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Protein oxidative or redox modifications induced by reactive oxygen species (ROS) or reactive nitrogen species (RNS) not only can
impair protein function, but also can regulate and expand protein function under a variety of stressful conditions. Protein oxidative
modifications can generally be classified into two categories: irreversible oxidation and reversible oxidation. While irreversible
oxidation usually leads to protein aggregation and degradation, reversible oxidation that usually occurs on protein cysteine residues
can often serve as an “on and off” switch that regulates protein function and redox signaling pathways upon stress challenges.
In the context of ischemic tolerance, including preconditioning and postconditioning, increasing evidence has indicated that
reversible cysteine redox modifications such as S-sulfonation, S-nitrosylation, S-glutathionylation, and disulfide bond formation
can serve as a cellular defense mechanism against tissue ischemic injury. In this review, I highlight evidence of cysteine redox
modifications as protective measures in ischemic injury, demonstrating that protein redox modifications can serve as a therapeutic
target for attenuating tissue ischemic injury. Prospectively, more oxidatively modified proteins will need to be identified that can
play protective roles in tissue ischemic injury, in particular, when the oxidative modifications of such identified proteins can be
enhanced by pharmacological agents or drugs that are available or to be developed.

1. Introduction

Increasing evidence continues to support the concept that
reactive oxygen species (ROS) and reactive nitrogen species
(RNS) can exert great beneficial effects on cellular adaptation
to stress challenges and cell survival [1–5].This is particularly
true in the context of ischemic tolerance that includes pre-
conditioning and postconditioning; both of which are used
to prepare tissues to tolerate injuries against lethal ischemic
occurrence by triggering endogenous adaptive and defensive
responses [5–13]. Evidence supporting the involvement of
ROS and RNS in ischemic tolerance comes directly from
the observations that administration of antioxidants before
or during the induction of ischemic tolerance can abolish
the protective effects of either preconditioning or postcon-
ditioning [14–20]. As one of the means that ROS/RNS work
is via modifying proteins, protein redox modifications can
thus execute the beneficial effects of ROS/RNS [21–26]. In
this review, I will summarize evidence that protein redox

modifications, in particular, reversible modifications on pro-
tein cysteine residues when induced by preconditioning or
postconditioning, can serve as a cellular defense mechanism
against tissue ischemic injury. Evidence presented indicates
that protein redox modifications can serve as therapeutic
targets in tissue ischemic injury.

2. Protein Redox Modifications

Under stress conditions, cells can produce an elevated level of
reactive oxygen species (ROS) and reactive nitrogen species
(RNS) [27, 28], which, in turn, can oxidize ormodify proteins
[29–32]. As shown in Figure 1, protein oxidation can be
classified into two general categories. One is irreversible and
the other is reversible. Irreversible oxidation usually leads to
protein aggregation and degradation. This type of oxidation
includes formation of protein carbonyls [33], nitrotyrosine
[34], and sulfonic acids [35]. On the other hand, reversible
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Figure 1: Classification of protein oxidative modifications into two categories: irreversible oxidation and reversible oxidation. ∗Note: only a
few studies so far have reported that sulfinic acid (S-sulfinition) formation could be reversible [180, 181].
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Figure 2: Reversible cysteine modification products that are widely studied. These products include S-sulfenation (sulfenic acid, –SOH),
S-nitrosylation (–SNO), S-glutathionylation (–P–S–S–G), and either intra- or interdisulfides.

protein oxidation is usually involved in redox signaling
pathways and regulation of protein structure and function
[36–38]. This type of oxidation often occurs on protein
cysteine residues leading to formation of S-sulfenation, S-
nitrosylation, disulfides, and S-glutathionylation [35, 39, 40]
(Figure 2). Additionally, formation of methionine sulfoxide,
involving methionine sulfoxide reductase [41–44], is also
a reversible process and has been shown to be involved
in protection against ischemic injury [45–47]. It should be
pointed out that, strictly speaking, disulfide formation (P–
S–S–P) and S-glutathionylation (P–S–S–G) are not oxida-
tive modifications as the end products do not contain an
oxygen atom like those found in S-nitrosylation (–SNO)

and S-sulfenation (–SOH). Nonetheless, formation of both
disulfides and glutathionylation requires the presence of
reactive oxygen species such as hydrogen peroxide [48–56].
Therefore, it would be more appropriate to name these two
modifications as redox modifications.

3. Production of Reactive Oxygen Species
(ROS) and Reactive Nitrogen Species (RNS)

While all endogenous RNS originate from nitric oxide
synthases, ROS can be produced by many cellular systems.
Among which, mitochondria remain as a major cellular site
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for ROS production [28, 57–59]. It has been established that
mitochondrial complexes I and III are the major two sites
for mitochondrial ROS production [57, 58]. Other enzyme
systems in mitochondria that can generate ROS include
complex II [60], 𝛼-keto acid dehydrogenase complexes that
contain dihydrolipoamide dehydrogenase [61–65]. Outside
mitochondria, NADPH oxidase [66, 67], xanthine oxidase
[68, 69], and cytochrome P-450 enzymes [70] can also
generate ROS. It has been recently reported that the 𝛼-keto
acid dehydrogenase complexes can generate more ROS than
complex I [71]. The initial species is always a superoxide
anion, which can be dismutated to H

2
O
2
[72–74]. The latter

can decay to form hydroxyl radical in the presence of
metal ions [75]. Additionally, when superoxide meets nitric
oxide, peroxynitrite is formed [76, 77]. Both hydroxyl radical
and peroxynitrite are known to be highly reactive towards
proteins [78, 79].

4. Balance and Imbalance between
Oxidants and Antioxidants

Production of ROS and RNS is a well-controlled process
under normal conditions [80, 81]. This is because cells have
a variety of antioxidant defense systems. These include but
are not limited to superoxide dismutase, catalase, glutathione
peroxidase, thioredoxin, and peroxiredoxin [27]. Moreover,
there are also small antioxidant molecules such as vitamin C,
vitamin E, glutathione, and coenzyme Q [27]. Under normal
physiological conditions, a balance between ROS production
and antioxidant defense is well maintained [53, 82]. However,
under stress or pathophysiological conditions,more ROS and
RNS can be produced that can overwhelm the cellular antiox-
idant defense system, leading to severe oxidative stress and
oxidative damage [80, 83]. On the other hand, intentionally
induced oxidative stress can serve as a defense mechanism
against further oxidative challenges [80, 83–87]. This is
known as hormetic effect [88–90] or “positive oxidative
stress” and are often explored as a protective approach in
ischemic tissue injuries [26], a phenomenon often termed as
ischemic tolerance that includes both preconditioning and
postconditioning [7, 17, 91].

5. Ischemic Tolerance:
Preconditioning and Postconditioning

Preconditioning is a prophylactic approach, which often
involves noninjurious stimulation of the tissues that are
of interest [7, 17, 91]. Such stimulation can prepare the
tissues to resist further challenges that are lethal [7, 17,
91]. Induction of preconditioning can be achieved by many
ways, including short episodes of ischemia reperfusion [92],
treatment with chemicals or drugs that are often inhibitors
of mitochondrial electron transporter complexes [26, 93],
hyperoxia [94, 95], and hypoxia [96], as well as remote
preconditioning [97]. Remote preconditioning means that
the tissues that receive preconditioning can defend other
tissues against ischemic injuries. Therefore, the target to be
preconditioned and the target to be protected are not the

same in the settings of remote preconditioning.As opposed to
that of preconditioning, postconditioning is the interruption
or intervention at the onset of reperfusion after an ischemia
has occurred [98–102]. Therefore, postconditioning may be
more clinically relevant as ischemic occurrence is generally
not a predictable event. Nonetheless, preconditioning is still
intensively studied because investigating how tissues respond
to preconditioning may identify endogenous therapeutic
targets for treatment of ischemic injury [103, 104]. Moreover,
both preconditioning and postconditioning have been shown
to involve similar signaling pathways or trigger similar
defense mechanisms [100, 105–107].

6. Reversible Protein Cysteine Modifications
and Ischemic Tolerance

In the context of ischemic tolerance including precondition-
ing and postconditioning, cysteine redox modifications have
been explored extensively. This is because cysteine oxidation
is closely associated with cellular redox potential reflected by
the ratio between GSH/GSSG and NADH/NAD+ [108, 109].
Moreover, cysteine residues can undergo reversible modifi-
cations that are involved in an “on and off” switch during
stress conditions [36, 110–112]. Therefore, reversible cysteine
modifications are often involved in regulating redox signaling
pathways and protein function [37, 113, 114]. Accordingly, I
will cover only reversible cysteine modifications and their
protective roles in ischemic injury in in this review. These
include S-sulfenation, S-nitrosylation, S-glutathionylation,
and disulfide formation. But, before discussing each of the
four modifications, I would like to briefly introduce a general
method for analysis of reversible cysteinemodifications as the
method has contributed significantly in the paradigms to be
presented below in this review.

7. General Detection Method for
Reversible Cysteine Modifications

As cysteine oxidation does not involve a change in opti-
cal density of the modified proteins, a probe is always
needed for the detection of cysteine modifications [115]. In
fact the approaches are quite similar for S-sulfenation, S-
nitrosylation, and S-glutathionylation. Figure 3 shows one
of the general procedures for detection of cysteine oxi-
dation products. This widely used method is often called
biotin switch assay [116]. The steps involve blocking unmod-
ified cysteine residues with alkylating reagents such as
N-ethylmaleimide (NEM), reducing the modified cysteine
residues using a specific reducing reagent for each modified
species [38, 117]. For example, ascorbic acid is used for the
reduction of S-nitrosylation [118], arsenite is used for the
reduction of S-sulfenation [119], and glutaredoxin is used
for the reduction of S-glutathionylation [120, 121]. This is
followed by relabeling of the reduced cysteine residues using
biotin conjugated with an alkylating reagent such as NEM.
This approach not only facilitates gel-based detection as
biotin can be readily recognized by streptavidin, but also
can be conducive to affinity purification of the modified
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Figure 3: Analysis of reversible cysteine redox modifications. What is shown is a one of the popular methods generally called a “biotin
switch” assay, which involves alkylating the free thiol groups (step 1), reducing the modified cysteine residues using specific reductant for
each oxidation product (step 2), and relabeling of the newly generated free thiol groups using biotin conjugated probes (step 3). Following
biotinylation, the samples can be further analyzed by either western blot (step 5) or affinity purification (step 4). Note that protein sulfenic
acids can be directly labeled by dimedone conjugated biotin probes as described in the text.

proteins. Additionally,NEM-biotin labeling can also pinpoint
the site of modifications when used in conjunction with mass
spectrometric peptide sequencing. It should be noted that,
for the detection of protein sulfenic acids, biotin conjugated
dimedone probes have been developed that only reacts
with –SOH [122, 123]; therefore no blocking and reducing
steps are needed. For the detection and quantification of S-
glutathionylation, the enzyme glutaredoxin is needed in the
presence of GSH. DTT and 2-mercaptoethanol are nonspe-
cific reducing reagents; hence they are not good for a specific
modifying species.

8. Paradigms of Reversible Protein
Cysteine Modifications as a Defense
Mechanism in Ischemic Injury

8.1. S-Sulfenation (–SOH). S-Sulfenation or protein sulfenic
acid (–SOH) is now attracting increasing attention because
this cysteine redox modification product can now be readily
trapped and quantified [115, 123]. Moreover, although once
considered a transient product of cysteine oxidation adduct,
stable –SOH has been found to exist that plays an “on and
off” switch in regulating protein function and redox signaling
[40]. An elegant model of protein sulfenic acid formation
in protecting ischemic tissue injury is the enzyme aldose
reductase that has been studied thoroughly byDr. Bhathagar’s
group at University of Louisville. This group initially found
that AR could be activated by ischemic reperfusion in the
heart, and this activation was due to the formation of a
sulfenic acid on cysteine residue 298 [124]. Furthermore, this
sulfenation process of cysteine 298 was found to be achieved
by peroxynitrite [125], a highly reactive species formed

between superoxide anion and nitric oxide [126]. The group
next found that this activation of AR via cysteine sulfenic acid
formation was regulated by the PI3K/AKT/eNOS signaling
pathway [125]. As this pathway is known to be involved in
protection against ischemic injury [127, 128], AR activation by
sulfenic acid formation on cysteine 298 thus is suggested to be
involved in cardioprotection against cardiac injury, which is
further supported by the observation that AR inhibitors such
as sorbitol or tolrestat, when applied before ischemia or at the
onset of reperfusion, hindered postischemic recovery in the
heart [125]. Interestingly, as this seems to be the end of the
story, this laboratory went further and demonstrated that for-
mation of AR–SOH on cysteine 298 during cardiac ischemia
reperfusion could be reversed back to AR–SH [129], which
involved two enzymes, glutathione S-transferase converting
AR–SOH to AR–SSG, and glutaredoxin converting AR–SSG
to AR–SH [129]. Therefore, both enzymes may be involved
in regulation of AR–SOH reduction when tissue oxygen and
nutrient supply is resumed after an ischemic incident.

8.2. S-Nitrosylation (–SNO). Protein cysteine nitrosylation
(P-SNO), another form of reversible modification, has been
studied by numerous investigators. The role of this modifi-
cation has been thought to be equivalent to that of protein
phosphorylation [130, 131]. It not only has detrimental effects
on protein function and cell survival [132, 133], but also can
exert beneficial effects under a variety of pathophysiological
conditions [134, 135]. In the context of tissue ischemic injury,
it has been found that overall protein –SNO, in connection
with the activation of the PI3K/AKT signaling pathway,
increases after postconditioning in the heart [136], indicating
that nitrosylation of individual proteins play a protective role
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in ischemic injury. This is indeed the case as presented in the
following two examples.

8.2.1. S-Nitrosylation of TRIM72 at Cysteine-144 Is Cardiopro-
tective. Tripartite motif-containing protein 72 (TRIM72) is a
membrane repair protein that can undergo posttranslational
modifications leading to its either activation or degradation.
Using the biotin switch assay shown in Figure 3, Kohr
et al. reported that TRIM72 exhibited an elevated level of
SNO at cysteine-144 upon ischemic preconditioning [137].
As ischemic preconditioning is an established approach for
cardioprotection against ischemic injury [138], the authors
hypothesized that increase in TRIM72’s cysteine-144 nitrosy-
lation protects against cardiac ischemic injury. The authors
tested the hypothesis by mutating C144 to a serine residue
(C144S) in a tissue culture system using HEK-293 cells that
lack TRIM72. This mutation would abolish the proteins S-
nitrosylation at C144, hence changing the protein’s property
and function. Indeed, the authors found that after the muta-
tion, protein levels of TRIM72 (wildtype) but not TRIM72-
C114S (mutant) were decreased upon H

2
O
2
treatment, and

this decrease correlated with enhanced H
2
O
2
-induced cell

death in the wild type cells. Moreover, treatments of the cells
with an S-nitrosylating agent S-nitrosoglutathione (GSNO)
[139] could maintain TRIM72’s protein level and reduce
cell death. The authors further demonstrated that GSNO
induced TRIM72 nitrosylation stopped ischemia reperfusion
triggered decrease in TRIM72 levels and decreased infarct
size in heart ischemia reperfusion. Thus, cys144-SNO of
TRIM72 prevents degradation of TRIM72 upon ischemic
challenge and thus preserves its membrane repair capacity.

8.2.2. S-Nitrosylation of Mitochondrial Complex I ND3 Sub-
unit Participates in Cardioprotection against Ischemic Injury.
Complex I is the electron entry point in the mitochondrial
electron transport chain. It has at least 45 subunits in the
mammalian systems and many of them are redox sensitive
[140–142]. Dysfunction of complex I is thought to be a causal
factor in the pathogenesis of many mitochondrial diseases
including ischemic injury [143–145]. Recently, Chouchani et
al. reported that S-nitrosylation of the complex I subunitND3
is involved in cardioprotection against ischemic insult [146].
The authors reported that S-nitrosylation of ND3-cysteine-39
inhibited complex I activity and slowedmitochondrial recov-
ery at the initial minutes of reperfusion, hence attenuating
ROS generation upon sudden oxygen resupply, leading to less
oxidative damage and tissue necrosis. Interestingly, ND3 only
became accessible to nitrosylation after an ischemic insult as
mitoSNO, a membrane permeable nitrosylating agent, could
only provide the protective effect at the onset of reperfusion
via ND3 cysteine-39 nitrosylation. As mitoSNO was applied
during reperfusion and its protective effect could only be
observed when administered at the onset of reperfusion,
this study provides an elegant postconditioning paradigm
whereby S-nitrosylation could serve as one mechanism con-
tributing to postconditioning-induced ischemic tolerance.

8.3. S-Glutathionylation. Well-defined roles of protein S-
glutathionylation in ischemic tolerance have not been clearly
reported in the literature. Nonetheless, there are direct link
that protein S-glutathionylation induced by preconditioning
prevents cell death and enhances cell survival. The results
of two studies will be summarized here. The first one
is S-glutathionylation of mitochondrial adenine nucleotide
translocase (ANT) induced by carbon monoxide precondi-
tioning [147]; and the second one is S-glutathionylation of
ryanodine receptor 2 induced by tachycardia preconditioning
via elevation of NADPH oxidase activity. In the first study,
Queiroga et al. reported that carbon monoxide prevents
mitochondrial permeability transition pore opening and cell
death via S-glutathionylation of ANT [147]. In particular,
using nonsynaptic mitochondria isolated from rat brain and
primary astrocytes prepared from the cortex of neonatal
rats, the authors found that carbon monoxide could par-
tially inhibit loss of mitochondrial membrane potential, the
opening of mitochondrial membrane permeability transition
pore, mitochondrial swelling, and cytochrome c release. To
understand the underlying mechanisms, the authors further
found that carbonmonoxide couldmodulate ANT activity as
ADP/ATP exchange rate was enhanced. As ANT is part of the
mitochondrial membrane permeability transition pore [148],
this enhancement of ANT activity thus also prevented pore
opening. Moreover, it was further found that the modulation
of ANT activity was due to ANT glutathionylation caused
by carbon monoxide-induced ROS production. It should be
noted that the site of glutathionylation on the ANTmolecule
was not identified in this study.

In the second study, Sánchez et al. reported that
while electrically induced tachycardia can effectively create
myocardial preconditioning, the mechanisms remain elusive
[149]. Therefore, the authors set out to elucidate the under-
lying mechanisms. Focusing on sarcoplasmic reticulum (SR)
isolated from dog cardiac ventricular muscle, they found
that preconditioning tachycardia increased NADPH oxidase
activity by nearly 200% as measured by NADPH dependent
superoxide production. This increase in enzymatic activity
was due to the enhanced association of rac1 with the NADPH
oxidase cytosolic subunit p47 (phox) to the microsomal
fraction without altering the content of the enzyme’s mem-
brane subunit gp91 (phox). As an elevated level of superoxide
can induce protein S-glutathionylation, the author further
found that cardiac ryanodine receptor 2 (RyR2) was S-
glutathionylated under their experimental conditions. Con-
versely, when catalase, superoxide dismutase, and NADPH
oxidase inhibitors were added in the experimental system,
RyR2 S-glutathionylation was greatly attenuated, indicating
a potential link between RyR2 glutathionylation and tachy-
cardia preconditioning. Interestingly, this same laboratory
further reported that exercise could also produce a precon-
ditioning effect by increasing NADPH oxidase activity and
RyR2 S-glutathionylation [150]. Similar to the ANT studies
presented above, the site of modification on Ry2R was also
not pinpointed in this study.

8.4. Disulfides. Numerous studies have demonstrated that
oxidative stress-induced disulfide formation can be beneficial
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to cell survival [151–155]. An excellent study by Fourquet et
al. [156] presented a well-delineated role of protein disul-
fide formation in activation of the Nrf2 signaling pathway
that regulates the expression of the second phase defensive
enzymes such as hemeoxygenase-1 (HO-1) and NAD(P)H
dehydrogenase quinone-1 (NQO-1) [157]. Using Hela cells
treatedwithH

2
O
2
, nitric oxide, and hypochlorite, the authors

found that Keap1, a protein that controls the fate of Nrf2,
can form intramolecular disulfides, leading to release and
nuclear translocation of Nrf2. The authors further found
that cysteine-151 of Keap1 was involved in disulfide bond
formation between two molecules of Keap1, forming a
Keap1 homodimer. This formation of Keap1 homodimer is
important for Nrf2 release from the Keap1-Nrf2 complex as
mutation of cysteine-151 led to an unstabilized form of Nrf2.
Additionally, the authors also found that, when the thiore-
doxin and glutathione pathways were inactivated, Keap1
intramolecular disulfide bond formation was constitutive,
leading to a stable Nrf2 molecule in the cell. Therefore, this
study further demonstrates that Keap1 cysteine-151 disulfide
bond formation is at least one of the mechanism by which
cells utilize to resist ischemic injury by upregulating the
second phase antioxidative proteins [158–166], which include
thioredoxin reductase, glutamate-cysteine ligase (GCL), glu-
tathione S-transferase, HO-1, and NQO-1, [157, 167–171].

9. Summary and Perspective

Protein redox modification is a double-edged sword. While
there is no doubt that protein redox modifications can
have detrimental effects on cell survival [172–179], there
is also increasing evidence, as summarized in this review,
that redox modification of certain proteins, when induced
purposely by approaches that trigger positive oxidative stress
[26], can play a protective role in tissue ischemic injury.
Studying how proteins respond to oxidative modifications in
the settings of preconditioning and postconditioning, may
identify novel proteins as potential therapeutic targets for
treatment of ischemia-related diseases, in particular, when
such modifications can be enhanced by pharmacological
agents.
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