional
sequences could also be isolated from the other species and
compared in the transgenic context to determine if any of them
contribute to expression differences. Our modeling framework
can easily accommodate additional parameters that describe
the influence of these components on the output. It will also be
informative to look at the behavior of a reporter engineered
into a construct that includes larger pieces of the hb locus, an
experiment enabled by the availability of BAC libraries for
several Drosophilids (Ejsmont et al, 2009; Song et al, 2011).

Other contributions to expression divergence

Our modeling framework allows us to separate the contribu-
tions of positional information and regulatory logic to the

observed differences in hb’s expression pattern between
species. Implicit in the calculation of the sequence weight is
the assumption that other aspects of the network, namely the
potencies of the regulators (p) and their DNA binding
preferences, are conserved between species. We made this
assumption based on two observations: the strong sequence
conservation between orthologous TFs in these species and
the similar behavior of orthologous cis-regulatory sequences in
the same transgenic dmel context. However, neither of these
observations tests this assumption explicitly. Though it is hard
to directly measure a regulator’s potency, a data set that
includes all four hb CREs in all four transgenic species
environments would allow us to infer each regulator’s potency
in each species. Though transgenic technology is most facile in
dmel, it is possible to make transgenics in an increasing
number of Drosophilids (Holtzman et al, 2010).

The high level of sequence conservation in the DNA binding
domains of input TFs suggests that their DNA binding
specificity is virtually identical, but our sequence weight
calculation is limited by available data. We used position
weight matrices (PWMs) that describe the binding preferences
for dmel proteins to calculate the sequence weights for each
CRE (Bergman et al, 2005). Though this calculation is
technically correct for the transgenic experiments, ideally,
we would use PWMs describing the binding preferences of the
TFs from dmel, dyak, and dpse in the sequence weight
calculations in the endogenous context. However, even if DNA
binding specificities prove to be identical, changes outside of
the DNA binding domain may also affect gene expression
through other means, like changes in protein–protein interac-
tions. These are harder to measure with current techniques,
but are critical for a detailed understanding of the evolution of
this network.

Another limitation of our method is the use of relative
expression measurements. In fitting a model in a single
species, absolute measurements are unnecessary because fit
parameters include the effect of concentration differences
between regulators. However, absolute concentrations of the
same gene in different species may vary. This would manifest
in two ways. First, differences in expression levels may
contribute to variation in the parameter values of the ‘best
fits’ for sets of orthologous regulators (see Table I). Second,
when parameters fit in one species are applied to another,
differences in expression level may contribute to a decrease in
the ‘applied fits’. As imaging technologies improve, it is likely
that obtaining absolute measures of expression will become
routine and will circumvent this issue.

A simple modeling framework for comparative
analysis of transcriptional circuits

We began our study with a circuit level model of the hb
posterior stripe that was agnostic to sequence information.
Other sequence-agnostic models of the regulatory network
have been used to study other facets of the system, e.g., the
topology and the manner in which canalization is achieved
(Perkins et al, 2006; Manu et al, 2009). However, due to their
interconnected, network level properties, these models are not
suitable for determining the sources of expression divergence
in a single circuit. Our model, while less detailed than these
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previous models, was constructed specifically to allow us to
dissect the sources of quantitative expression differences
between species. Given the complexity of transcriptional
regulation, it is likely that no single modeling framework will
be appropriate for every question (Wunderlich and DePace,
2011). We anticipate that the increase in quantitative,
systematic data for transcriptional networks will be accom-
panied by an increase in models appropriate for different
biological questions.

To account for the regulatory sequence contribution to gene
expression divergence, we developed a simple measure of
relative CRE sequence function. Other predictive models of
Drosophila CRE function have been developed by fitting many
different types of CREs simultaneously, using a thermody-
namic framework (Segal et al, 2008; He et al, 2010). These
studies systematically assessed the influence of cooperativity
and local binding site arrangement on CRE output. However,
they are not accurate enough to predict subtle quantitative
differences in expression observed between closely related
species, and sometimes fail to predict expression of ortholo-
gous CREs entirely. By fitting the same parameters to different
types of CREs, context-dependent rules may be obscured, e.g.,
TFs that act as activators in one context and repressors in
another appear to have average activities of zero.

Here, we take a fundamentally different approach by
comparing activities of orthologous CREs from closely related
species, where we can assume orthologous sequences are built
using similar rules. When done systematically for many CREs,
this approach may be particularly useful for discerning rules of
CRE architecture. By characterizing natural sequence variants
that have been filtered by evolution to be functional but differ
quantitatively, we likely need to examine many fewer
sequences than if we were to characterize a random collection
of synthetic CREs. In support of this argument, work from
Fakhouri et al (2010) has shown than synthetic CREs built from
a limited number of components and designed to test the
influence of local sequence arrangement can be useful for
discovering specific rules about CRE architecture.

Our approach of comparing relative CRE sequence function
can also be used to suggest new experiments. We can calculate
the sequence weights of the hb posterior stripe CRE in other
sequenced species and use them to predict expression
patterns. This approach can focus time-intensive experiments
on relevant subsets of CREs. We are particularly interested in
CREs with pervasive sequence rearrangements and conserved
output as well as those with small-scale sequence changes and
divergent output.

It is notable that a linear model captures critical aspects of
hb regulation. The importance of cooperativity and synergy in
this system have been well documented (Simpson-Brose et al,
1994; Arnosti et al, 1996; Burz et al, 1998; He et al, 2010). Since
non-linear effects can produce sharp, narrow stripes of gene
expression, it is possible that they are less important for the
graded expression patterns of the gap genes and are more
important for the expression of sharply defined expression
patterns, such as the pair-rule genes. The linear model also
implies that the effects of the regulators on the output are
additive in this setting, suggesting that the ‘information
display’ model of CRE interpretation may be at play at this
locus (Kulkarni and Arnosti, 2003). Though the linear model

represents a simplification, it recapitulates known features of
hb regulation. For example, Ashyraliyev et al (2009) identify
the importance of hkb in setting the posterior border of hb
expression. By dropping regulators from our model, both
individually and in pairs, we also observe the importance of
hkb in the accurate prediction of hb expression (Supple-
mentary Figure 6).

Interpretation of coefficients

Aside from the five regulators included as inputs, there is
evidence that other TFs are important for the formation of the
hb posterior stripe, e.g., caudal and Zelda (Jaeger, 2011; Nien
et al, 2011). We excluded both Zelda and caudal because their
expression patterns have not been measured in the relevant
species. Zelda is expressed in a uniform pattern in the embryo
(Liang et al, 2008), so any contribution to inter-species
divergence would be from changes in its level, a quantity
better assessed by other experimental techniques, e.g., qPCR
or quantitative western blot. In its current form, the effects of
both of these activators, as well as other factors are included in
the constant term in Equations (3) and (4). We calculated the
sequence weight for caudal, which is 1.10 for dyak and 0.79 for
dpse and dper. The constant values for dmel, dyak, and dpse
are 0.4833, 0.5688, and 0.4293, respectively, which show a
qualitative trend similar to that of the caudal sequence weight,
providing circumstantial evidence that our interpretation of
the constant term is correct.

Sources of upstream variation in the
anterior-posterior patterning system

Our model does not address the sources of the positional
variation of hb’s regulators, but our data set may be useful for
addressing this question. One possibility is that variation in the
morphology of the embryos, in terms of shape, nuclear
number, and density has ramifications for the output of this
patterning system. Our data set spans embryos with variation
in nuclear number (species averages range from 5087±327 to
6128±348 nuclei), egg length (394±31 to 452±23 microns),
and embryo surface area (143 000±12100 to 198 000±16 000
microns2) (Fowlkes et al, 2011). A different type of model that
includes morphogen behavior in this range of morphological
contexts might prove useful for addressing this issue. Other
possible sources of variation include translation rates,
degradation rates, and post-translational modifications. These
control mechanisms operate in this system (Tautz and Pfeifle,
1989; Thomsen et al, 2010; Kim et al, 2011) and could
potentially be included in this framework.

Connecting regulatory sequence and function

In previous work, we measured the expression patterns of
several key TFs and developed a metric to compare cellular
gene expression profiles pair-wise between three species
(Fowlkes et al, 2011). The cellular gene expression profile
reflects the input/output relationship of many CREs operating
in the system. Therefore, the expression distance metric we
developed provides a global view of regulatory similarity
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between the three species. However, without further analysis
the similarities and differences are not attributable to any
particular input/output function. In this study, we undertook a
detailed analysis of a particular input/output function using
our comparative data. Our results are consistent with the view
provided by the expression distance metric, where the cells
near the hb posterior stripe were identified as having similar
cellular gene expression profiles. Comparison of cellular gene
expression profiles may prove to be a relatively simple and
unbiased way to pinpoint conserved and divergent regulatory
functions for further study.

Determining the origins of quantitative expression differ-
ences between species will advance our understanding of
transcriptional regulation in two ways. First, linking sequence
changes to quantitative differences in expression patterns for
many CREs may identify rules governing enhancer architec-
ture. CREs in this system have been extensively annotated
using transgenic experiments (Gallo et al, 2011), functional
genomic data (Consortium et al, 2010; Kvon et al, 2012), and
sequence conservation (Berman et al, 2004; Sinha et al, 2004;
Odenwald et al, 2005). Application of our method to other
CREs in additional species is a clear future direction. Second,
understanding how transcriptional circuits evolve, both in
terms of their overall output and in terms of their individual
components, will provide insights into how genetic changes
are either amplified or buffered to influence generation of new
phenotypes. Our experimental and computational approach
lays the groundwork for these goals.

Materials and methods

Identification of predicted transcription binding
sites

To identify predicted TF binding sites for Figure 1B, we used
Patser (http://ural.wustl.edu/software.html), with a GC content of
0.406, a P-value cutoff of 0.003, and PWMs derived from Bergman
et al (2005).

Creation of transgenic flies

We used the dmel hb posterior stripe CRE identified in Berman et al
(2004), element hb_Hz1.4, with an B100 bp buffer on each side to
ensure completeness (Release 5 coordinates 3R:4526471-4528036).
Orthologous CREs were identified using the genome-wide alignments
available in the UCSC Genome Browser (Fujita et al, 2011) and the
coordinates are as follows: dyak: 3R:8589892-8591517 (Nov. 2005
assembly), dpse: 2:27088673-27090287 (Nov. 2005 assembly), and
dper: super_6:2470507-2472121 (Oct. 2005 assembly). The four
posterior stripe CREs were amplified from genomic DNA libraries
from the sequenced lines (Drosophila Species Stock Center, https://
stockcenter.ucsd.edu) using primers that contain species-specific
sequences and synthetic cut sites for NotI and BglII, with the exception
of the dmel posterior stripe CRE. The dmel CRE sequence contained a
BglII cut site, so NotI was used on both ends. Each PCR product was
digested with BglII and/or NotI and inserted into the multiple cloning
site of the pBFY vector (Hare et al, 2008a). The pBFY vector contains
the dmel eve basal promoter (2R:5866782-5866986) driving lacZ and
also has the attB site necessary for site-specific integration using the
FC31 system (Fish et al, 2007). Each plasmid was then co-injected with
the FC31 integrase into w118 flies carrying the attP2 integration site
(Groth et al, 2004) by Genetic Services, Inc. Transformant flies were
then homozygosed.

In-situ hybridization

Whole mount in-situ hybridization was performed as described in
Luengo Hendriks et al (2006). In brief, 0–4 h old embryos (251C) were
collected, dechorionated, fixed in a mixture of formaldehyde and
heptane, and devitellinized in a mixture of heptane and methanol.
Embryos were then post-fixed in formaldehyde and washed several
times in a formamide-based hybridization buffer. The embryos were
incubated at 561C with two full-length cDNA probes, a DIG-labeled
probe for the fiduciary marker, fushi tarazu (ftz), and a DNP-labeled
probe for lacZ. The embryos were then successively stained using anti-
DIG-HRP (anti-DIG-POD; Roche, Basil, Switzerland) and anti-DNP-
HRP (Perkin-Elmer TSA-kit, Waltham, MA, USA) antibodies, using
reactions with coumarin- and Cy3-tyramide (Perkin-Elmer). To stain
the nuclei, embryos were treated with RNaseA and then stained with
Sytox Green (Invitrogen, Carlsbad, CA, USA). The embryos were
mounted in DePex (Electron Microscopy Sciences, Hatfield, PA, USA),
using a bridge of #1 coverslips to preserve embryo morphology.

Image acquisition, image processing, and atlas
creation

Stained and mounted embryos were imaged and processed using the
methods described in Luengo Hendriks et al (2006) and Fowlkes et al
(2008). Briefly, the three-dimensional image stacks of each embryo
were acquired using 2-photon laser scanning microscopy on a Zeiss
LSM 710 with a plan-apochromat 20� 0.8 NA objective. Using the
software described in Luengo Hendriks et al (2006), each image file
was converted into a PointCloud, a text file that includes the location
and levels of gene expression for each nucleus in the embryo.

Using the expression pattern of the fiduciary marker ftz, embryos
were registered to a representative embryo (template) with the
methods described in Fowlkes et al (2008). The registered embryos
were then combined with the data from Fowlkes et al (2008) to create a
gene expression atlas, a text file that contains the average expression
values of hb’s five regulators and the lacZ output from each of the four
transgenic lines in each cell of the embryo. The gene expression atlas
includes data from 64 embryos from the dmel line, 57 embryos from
the dyak line, 52 embryos from the dpse line, and 51 embryos from the
dper line. Each time point average included the data from at least
4 embryos, with an average of 10 embryos per time point. These
blastoderm-stage embryos were sorted into time points by visualizing
them using phase contrast optics and observing the degree of
membrane invagination. The six, B10 min time points correspond to
0–3%, 4–8%, 9–25%, 26–50%, 51–75%, and 76–100% membrane
invagination and were judged by using the side of the embryo where
membrane invagination is the furthest progressed.

Characterization of stripe boundary positions
and size

The analysis of hb posterior stripe boundary positions and the number
of cells in the stripe was done in MATLAB using the PointCloud toolbox
(http://bdtnp.lbl.gov/Fly-Net/bioimaging.jsp?w=analysis). Using the
stripe finding functions included in the toolbox, we located the stripes
in each individual PointCloud used to construct the gene expression
atlases, and we then recorded the boundary positions and number of
cells located in each embryo’s stripe.

Modeling of hb posterior stripe

To carry out the modeling of the posterior stripe, MATLAB was used to
implement standard multiple linear regression techniques using the
glmfit command. The matrix of independent variables had a row for
each cell at each time point and five columns corresponding to the
relative expression levels of each of the five regulators used in the
study. The dependent variable vector had an equal number of rows and
one column corresponding to the level of lacZ or hb in each cell at each
time point.
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To calculate the ROC AUC, we calculated the ROC curve by first
thresholding the experimental data. The threshold was calculated as
the mode of the target expression data plus one standard deviation:

thresholdðsÞ¼modeðlacZði; s; tÞÞi;t þ stdðlacZði; s; tÞÞi;t ð7Þ
Then, one species at a time, we varied the threshold applied to the

predictions of the linear model, considering all points below the
threshold as an ‘off’ prediction, and all points above the threshold as
an ‘on’ prediction. For each threshold, we calculated the true positive
rate, i.e., the fraction of experimentally verified ‘on’ cells that are
predicted correctly, and the false positive rate, i.e., the fraction of
the experimentally ‘off’ cells that are predicted incorrectly. We plot
the true positive rate as a function of the false positive rate and
calculate the area underneath the curve using the trapezoidal rule. To
calculate the statistical significance of an individual ROC AUC, we use
the non-parametric Mann–Whitney U-test. To compare the values of
two ROC AUCs, we use a test based on the Mann–Whitney U-test, as
implemented in the StAR software (Vergara et al, 2008).

To do the 10-fold cross-validation, either the dmel endogenous or the
transgenic data set was used. The data set was split into 10 roughly
equal fractions. In turn, each fraction was left out of the set used to
train the multiple linear regression, and then used to evaluate the
resulting model.

Calculation of sequence weights

To calculate the sequence weight of a given sequence for a given TF
c(s), we use the following formula

cðsÞ¼

Pl�wþ 1

i¼ 1

Qw

j¼ 1

piðbðiÞÞ
qðbðiÞÞ

cðdmelÞ ð8Þ

Here, l is the length of the sequence being considered, w is the width
of the PWM of the TF, b(i) is the base at position i of the sequence, pj(b)
is the frequency of seeing base b at position j of the PWM, and q(b) is
the background frequency of base b. When multiplied by a concentra-
tion, this value is roughly proportional to the total number of TF
molecules bound to a sequence, assuming the sites are not saturated
(Supplementary information). To look for saturated binding sites, i.e.,
very strong sites that will be occupied with a high probability even at
low concentrations of TF, we searched for binding sites that accounted
for 50% or more of the total value of the sequence weight and found a
single hkb site in the dyak posterior stripe CRE that fit this criteria. To
avoid the presumably unrealistic impact of this single binding site, we
thresholded its value to its 99th percentile value.

Here, we again use a background GC content¼ 0.406 and the PWMs
from Bergman et al (2005). The sequence weights we use in our model
c(s) are vectors of length 5, with each entry consisting of the sequence
weight for one of the five regulators. We compared the performance of
these PWMs with those derived from bacterial one-hybrid (Noyes et al,
2008) and SELEX (Li et al, 2011) experiments. The qualitative
performance of the model is independent of the PWM set used and
is discussed in more detail in Supplementary Figure 10. We chose to
use the PWMs from Bergman et al (2005) as they gave the highest
performance on the transgenic lines. To calculate the sequence weights
for the posterior stripe CRE, we used the sequences in our transgenic
constructs.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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