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Real-time functional Magnetic Resonance Imaging (rtfMRI) is used mainly for neurofeedback or for
brain-computer interfaces (BCI). But multi-site rtfMRI could in fact help in the application of new
interactive paradigms such as the monitoring of mutual information flow or the controlling of objects
in shared virtual environments. For that reason, a previously developed framework that provided an
integrated control and data analysis of rtfMRI experiments was extended to enable multi-site rtfMRI.
Important new components included a data exchange platform for analyzing the data of both MR
scanners independently and/or jointly. Information related to brain activation can be displayed
separately or in a shared view. However, a signal calibration procedure had to be developed and
integrated in order to permit the connecting of sites that had different hardware and to account for
different inter-individual brain activation levels. The framework was successfully validated in a
proof-of-principle study with twelve volunteers. Thus the overall concept, the calibration of grossly
differing signals, and BCI functionality on each site proved to work as required. To model interactions
between brains in real-time, more complex rules utilizing mutual activation patterns could easily be
implemented to allow for new kinds of social fMRI experiments.

R
eal-time functional magnetic resonance imaging (rtfMRI) has recently become the subject of increased
interest primarily due to its use for brain-computer interfaces (BCIs) and neurofeedback techniques. In
MR-based neurofeedback experiments, volunteers receive information about activation of specific areas of

their brains in order to record their ability to regulate those areas based on the feedback they receive1–4. This
information is provided in real-time by an online statistical analysis of change in the so-called BOLD (blood
oxygen level dependent) signal, which serves as an indirect measure of neuronal activation. Because of the
underlying physiological processes, real-time fMRI has a natural delay of several seconds, but despite this
limitation, the spatial resolution is excellent and thus enables detection of activation even in subcortical structures
such as the hippocampus or the amygdala. In addition to being used in neurofeedback, rtfMRI was recently used
to monitor online the internal mental states that encode for decision making5 or bi-stable perceptions6. Real-time
fMRI can also be used by a subject to communicate with other humans using interfaces to machines or controlling
devices such as protheses7,8. This application is called a brain-computer interface (BCI), a process that was
established earlier using EEG techniques9–11. One important goal of many experiments in the area of BCIs is
to develop neuroprosthetics for patients with severe illnesses such as locked-in syndrome7,8.

But until now, rtfMRI experiments have been restricted to one volunteer at a time lying in a scanner.
Interestingly, EEG (electroencephalography)10–12, and more recently fNIRS (functional near-infrared spectro-
scopy)13–15, have been successfully employed for real-time experiments of coupled brains. Though there were a
small number of fMRI experiments that were realized by scanning two volunteers at the same time, the data
acquired in those experiments had to be analyzed offline16–21. The main goal of these few studies was the analysis
of brain activation during the interaction of the volunteers, which is an important research field for social fMRI or
neuro-economic studies. However, fMRI studies that investigate social processes between interacting partners are
in most cases conducted under conditions where subjects are seldom in direct contact with each other. Rather,
they react to or interact with stimuli presented in a fixed context by another participant or even a computer. Data
are then evaluated offline to analyze activated brain networks22–25. But designing experiments to examine the full
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potential of dynamic interactions (e.g., subjects adapting their own
strategies when they receive specific signals from partners) requires a
different approach. The main prerequisite for that is the analysis of
data in real-time and the subsequent immediate use of those results
within the experiment.

So far, the only simultaneous, multi-site rtfMRI experiments to
have been reported is the single conference contribution by Goebel
et al.26 (as well as some preliminary results of this study from our own
group27,28). The main obstacles to this construct are surely the extens-
ive technical effort involved in connecting two or more scanners, the
guarantee that BOLD signals can be compared between several
volunteers, the exchange of analyzed data during ongoing measure-
ment, and the triggering of dynamic events according to simultan-
eous complex information from different volunteers.

Thus the goal of our study was to establish a flexible environment
for connecting scanners, even those in remote locations and with
differing hardware features, in order to allow more researchers to
realize new classes of experiments when monitoring interacting
brains in real-time. Multi-site rtfMRI could allow us to investigate
new paradigms, such as changes of strategy in mutual interactions or
controlling objects in shared virtual environments. However, the
differing features of each scanner’s hardware and the variations in
inter-individual brain activation levels required a new strategy in
order for us to be able to compare acquired signals.

To that end, we adapted a previously developed framework29 in
order to allow for multi-site rtfMRI, not just one fixed configuration.
We also wanted to establish a flexible system that would allow for
varying experimental settings in which we could include more scan-
ners and controlling objects independently or jointly. Results were
displayed separately or in a shared view to each participant. Rules for
allowing or disallowing mutual interaction were implemented in
separated modules to enable easy and quick adaption to changing
experimental conditions.

The new framework also had to be designed to support con-
nections of remote scanners via internet (direct connections were
not considered to be a forward-looking solution) since only this
internet connection would allow wider application (sites with sev-
eral adjacent scanners are quite rare). This in turn required integ-
rating a signal calibration procedure because scanners at different
sites would normally exhibit varying signal properties like a dif-
ference in field strengths, coil characteristics, or other machine-
dependent factors. The experimental design also had to allow for
differing abilities in volunteers to reach a certain percentage of
brain activation, especially when different field strengths are
involved.

Here we report on the concept and its validation in a proof-of-
principle study with twelve volunteers (six each on 3T and 7T). A
well-known motor paradigm had to be performed on both scanners.
Subjects can much better control their motor actions and voluntarily
reproduce them than they can regulate their emotional brain areas.
Prior to the main experiment, brain activation of each volunteer was
analyzed in real-time, and the results were used to calibrate the signal
on each site with respect to the maximum achievable individual brain
activation (calibration experiment). To validate this calibration pro-
cedure, we hypothesized that the outcome of the subsequent main
experiment, in which the motor activity level had to be varied in
order to put a virtual object at predefined locations on the screen,
would be the same at both sites. To test the full functionality of the
framework, three different tasks were measured in the main experi-
ment. The first task - without any information exchange between
participants—validated the calibration procedure, while two other
tasks included information exchange between partners and a mutual
dependence of each on the performance of the partner for success.
The focus of this report is the validation of the concept and the
calibration procedure, that is, the experiment without mutual
information flow and dependencies. A more extended analysis of

influences of information flow and mutual dependencies will be
presented in a forthcoming publication.

Results
The new extended framework was successfully implemented. The
overall workflow of the calibration procedure and the main measure-
ment ran as required by the concept. The individual cortical activa-
tions from the motor task were determined in real-time when
running the functional localizer and the results were successfully
used for calibrating the activity of each volunteer for the subsequent
main measurement. In the main experiment, subjects were able to
control the position of an object by varying the activation strength of
their sensorimotor cortex (SMC). In the section of the experiment
that involved no mutual information flow, 57% of all blocks were
successfully completed. In the section that did involve mutual flow of
information, the success rate dropped to an average of 36%.

As we had expected, the off-line analysis of the calibration experi-
ment revealed that the amplitudes of the hemodynamic response of
the contra-lateral sensorimotor cortex varied to a certain degree
within each group (Figures 1a and b). While the mean hemodynamic
response functions (HRF) when averaged among the volunteers of
each group were about 60% higher for 7T than for 3T (Figure 1c), the
amplitudes of three individual responses in the 7T group were in the
range of the HRF amplitudes of the 3T group. This demonstrates that
a direct comparison of activation amplitudes between different
volunteers may be difficult to effect or may produce misleading
results.

The differences for each subject for the two activation levels in the
main experiment are shown in Figure 1d. These differences were
further analyzed to ensure that the calibrated signals at different
magnetic field strengths led to comparable results. Using a mixed
model to allow for correlation of the data, we found a highly signifi-
cant difference (p , 0.0001) between weak and strong tapping
(Figure 1d). Typical changes in activation patterns related to the
strong and weak tapping task for two volunteers can be seen in
Figure 2.

The percentage of successfully performed tasks per volunteer of 3T
and 7T group members has been compared using an ANOVA for
repeated measurements, with the field strength as a between-subject
factor and the three tasks as a within-subject factor. There was no
overall effect for field strength (p 5 0.514), but a strong effect for
tasks (p 5 0.001, Greenhouse-Geisser correction), without inter-
action between the two factors (p 5 0.348, Greenhouse-Geisser cor-
rection). Thus, there is no advantage determining success for either
one of the groups. All statistical analyses were conducted using SAS
(SAS/STATH 9.2, SAS Institute Inc.).

The well-known typical activation patterns of standard finger-
tapping paradigms can be clearly detected here. Besides the overall
increase of activation in many parts of the cortical sensorimotor
network (contralateral and ipsilateral SMC, supplementary motor
area [SMA]), there was increased activation in other areas, such as
the putamen and the thalamus, that was also clearly detectable with a
high statistical significance (p , 0.005, FDR corrected) (see Table 1
and Figure 3). The activation was more pronounced at 7T in both
contra- and ipsilateral SMC and bilaterally in the thalamus, while
SMA and both putamen exhibited a somewhat greater activation at
3T.

Discussion
In this proof-of-principle study, the implementation of the concept
of performing multi-site, real-time fMRI on scanners with different
field strengths was successfully realized and validated. Using a simple
but reliably controllable and reproducible motor task, we could dis-
tinguish both activation levels with the implemented calibration and
signal detection framework. With the use of relative rather than
absolute signal changes, the modulation of the motor cortex activa-
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tion on both sites could be processed in a unified manner to success-
fully manipulate the virtual object on each site. Since the position of
the virtual object served as a visual feedback for control of a specific
brain region (here the SMC), the main prerequisite for establishing a
multi-site neurofeedback tool was also fulfilled.

The validation of the concept only needed a comparison of both
groups separately with respect to the factors of each local site. In the
results from that comparison, no significant differences were found
between the 3T and the 7T groups. However, one cannot fully

exclude the possibility that differences may be detectable in the
examination of larger groups in environments involving ultra-high
field scanners (see below).

The scanning of two people at the same time was already achieved
some time ago16,17, but those studies used scanners with the same field
strengths and without correcting for potential remaining hardware-
dependent differences on local sites. The applications were therefore
constrained to a few sites that had access to or possessed scanners
with the same technical features. Additionally, in most of those

Figure 1 | (a–c) Results of the functional localizer: Individual and mean BOLD signals of the 3T and 7T group. (a) 3T single subject BOLD signals from

the functional localizer with standard error. Max. amplitude: subj01 5 2.69%, subj02 5 2.95%, subj03 5 3.19%, subj04 5 1.28%, subj05 5 1.87%,

subj06 5 1.51%; (b) 7T single subject BOLD signals from the functional localizer with standard error. Max. amplitude: subj07 5 4.81%, subj08 5 3.07%,

subj09 5 2.79%, subj10 5 2.12%, subj11 5 4.13%, subj12 5 4.10%; (c) Mean BOLD signals from the functional localizer for 3T and 7T with standard

deviation. Max. amplitude: 3T 5 2.17%, 7T 5 3.48%. (d) Maximum amplitudes in the low and high sensorimotor activation at 3T and 7T in the main

experiment, averaged over all three tasks. The bars represent the mean percentage increase of the BOLD signals with the according standard errors. The

number in the green circle represents the total number of successful runs. Subject 1 was excluded from the analysis, subjects 2–6 were measured at 3T,

subjects 7–12 were measured at 7T. A highly significant difference between weak and strong tapping was found.

Figure 2 | Activation patterns as a function of motor execution in the main experiment. Statistical maps (p , 0.001 FDR corrected, cluster threshold 30

voxels) of two representative volunteers overlaid on the anatomical group average. (a) 3T single-subject analysis – weak tapping task; b) 3T

single-subject analysis – strong tapping task; (c) 7T single-subject analysis – weak tapping task; (d) 7T single-subject analysis – strong tapping task.
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experiments, data were not analyzed in real-time and individual
activation differences were only taken into account in the post-
experiment statistical analysis. Exchange of information occurred
not with respect to brain activation but with respect to the results
of the tasks. For example, Fliessbach et al. transferred the decisions
made by one partner to the other partner17.

Our experimental setup provides features not reported until now
that may allow a larger community to perform new classes of experi-
ments by connecting several scanners: (1) the successful realization
of multi-site real-time fMRI analysis; (2) the use of relative instead of
absolute signals, which can take into account different scanner char-
acteristics and different individual brain activation during the same
task; (3) an internet-based concept that allows one to connect scan-
ners even if they are distant from each other or located in separated
firewall-secured networks; (4) the extension of unified experiment
control and data analysis in real-time30 to include multi-site real-time
fMRI; and (5) a shared virtual platform integrated into the frame-
work that allows experiments to be conducted with real-time
exchange of information or mutual interaction.

But anyone planning to implement this kind of challenging, multi-
site infrastructure needs to consider several points. Connecting two
(or even more) scanners is quite demanding if the MR-scanners are
located in medical or medical-related research environments where
data-protection requirements are very restrictive. Another problem

may arise even with scanners that have the same field strengths,
because elements of the technical environment (shims, coils, hard-
ware specifications, sequence parameters, etc.) will always lead to
somewhat different MR signals, even if the same person, positioned
successively in different scanners, is exhibiting the same physio-
logical activation in each. This discrepancy requires a calibration
procedure ensuring the comparability of signals, which, however,
seems not to have been reported so far. Our results showed that using
calibrated relative signal changes instead of absolute signals allows a
direct comparison of the 3T group and the 7T group, at the same time
accounting for individual differences in brain activation. No signifi-
cant differences in the number of successful runs were found between
the two groups. Thus comparing relative signal changes makes multi-
site rtfMRI feasible even in a heterogeneous environment with
grossly differing BOLD signals. Despite the successful calibration
procedure, though, additional aspects have to be taken into account
when comparing BOLD signals from high-field and ultra-high-field
scanners, especially when going from 3T to 7T. Many factors have to
be considered that may alter or counteract the expected signal
increase and detectable activation patterns: the increased field
inhomogeneity at 7T; varying coil architectures and reconstruction
algorithms; resolution and limitations due to increased specific
absorption rate (SAR); geometric distortions; and signal losses due
to increased susceptibility artefacts and decreased T2* relaxation31.

Table 1 | Results of the random effects group analysis for the single tapping condition. Talairach coordinates (X, Y, Z) of cluster center, cluster
sizes (c) and the mean t-value (T) of each cluster (subject 1 was excluded, for details see text)

anatomic region
3T [p , 0.005, FDR corrected] 7T [p , 0.005, FDR corrected]

coordinates
c T

coordinates
c T

X Y Z X Y Z

RH SMC 38 226 50 (80) 8.47 38 227 50 (227) 9.09
LH SMC - 235 216 57 (38) 7.93
SMA 1 22 48 (98) 9.09 2 213 47 (88) 7.80
LH Putamen 226 21 8 (115) 9.13 227 0 10 (110) 7.75
RH Putamen 25 23 6 (114) 8.37 30 27 9 (93) 8.86
LH Thalamus 217 213 16 (8) 9.86 213 216 6 (24) 8.29
RH Thalamus 11 25 15 (5) 6.59 15 216 7 (35) 8.68

Figure 3 | Representative slices of the random effects analysis of the group data for both tapping conditions superimposed on the averaged T1-
weighted images of all eleven subjects (radiologic convention). The slices display the main parts of the sensorimotor system (primary contralateral and

ipsilateral SMC, bilateral basal ganglia and supplementary motor area (SMA). Upper row: 3T (without subject 1 for details s. text), p , 0.005, FDR

corrected. Lower row: 7T, p , 0.005, FDR corr. (cerebellum was not scanned at 7T). For a detailed cluster description, see Table 1.
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In addition to these rather technical factors, increased static and
physiologic noise contributions31 (mainly pulsatile-induced motion
artefacts) and severe susceptibility-induced signal losses (especially
when scanning frontal, caudal or inferior temporal brain regions)
have to be taken into account, specifically when trying to monitor or
modulate emotion-related brain structures such as the nucleus
accumbens or the amygdala. It has been demonstrated that physio-
logical noise can be corrected retrospectively at 7T32, but real-time
implementation will require additional adaption of the concept. All
factors may reduce statistical significance and thus counteract to
some degree the signal enhancement gained at 7T. While the signal
at 7T is still considerably higher than at 3T (Figures 1–3) for the
sensorimotor cortex (where geometric distortions are negligible
using standard EPI sequences with phased-array coils and parallel
imaging), subcortical structures may exhibit greater signal losses due
to increases in susceptibility and pulsatile motion artefacts. This
difference can be seen in Table 1, where basal ganglia exhibit com-
parable or somewhat higher T-values at 3T than at 7T, yet the num-
ber of activated voxels is still greater at 7T, except for the right
thalamus and the putamen. Another point to take into consideration
is the increased SAR at higher field strength. But reducing the flip
angle may still allow to acquire more slices or to increase the reso-
lution while remaining below the SAR limit. At 3T, this strategy was
shown to yield good results for fMRI experiments33, but the accom-
panying optimization of sequence parameters has yet to be deter-
mined for 7T. Similar arguments apply for the resolution, as
discussed in Olman & Yacoub31. In our experiment, we wanted to
compare similar resolutions between 3T and 7T even though the 7T
signal may have been degraded to some degree due to de-phasing
within the 4 mm slice. However, increasing the resolution increases
the time required for reconstruction (especially when using phased-
array coils with 24 or more elements) and data analysis. For our
proof-of-principle study, data acquisition and processing time was
well within TR of 2 s for a 64 3 64 matrix and 31 slices (3T). Higher
in-plane resolution would require fewer slices or applying faster
algorithms as well as using high-performance computing (e.g., pro-
vided by GPU cluster)34. Optimizing sequences, like using 3D instead
of 2D EPI sequences, might also prove advantageous35.

A more difficult problem when comparing spatial distribution of
activation is the BOLD signal originating at different field strengths.
At 3T, the BOLD signal results mainly from larger draining veins,
thus being mostly of intravascular origin, while at increased field
strengths, the T2 relaxation time of blood decreases, thereby leading
to increased extravascular susceptibility effects around vessels36. This
effect may be important since vascular architecture of the brain
usually differs from individual to individual as well as from region
to region within the same brain.

Motion artefacts are another major obstacle in real-time fMRI.
However, activation is usually displayed in real-time to the experi-
ment’s supervisor, who can then check the data quality during the
experiment, thus allowing for a repeat of measurement if increased
noise or artificial signals resulting from increased motion are
detected online (e.g., on the borders of the brain and cerebrospinal
fluid).

In addition to these technical and physiological aspects, some
perception-related and cognitive factors have to be considered.
Our results show that, despite a subject’s good voluntary control of
motor activation, a certain variability of the signals in the SMC
remained (Figure 1). An explanation for this result may be the sub-
ject’s loss of attention and concentration (the experiment requires a
very high level of concentration to maintain a constant tapping
strength reproducible with small variances. Although repetitive
and simple tasks may increase the risk of attention loss, they may
also serve to check to what degree a person undergoing a real-time
experiment may be able to keep a focused attention and concentrate
at a high level as well as to recruit the required motor memory and

planning aspects. In a multi-person experiment, the attention loss of
one participant may affect that participant’s partner, thus decreasing
the validity of the experiment. It may therefore be advantageous to
develop methods for determining online the degree of attention
being exhibited. In a multi-person experiment, mutual information
flow or the dependence of one performance on another may affect
the outcome of an experiment. In our experimental design, for
example, if one subject reached the target position (which would
be a success as a single participant) but the partner missed the goal,
that run was deemed unsuccessful (e.g., in the cooperation con-
dition). A loss solely due to the partner’s performance may in fact
affect the motivation of the subject. We have observed drops from
57% success in single runs to 36% success in social runs, which may
reflect that specific influence. Future experiments will have to analyze
these factors in more detail, but it seems evident that in light of them,
initial experimental designs and the subsequent analysis of real-time
interdependencies of participants may require new approaches.

Also in terms of future experiments, additional brain regions may
need to be included into real-time analysis for modulating a main
effect. For example, the activation of the SMA or the ipsi-lateral SMA
(Figure 3) could provide additional information about modulation of
main activation in the contra-lateral SMC since the SMA plays an
important role in more complex motor actions such as control of
movements or synchronization of both hemispheres37,38. Thus the
SMA could serve as a measure of the degree of synchronicity or
complexity of movements. Similar aspects may be important when
including the basal ganglia or memory- or emotion-related brain
areas (e.g., the activation of the thalamus could serve as a modulating
factor resulting from its role in somatosensory circuits, including
adjustments of motor activation after positive or negative rewards39).
The insula provides information about motor control40 and self-
awareness41, while the putamen, being part of nuclei lentiformes,
regulates movements42 and is involved in learning processes43. All
of these processes contribute to learning to adjust motor activation in
real-time, which could be of special relevance to using real-time fMRI
in neurofeedback for rehabilitation or for controlling external
devices in handicapped people. Motivation and emotion will always
play a very important role for subjects performing in real-time
experiments or using brain-machine interfaces.

From a technical point of view, integration of the signals of several
brain regions could be accomplished by applying real-time pattern
analysis2,6,44. This approach will require a set of calibration factors
(one for each region) that will be implemented in future versions of
our framework.

In summary, a multi-site rtfMRI environment was implemented
and validated with a reliable motor activation paradigm for online
control of virtual objects. These settings will be used for subsequent
experiments performed with real-time, multi-site social fMRI (such
as strategy changes in real-time), thereby enabling many new and
interesting experiments related to social and economic issues. Other
applications may include joint manipulations of external devices or
collaborate actions within a shared virtual reality environment allow-
ing to operate the system as a Hyper-BCI45 or to investigate social
effects such as synchronization effects between brains18.

Methods
Subjects. Twelve healthy male adults (25.1 6 3.1 years, 11 right-handed) participated
in this study after giving their written consent. One subject was excluded from data
analysis due to incomplete data logging in the main experiment. To avoid cross-
gender effects only male volunteers were examined46. The study was approved by the
local Ethics Committee of the Otto-von-Guericke-University Magdeburg according
to the principles of the Declaration of Helsinki.

Technical Infrastructure. The study was performed on two whole-body MR
scanners both equipped with a whole body gradient system (Magnetom 3T Trio;
Magnetom 7T; Siemens, Germany). The scanners were located in different buildings
belonging to different institutions and different networks. On both scanners, an 8-
channel phased-array head coil was used for imaging. To transfer each MR image
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volume set already during image acquisition to an external computer the original
pulse sequence and corresponding image-reconstructing program were modified.

Implementation. The multi-site-rtfMRI environment is based on a previously
described custom-made software30 implemented in MATLAB (MATLAB 7.3,
MathWorks Inc.). For the present experiment, a 32-bit Microsoft Windows
architecture was used. However, the system should be operational on all platforms

where MATLAB is running. The software is available on request. To establish a multi-
site infrastructure the existing system and the EDL-framework (Experiment
Description Language 1.2) had to be extended by new modules. These modules
handled all information about the levels of the BOLD signals, the scaling factors (to
account for different scanner characteristics), analysis of both BOLD signals such as
extension of the activated brain region, and location of the stimuli, the timing, and
visualization of stimuli on each site. According to the underlying EDL concept, the

Figure 4 | Schematic flow chart of the main processing modules. The data flow starts with the image acquisition at each MR scanner. In each local

MR environment a component for pre-processing and statistical analysis (S1 and S2) and a component for signal comparison and presentation (P1 and

P2) is installed. Although not used in the validation procedure the system contains a module Mutual Signal Exchange (E) where information of each

connected site can be exchanged and processed if required. The number of environments can be extended if necessary.

Figure 5 | Overview of the experimental setup of the main experiment. Each block consisted of 15 scans. At the beginning of each block, the task to be

performed was presented visually on the screen for 10 s (‘single’, ‘competition’, ‘cooperation’). In the single task only the own sphere was visible thus

excluding information exchange between both partners. The next five scans (TR 2 s) were used to determine the current baseline. The sphere had to be

moved into the upper (U) or lower (L) part of the field depicted as a light gray rectangle (here, the task required to move the sphere to the upper part). An

auditory signal (’start’ or ’stop’) delivered by earphones started the finger tapping block lasting two scans. To allow the BOLD signal to build up and decay

(which was important for a reliable data analysis) a rest period of seven scans followed the finger tapping. Then the spheres moved to the position

according to the individual BOLD signal strengths along with the visual presentation whether the task was fulfilled (and paid off) or whether the task was

not fulfilled. Thereafter, the presentation was reset and a new round was started.
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new experiment control and data analysis parameters can be easily defined in an XML
scheme.

To compare activation states of the brains of all participating subjects the EDL-
ActivationAnalysis module30 was expanded to include a transmitting
(OutputModule) and a receiving (ReceiveModule) component. The address of text
files to be exchanged was defined as a string (here to define the address of a network
drive) but this definition can be easily adapted to include other communication
channels or addresses including virtual addresses or internet addresses. Two more
modules (cwOutputScan, cwReceiveScan) controlled when the measurements data
have to be exchanged. In addition, the type of date to be transmitted (outputParams
resp. receiveParams) can be also set. Predefined values at this time are grey-scale
values or statistical parameters.

The following small EDL code fragment exemplarily shows the underlying struc-
ture for an XML element that specifies the data for mutual information exchange in
the according experiment:

,OUTPUTMODULE STATE5‘‘ON’’ TYPE5‘‘FILE’’
WRITETIMESTAMP5‘‘ON’’ MODE5‘‘APPEND’’.

,LOCATION.[IP]\[PATH]\[FILENAME].TXT,/LOCATION.

,CWOUTPUTSCAN.10,/CWOUTPUTSCAN.

,OUTPUTPARAMS OUT_TEMPLATE_ID5‘‘OFF’’
OUT_TEMPLATE_LABEL5‘‘OFF’’
OUT_TEMPLATE_ACTLEVEL5‘‘ON’’ OUT_SOURCE_IMG5‘‘OFF’’
OUT_MONEY_HUMAN5‘‘ON’’ OUT_MONEY_OPPONENT5‘‘OFF’’
OUT_HUMAN_STEPSIZE5‘‘OFF’’.,/OUTPUTPARAMS.

,/OUTPUTMODULE .

The code fragment describes selected details how the transmission of each partner’s
results are stored on a central location. The time points when the transfer is occurring
have to be defined. Here, these time stamps relate to a time point within a stimulation
block and are inserted incrementally. The experimental details of the stimulation run
are defined in additional modules (not shown here). The parameters that have to be
exported back to each site have also to be defined. In our implementation, these
parameters are the current levels of the BOLD signal and the amount of previous
rewards of the subject.

The stimulus presentation-module of the original framework had also to be
extended in order to be used for stimulus generation for multi-site fMRI. A new
module was developed (VisualizeActModule) where type and number of the dis-
played objects (virtObjects) and the entire time sequence of the stimulation can be
defined (randStruct/showScan). This structure allows an easy modification or
exchange of the presented stimulus. Thus, each participant can either see only the
object manipulated by the own brain activation, or both participants can simulta-
neously see the objects of both participants. To calibrate the signals of the subjects
lying in different MR-scanners scaling factors can be specified (scaleMaxValue). This
module also contains algorithms to compare signals of different subjects. More
sophisticated methods to analyze and compare the BOLD signals or additional rules
to control mutual interactions could be added or implemented here.

The multi-site rtfMRI framework was implemented here in a first version as two
main components (S, P) on both MR scanner environments similar to the concept of
hyperscanning16. Additionally, a network drive was defined as a central information
exchange platform (E) that could be accessed from all involved PCs. After each run,
the results of the data analysis were written to a central platform and were thus
accessible to other modules (P1 and P2). This allowed to compare the BOLD signals of
one or both participants and to generate respective visualizations of the results
(Figure 4). All results as well as the task condition and the timing were documented in
a stimulus logging module.

Imaging Protocol. The imaging protocol on both scanners consisted of a high-
resolution anatomical T1-weighted 3D data set (MPRAGE, 1 mm3 isotropic spatial
resolution) and gradient-echo EPI for functional imaging with following parameters.
3T: 31 axial slices (no gap), covering the whole brain, repetition time (TR) 2000 ms,
echo time (TE) 27 ms, flip angle (FA) 90u, matrix size 64 3 64, 3 3 3 mm2 resolution,
slice thickness 4 mm). 7T: Limitations imposed by the specific absorption rate (SAR)
with the original EPI sequence required to reduce the number of slices to 20 (slice gap
25%) and setting FA to 80u. Therefore, the cerebellum was not scanned at 7T. TE was
set to 21 ms due to the shorter T2* relaxation at higher field strengths, the other
parameters were identical to those at 3T.

Experimental setup. The experiment was separated into two parts. The first part
served to acquire data to define an individual region of interest (ROI) for
sensorimotor activation and the individual maximum BOLD signal required for the
calibration procedure. For this functional localizer the volunteers performed a
sequential finger tapping task (left hand, five blocks of twelve scans each, 2 scans rest,
2 scans finger tapping, 8 scans rest). The activated region was determined with a so-
called growing-window or incremental approach47 after applying a 3 mm Gaussian
kernel to smooth the data. The baseline was determined from run 1 to 3 while the
signal was analyzed using a correlation analysis from run 6 to 8 to include the
maximum of the hemodynamic response function30. The activated brain areas were
shown to the experiment supervisor in real-time allowing an immediate quality
check. The maximum detected BOLD signal within each individual ROI (which was
assumed to reflect the maximum achievable activation) was set to 100%.This
maximum signal served as the reference signal for calibrating the signals in the
subsequent experiments. After the functional localizer was finished, the selected
activated region was stored as a reference ROI for the subsequent experiments.

In the following part (main experiment), which was performed immediately after
the functional localizer, BCI functionality was applied simultaneously on both sites
for each volunteer. The volunteers had to control the location of a virtual object by
varying the degree of their motor activation. Two target regions were presented, and
the volunteer was instructed to vary the motor activation between a high and a low
level in order to place the virtual object in an upper (‘‘U’’) or a lower (‘‘L’’) location
respectively (Figure 5): if the actual activation was within 30% to 60% of the individual
maximum activation of the prior functional localizer the current activation was
defined as a weak activation (‘‘L’’). To avoid a strategy where the subjects would just
stop finger tapping when asked to reproduce the low motor activation, mean
activation levels below 30% were rated as insufficient, and the task was defined as not
fulfilled. If more than 60% of the maximum activation was reached, current activation
was defined as a strong activation (‘‘U’’). Using these relative measures, different
signal strengths of two scanners and individual differences could be taken into
account.

The main experiment consisted of three tasks to be performed in a block design (see
Fig. 5). Tasks were distributed in a random order with a total of 20 runs for each task.
Both target regions had to be reached a total of 30 times, i.e., ten times for each task
(‘single’, ‘cooperation’, ‘competition’). The baseline was determined from the first five
scans before start of finger tapping. The real-time analysis of the BOLD signal was
performed for 6 sec, starting immediately after finger tapping thus encompassing the
main parts of the positive BOLD signal. After the rest phase, the result was displayed
for 2 sec. The current activation level was determined using a sliding-window tech-
nique encompassing only the actual baseline and the BOLD signal48.

To determine which brain networks were activated in each individual when con-
trolling the sensorimotor activation, each subject had to reach the current target
region independent of the activation of the other participant (‘single’ task).
Accordingly, each volunteer saw only his own sphere. A reward was assigned when
the subject reached the required activation strength determined by the target position
of the sphere. In two more tasks, the reward depended additionally on the activation
of the partner (social tasks). In the ‘‘cooperation’’ task the reward was assigned only to
each participant when both reached the same position (in the upper or lower part,
similar to the single task) while in the ‘‘competition’’ task the partner who reached the
requested position most accurately received the reward.

The focus of this study is validation of the calibration procedure which uses only
the BOLD signals acquired during the ‘single’ condition. The signals serve as a
reference for the capability for each individual when controlling an object by adapting
the activation of the motor cortex as additional effects due to mutual information flow
or interpersonal dependencies are excluded. The social tasks will introduce additional
features in brain activation patterns, which will be discussed in a forthcoming
publication.

The average time for reconstruction and transmission of data to each of the stat-
istics computers (S1, S2) was 467 ms 6 39 ms. The average response time of the
internet connection was below 1 ms. During a TR of 2000 ms only the few values
representing the mean activation of the selected ROI but not the whole image data set
had to be transmitted. Average computation time for data processing was 1447 ms 6

226 ms which was also well within one TR (2000 ms).

Offline data Analysis. To check which brain regions were activated in addition to the
contralateral sensorimotor cortex used for online analysis, an offline analysis of both
the calibration and main experiment was performed using BrainVoyager QX 2.4.149.
The analysis included slice scan-time correction, 3D motion correction and a spatial
smoothing with a 3 mm FWHM Gaussian kernel. Functional images were co-
registered to the anatomical volume data set, and normalized into Talairach space
using the standard landmark method50. Activation was estimated by convolving the
vectors of onset with the canonical HRF. The resulting general linear model (GLM)
was corrected for serial correlation using a second-order autoregressive model AR(2).
For each subject, first-level analyses were performed for the weak and strong tapping
condition. In addition, a random effects analysis (RFX) of the group data (collapsed
over both tapping conditions) was applied.

To determine whether there was a significant difference between cortical activation
in the weak and the strong tapping conditions, the BOLD signals of clusters within the
SMC were extracted offline using the MATLAB toolbox NeuroElf 0.9c (Jochen
Weber, http://www.neuroelf.net, accessed 10/13/2014). For comparison with the real-
time data analysis, BOLD signals of scan 8 to 10 of each block were averaged and used
for further statistical analysis as here the BOLD signal was expected to exhibit its
maximum amplitude (Figure 5, blue activation block). The difference between weak
and strong tapping was estimated using a mixed model to allow for the correlation of
the data. All statistical analyses were conducted using SAS (SAS/STATH 9.2, SAS
Institute Inc.).
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