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An oxidative reaction for the synthesis of 4-alkyl-substituted dihydroisoquinolin-1(2H)-ones with N-allylbenzamide derivatives as

starting materials has been developed. The radical alkylarylation reaction proceeds through a sequence of alkylation and intramo-

lecular cyclization. The substituent on the C—C double bond was found to play a key role for the progress of the reaction to give the

expected products with good chemical yields. Additionally, N-methacryloylbenzamides were also suitable substrates for the current

reaction and provided the alkyl-substituted isoquinoline-1,3(2H,4H)-diones in good yield.

Introduction

The direct and selective functionalization of an unactivated sp3
C-H bond, which belongs to an effective strategic approach in
green and sustainable chemistry, has attracted significant
research attention [1-4]. This fascinating approach has obvious
advantages in functional group transformation and construction
of biological heterocycles, due to its high efficiency and waste
reduction [5-10]. The pioneering works were focused on the
cross-dehydrogenative coupling (CDC) reactions of alkanes,
which were reported by Li and other groups [11-15]. Recently,
several types of reactions with alkanes as substrates have been

developed, such as the Minisci reaction with heteroarenes
[16,17], radical addition to unsaturated bonds [18,19],
decarboxylative alkenylation of cycloalkanes with aryl vinylic
carboxylic acids [20,21], trifluoromethylthiolation [22], thiola-
tion [23,24], alkenylation [25,26], dehydrogenation—olefination
and esterification [27,28], radical addition/1,2-aryl migration
[29], cascade alkylation-initiated cyclization [30,31] and other
radical reactions [32-34]. Due to their low polarity and high
bond-dissociation energy, the functionalization of unactivated

sp> C—H bonds in simple alkanes remains as a challenging task.
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The direct cascade, 1,2-alkyarylation of alkenes to construct
multi-substituted heterocycles has been considered as an effi-
cient organic synthetic strategy, which is often featured by a
new ring and dual C—C bond formation in one process [35-42].
Recently, the group of Liu reported a cascade alkylarylation of
N-alkyl-N-phenylacryamide with simple alkanes resulting in
alkyl-substituted oxindoles (Scheme 1a) [43]. However, cycli-
zation of N-allylbenzamides initiated by the functionalization of
sp> C—H bonds of simple alkanes remains unexplored. Very
recently, our group developed a metal-free hydroxyalkylation-
initiated radical six-membered heterocycle formation reaction
of N-allylbenzamide with alcohols as radical partners. This pro-
vided 4-hydroxyalkyl-substituted 3,4-dihydroisoquinolin-
1(2H)-one derivatives (Scheme 1b) [44].

Based on the knowledge gained from previous reports on the
cyclization of N-allylbenzamide [44], we envisioned that the
unactivated cycloalkanes (instead of alcohols) could act as
radical partners for this system. However, the reaction gave a
complex mixture with 15% chemical yield of the expected
product (Scheme 1c¢). Fortunately, when a methyl substituent
was introduced onto the C—C double bond of the N-allylbenz-
amide substrate, the cyclization reaction proceeded smoothly
(Scheme 1c¢). Herein, we report a metal-free cascade 1,2-
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alkyarylation of substituted N-allylbenzamides with alkanes
affording 4-alkyl-substituted dihydroisoquinoline-1(2H)-ones as
the product.

Results and Discussion

Initially, we selected N-methyl-N-(2-methylallyl)benzamide
(4a) and cyclohexane (2a) as model compounds (Table 1). As
shown in Table 1, we found that the reactions did not happen or
gave only a trace amount of the desired product with K,S,0g,
AIBN, BPO and TBHP as oxidants (Table 1, entries 1, 3-5).
PhI(OAc); and DCP could be used as oxidants, providing a
slightly better yield (Table 1, entries 2 and 6). Dramatically
higher chemical yields were found when TBPA and TBPB were
used for this reaction (Table 1, entries 7 and 8). DTBP was the
best oxidant choice, which afforded the highest chemical yield
(53%, Table 1, entry 9). Then, a series of transition metal cata-
lysts, including Cul, FeCl,, FeBr, and FeCls, were added into
the reaction with DTBP as the oxidant. However, no improve-
ment was observed at all. Finally, an attempt to shorten the
reaction time to 24 h or to prolong the reaction time to 72 h
resulted in lower yield, thus indicating that 48 h was appro-
priate for the completion of the reaction (Table 1, entries 14 and
15). Changing the amount of DTBP was also not successful.
This is shown by the results presented in Table 1, entries 16 and
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Scheme 1: Cascade 1,2-difunctionalization and cyclization to construct heterocycles.
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Table 1: Optimization of typical reaction conditions.?
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(0]
j)J\N/ O oxidant N
( .
“ Y
4a 2a 5aa

entry oxidant (equiv) catalyst (mol %) temp (°C) time (h) yield (%)P
1 K»S,03 (3.0) - 120 48 NR
2 PhI(OAc), (3.0) - 120 48 19
3¢ AIBN (3.0) - 120 48 NR
4¢ BPO (3.0) - 120 48 trace
5¢ TBHP (3.0) - 120 48 trace
6° DCP (3.0) - 120 48 19
7° TBPA (3.0) - 120 48 45
8¢ TBPB (3.0) - 120 48 38
9¢ DTBP (3.0) - 120 48 53
10 DTBP (3.0) Cul (10) 120 48 49
11 DTBP (3.0) FeCl, (10) 120 48 40
12 DTBP (3.0) FeBr, (10) 120 48 45
13 DTBP (3.0) FeCl3 (10) 120 48 33
14 DTBP (3.0) - 120 24 25
15 DTBP (3.0) - 120 72 50
16 DTBP (2.0) - 120 48 30
17 DTBP (4.0) - 120 48 46
18 DTBP (3.0) - 100 48 43

aReaction conditions: 4a (0.2 mmol), cyclohexane (2a, 2.0 mL), oxidant, 120 °C, under N,. PIsolated yield based on 4a. AIBN = azodiisobutyronitrile;
BPO = benzoyl peroxide; TBHP = tert-butyl hydroperoxide, 70% in water; DCP = dicumyl peroxide; TBPA = tert-butyl peracetate; TBPB = tert-butyl

peroxybenzoate; DTBP = di-tert-butyl peroxide.

17 that clearly suggest that 3.0 equiv is the best choice. Finally,
the reaction temperature was examined, and a lower chemical
yield was found when the reaction was performed at 100 °C
(Table 1, entry 16).

With the optimized conditions developed, we then carried out a
substrate generality study using various types of N-(2-methyl-
allyl)benzamides 4 to react with cyclohexane (2a). As shown in
Scheme 2, these cascade radical cyclization reactions are of
general use for the preparation of 4-alkyldihydroisoquinolin-
1(2H)-one derivatives 5. The substrates bearing methyl,
methoxy, halo and trifluoromethyl groups on the aromatic ring
all worked well in the reaction, providing the target products
with 31-65% yield. It should be noted that the reactions of sub-
strates bearing disubstituted aromatic rings were possible but
resulted in lower yield (5fa and 5ga). On the other hand, the
variation of the substituent on the nitrogen atom has also been
examined. In the cases of N-ethyl (4h), N-isopropyl (4i), and
N-benzyl (4k), no obvious effect was found and almost the

same level of yield was obtained as for 4a. However, a dramati-

cally lower yield was obtained when a substrate with a

N-phenyl group (4j) was used.

We then carried out another substrate scope examination for the
radical reactions using various cycloalkanes 2 and N-methyl-N-
(2-methylallyl)benzamide (4a). As indicated in Scheme 3,
several cycloalkanes were well-tolerated in this radical reaction
resulting in the corresponding product. In the case of cyclo-
pentane (2b), a slightly lower chemical yield was obtained
(46%, Sab), while the reactions of seven- and eight-membered
ring cycloalkanes afforded the same level yield of the corre-
sponding product (Sac and Sad). Finally, methylcyclohexane 2e
was used as the substrate for the investigation of the regioselec-
tivity. The reaction almost showed no regio- and stereoselectivi-
ty and afforded the corresponding products (5ael-5ae5) with
42% total yield.

To extend the synthetic utility of this radical cyclization reac-

tion, N-methacryloyl-N-methylbenzamide derivatives 6 were

then tried as substrates for this reaction (Scheme 4). It should be
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Scheme 2: Cyclization of cyclohexane (2a) with substituted N-(2-methylallyl)benzamide (reaction conditions: 4 (0.2 mmol), cyclohexane (2a, 2 mL),
DTBP (0.6 mmol), 120 °C, 48 h under nitrogen atmosphere. Isolated yield based on 4).
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Scheme 3: Cyclization of cycloalkanes with N-methyl-N-(2-methylallyl)benzamide (reaction conditions: 4a (0.2 mmol), cycloalkanes 2 (2 mL), DTBP
(0.6 mmol), 120 °C, 48 h under nitrogen atmosphere. Isolated yield based on 4a). @The total yield of isomers.
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Scheme 4: Cyclization reaction of 6 with cyclohexane 2a (reaction conditions: 6 (0.2 mmol), cyclohexane 2a (2 mL), DTBP (0.6 mmol), 120 °C, 12 h

under nitrogen atmosphere. Isolated yield based on 6).

mentioned that only a few radical precursors, such as the
TMSCFj reagent [45] and ethers [46], were developed for such
a cyclization system. Fortunately, the substrate with the intro-
duction of a carbonyl group worked well in this system with
moderate to good chemical yields (33—86%). Due to the exis-
tence of the carbonyl group, the reaction time could be short-

ened to 12 h where all of the starting material 6 is consumed.
Firstly, the variation of the substituents on the nitrogen atom
was investigated. We found that by changing the methyl group
into one of the bulkier groups, the chemical yield significantly
decreased (7ba—7ea). It is worth mentioning that the N-phenyl-
N-methacryl-substituted substrate 6d works much better than 4j
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in this system, resulting in higher yield (55%, Sja). The substit-
uent on the aromatic ring did not greatly affect the reaction effi-
ciency, and methyl (7fa and 7ka), methoxy (7ga, 7la and 7ma),
chloro (7ia), bromo (7ja), and phenyl (7na) were well-tolerated
in this system. However, in the case of the strong electron-with-
drawing group (fluoro, 7ha), the yield clearly decreased, and
only 31% yield was obtained. It was noted that the reactions
showed almost no evident regioselectivity, and the ratio of 1:4
(7pa-1:7pa-2) was found.

The final study of this reaction was the investigation of the
mechanism. Firstly, a substrate (8a) bearing a hydrogen atom at
the nitrogen was tried for the current system. The cyclohexane
radical addition product 9aa’, instead of a cyclization product,
was observed with 35% yield (Scheme 5a). This result is
consistent with our previous report [19], which discloses that
the alkylation of the C—C double bond initiates the radical
process. Furthermore, a radical-trapping reagent, 2,2,6,6-tetra-
methyl-1-piperidinyloxy (TEMPO), was added to the reaction,

DTBP (3.0 equiv)

120 °C, 48 h, N,

a) @)(1'\;( +©

8a, 0.2 mmol
b) O
©)J\N/ O DTBP (3.0 equiv)
+
H{ 120 °C, 48 h, N,
TEMPO (3.0 equiv)
4a, 0.2 mmol

c) e

. O
§w+<

2a, 1 mL

D D
6a, 0.2 mmol D D
D D
D D
DD
[D]2a, 1 mL

7aa:[D]7aa = 9.3:1

DTBP (3.0 equiv) o
ittt .

120 °C, 12 h, Ny
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and the reaction was completely inhibited, affording a cyclo-
hexane radical-trapped compound (Scheme 5b). This implies
that the current transformation is a radical process. Finally, an
obvious competing kinetic isotope effect (KIE) was found with
the ratio of 9.3:1 (ky:kp) when the reaction of 6a was per-
formed with cyclohexane and [D]-cyclohexane (Scheme Sc).
This discloses that the cleavage of the C(sp)—H bond to form
the radical may be involved in the turnover-limiting steps of this

procedure.

Based on the previous radical cyclization reactions [44,47,48]
and the results obtained above, a plausible mechanism account-
ing for this cascade radical cyclization reaction was proposed
(Scheme 6). Initially, DTBP undergoes homolytic cleavage to
form the fert-butoxy radical A, which reacts with cyclohexane
(2a) affording intermediate B. Then, intermediate B adds to
N-methyl-N-(2-methylallyl)benzamide (4a), giving radical
intermediate C. Intermediate C proceeds through intramolecu-
lar cyclization to give intermediate D. Finally, H-atom abstrac-

(0]
NH Q
©)J\Nm
+ H
9aa', 35%
9aa, trace
i L
~
N N
+ |
o
5aa, trace Mass: 240
(0]
N/

7aa

65% yield

Scheme 5: Control experiments for the mechanism studies. a) Reaction with N-unprotected substrate 8a; b) reaction with the addition of radical-trap-

ping reagent TEMPO; c) KIE study.
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oo

O

Scheme 6: Proposed mechanism.

tion occurs between D and TBPB directly, which gives the
product 5aa and regenerates radical A for the next cycle.

Conclusion

In summary, a metal-free cascade functionalization of unacti-
vated C(sp3)-H bonds and cyclization reactions of N-substi-
tuted allylbenzamides were developed. The reaction involved
cleavage of the C(sp?)—H bond, alkylation and intramolecular
cyclization, affording the 4-alkyl-substituted dihydroiso-
quinolin-1(2H)-one derivatives with moderate to good chemi-
cal yield. The substituent on the C—C double bond was found to
play a key role for the formation of the desired products. Also,
N-methacryloylbenzamides worked well in the current reaction,
which provides an easy way for the preparation of alkyl-subsi-
tuted isoquinoline-1,3(2H,4H)-diones.

Experimental

General procedure for the radical cyclization between
N-allylbenzamide and N-methacryloylbenzamides with
cycloalkanes: Into an oven-dried reaction vial flushed with Nj,
substrate 4 or 6 (0.2 mmol), cycloalkanes 2 (2 mL), and DTBP
(0.6 mmol) were added. Then the reaction mixture was
stirred for 12—48 h at 120 °C under nitrogen atmosphere. After
cooling, the reaction was quenched by a saturated NaCl solu-
tion (1 x 5 mL). Ethyl acetate (30 mL) was added to the system,

and the mixture was washed with water (1 x 30 mL) and brine

heat Q
H 2a

\
OW
o
5aa
A
O\O\K
(0]
N/

%OH
@

B

solution (1 x 30 mL). After drying over anhydrous Na;SOy, the
solvent was removed. The crude mixture was charged onto
silica gel and purified by flash chromatography to furnish the
corresponding products 5 and 7.
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Supporting Information File 1
Experimental details and spectral data.
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