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Abstract
While many lessons have been learned from the spatial analysis of cancer, there are several caveats
that apply to many, if not all such analyses. As "flies in the ointment", these can substantially detract
from a spatial analysis, and if not accounted for, can lead to weakened and erroneous conclusions.
This paper discusses several assumptions and limitations of spatial analysis, identifies problems of
scientific inference, and concludes with potential solutions and future directions.

Introduction
'Dead flies cause the ointment of the apothecary to send
forth a stinking savor; so doth a little folly him that is in
reputation for wisdom and honour.'

Ecclesiastes 10:1

The term "flies in the ointment" is occasionally used to
describe minor defects in some endeavor. But this quote
from Ecclesiastes has a much wider scope than a few dead
flies – it is the ointment itself that stinks, and the entire
endeavor is thereby ruined. By analogy, there are several
caveats that apply to many, if not all spatial analyses of
cancer data. As "flies in the ointment", these caveats can
substantially detract from a spatial analysis, and if not
accounted or otherwise controlled for, can lead to weak-
ened or erroneous conclusions. Several of these caveats
have been identified in the papers in this collection; oth-
ers have yet to be described. This paper brings them
together in one location, where they are discussed under
three broad headings.

• Problems of inference;

• Assumptions and limitations; and

• Potential solutions and future directions.

Problems of inference: what can we learn from 
spatial analysis?
This section provides an overview of the scientific method
as applied to spatial data, limitations inherent in the study
of spatial systems, including those on inference, spatial
methods and data, and finally, limitations imposed on
spatial analyses of human health data by society and the
context from which health data arise.

Overview of the scientific method
The Classic Paradigm of Karl Popper. Popper [1] posed an
approach to gaining knowledge from bodies of data that
has come to be known as the "Scientific Method".
Although his approach has been criticized as not necessar-
ily being applicable to how scientific knowledge advances
in practice, with fortuitous circumstance and flashes of
insight (as occurred in the discovery of penicillin) receiv-
ing no mention, Popper's philosophy is useful because it
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incorporates inductive and deductive reasoning, and uses
falsifiable predictions based on clearly stated hypotheses.

The useful lessons from Popper are first, that hypotheses
and theories emerge from patterns and relationships in a
set of observations; second, that the validity of the
hypotheses is evaluated by distilling falsifiable predic-
tions from them; third, that experiments designed to test
these falsifiable predictions result in new data collected
specifically to evaluate the predictions (these are designed
experiments); and fourth, in order to avoid a tautology
predictions cannot be tested on the data that gave rise to
them. It is important to realize that useful predictions are
falsifiable ones. Popper's approach can never prove a the-
ory or hypothesis to be true. Rather, a body of evidence is
collected from a series of experiments designed to test spe-
cific predictions, thereby increasing confidence that the
hypothesis on which the predictions are based is true.
Popper thus saw science as advancing much in the way
used by Sir Arthur Conan Doyle's fictitious character Sher-
lock Holmes: If the alternative explanations are dis-
proven, then the remaining explanation, no matter how
unlikely, must be true.

Recognizing this, Platt [2], proposed what he called
"Strong Inference". Strong Inference begins with a set of
hypotheses regarding observed phenomenon. The
researcher then designs a series of critical experiments to
systematically test each hypothesis. Platt recognized that
the set of alternative hypotheses may change during the
course of the experimental process, and Strong Inference
is thus more closely aligned with the experimental process
as it is used in practice.

Limitations inherent in the study of spatial systems
Spatial systems typically are large, and the spatial phe-
nomena of interest in public health (e.g. cancer mortality
rates, risk behaviors, demographic characteristics, and
environmental exposures) are often difficult to observe
directly and/or change slowly through time. This makes it
difficult, if not impossible, to conduct designed experi-
ments, and in any event there are substantial ethical con-
siderations with experimentation on human populations.
The spatial health researcher must often work with
encountered data that have been collected for some pur-
pose other than her specific study. In some instances the
data are sampled in a systematic way from a spatially dis-
tributed population. But in each of these instances spatial
analysis plays a critical role in identifying spatial and tem-
poral relationships in population-level data, giving rise to
hypotheses that can then be evaluated on additional data
to be collected from the same system or on data from
analogous spatial systems (spatial controls).

Under both Popper's and Platt's inference frameworks,
study designs that attempt to confirm rather than reject
hypotheses are not particularly useful. Repeating spatial
studies to search for confirmation is less useful than
undertaking analyses that are designed specifically to
reject scientifically meaningful alternative hypotheses. But
because it is so difficult to manipulate spatial systems, it
can be difficult to design and undertake the critical analyt-
ical experiments that test falsifiable predictions.

Limitations on inference
The spatial analyst's tool box includes techniques for
quantifying spatial patterns, modeling risk surfaces, and
assessing relationships between cancer outcomes and
potential exposures. These techniques allow researchers to
determine whether observed spatial patterns are statisti-
cally significant, to identify the locations of clusters,
hotspots and cool spots, to construct maps showing
excesses and deficits relative to a risk model, and to quan-
tify association between two spatial variables (such as can-
cer incidence and putative environmental exposures).
Although these techniques can be quantitatively power-
ful, the inferences that can be drawn from them have
attendant limitations. We now consider three limitations
on the inferences that can be reached from analyses (1) of
spatial patterns, (2) of spatial associations, and (3) by
using randomization (Monte Carlo)-based techniques.

Pattern does not demonstrate causation. As noted by Waller
and Jacquez [3] tests for spatial pattern employ alternative
hypotheses of two types; the omnibus "not the null
hypothesis" or more specific alternatives. Tests with spe-
cific alternatives include focused tests [4] that are sensitive
to monotonically decreasing risk as distance from a puta-
tive exposure source (the focus) increases. Acceptance of
either of these types (the omnibus or a more specific alter-
native) only demonstrates that some spatial pattern exists,
and does not implicate a cause. When the alternative
hypothesis is highly specific, as for a focused test, it may
correspond to a potential causal mechanism. For example,
Waller et al [5] employed focused tests to explore a possi-
ble association between leukemia and lymphoma in New
York State and exposure to TCE injected into ground water
at industrial sites. While the score test employed was
highly significant, demonstrating increased risk near sev-
eral ground water injection wells, this finding did not
demonstrate a causal relationship, or even that persons
close to the injection wells had increased exposure to TCE.
The existence of a spatial pattern alone cannot demon-
strate nor prove a causal mechanism.

Association is not causation. The spatial analyst has an
increasingly diverse suite of tools for documenting and
quantifying associations between the spatial patterns of
two or more variables. These techniques include cross-cor-
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relograms and related measures [6,7]., the bivariate LISA
[8,9]., boundary overlap [10], polygon area overlap [11],
as well as other approaches. Not intended to replace tradi-
tional statistical methods for association (such as the
Pearson product-moment correlation), these methods
assess the extent to which the spatial patterns in two vari-
ables (such as lung cancer incidence and ambient air toxic
concentrations, see for example Jacquez and Greiling
2003) [12] coincide or "match up". But, as for traditional
correlation techniques, a demonstration of spatial associ-
ation does not demonstrate causality.

Randomization limits inference to the data set. Many disease
cluster techniques and approaches to spatial modeling
employ randomization, either based on sampling algo-
rithms from spatial models (e.g. the Bernoulli model for
the locations of cases and controls; the heterogeneous
Poisson model for area-based cluster tests, and so on) or
on distributional assumptions of randomization (e.g. the
randomization hypothesis for Moran's I). Traditional sta-
tistics based on distribution theory (e.g. student's test,
ANOVA etc) are able to make inferences regarding the
"Universe" from which the population sample was drawn.
Inferences for methods based on randomization, how-
ever, are limited only to the data set to which they were
applied. This is one of the critical distinctions between
methods based on distribution theory and "distribution
free" techniques based on re-sampling a data set to con-
struct empirical distributions [13].

Limitations imposed by methods
All methods have attendant limitations, and this is true as
well for techniques in the spatial analyst's toolbox. We
now consider limitations imposed by spatial methods
including the amount of knowledge required to use them,
the selection and specification of spatial weights, and the
subjectivity of the methods themselves.

Amount of knowledge Different analysis approaches require
different amounts of knowledge. A distinction often is
made between exploratory analysis, models of data, and
models of process. When working with spatial data, a cor-
responding distinction can be made between Exploratory
Spatial Data Analysis (ESDA), spatial data models, and
spatial process models. Each of these (ESDA, models of
data, and models of process) has different inferential/pre-
dictive abilities, and requires different amounts of data
and knowledge of the spatial system itself. ESDA quanti-
fies spatial pattern, models of data are used for interpola-
tion and prediction, and models of process are used for
prediction and the assessment of proposed perturbations
to the spatial system. ESDA (including techniques such as
autocorrelation analysis and disease clustering) aims to
identify spatial patterns and to generate hypotheses that
might explain those patterns. It requires relatively little

knowledge of the system being studied. In fact, the objec-
tive of exploratory techniques is to explore and quantify
relationships in order to increase the analyst's knowledge
of the spatial system. Models of data (such as spatial
regression, geostatistical models, risk surface models, and
Bayesian techniques) require data of sufficient quality to
estimate model parameters, and that the researcher pos-
sesses sufficient knowledge to be able to identify depend-
ent and independent variables, and their relevant
parameters. However the forms of these models do not
convey any information regarding causal relationships.
Models of process require a detailed understanding of the
mechanics of the system being studied, and incorporate
this understanding directly into the model itself. Spatial
compartmental models that incorporate population and
disease processes such as birth, death, migration and risk
have been applied to model infectious diseases [14,15].
This kind of model has also been used to model the trans-
port and fate of mutagenic compounds that are known
carcinogens (e.g. [16]). But to date there are few if any
process models that link population-level cancer out-
comes to environmental exposures.

Spatial weights Each of the 3 types of approaches outlined
above require the use and specification of spatial relation-
ships among the objects (e.g. individuals, places of resi-
dence, areas of spatial support) being studied. In ESDA
these are referred to as spatial weights. In models of data
these may be called kriging weights (in geostatistics),
autoregressive parameters (in spatial regression), or spa-
tial filters (in Bayesian smoothing). In models of process
spatial relationships are quantified to correspond to the
underlying mechanics of the system, for example in an
infection model, by how likely pairs of nearby susceptible
and infectious individuals are to contact one another. As
one moves from ESDA to models of process, the methods
used for quantifying spatial relationships become increas-
ingly meaningful in terms of the spatial system being
studied.

For ESDA spatial weights model the spatial disease pattern (the
alternative hypothesis). The selection and specification of
spatial weights in ESDA is undertaken in the most "knowl-
edge poor" circumstance, yet is critical since these weights
quantify the alternative hypothesis of the pattern recogni-
tion statistic. For area-based data, commonly used spatial
weights include first and higher order adjacencies, and
functions of common border length. Some techniques
evaluate nearest-neighbor and adjacency relationships on
the centroids of areas, an approach that disposes of highly
relevant geographic information (such as common bor-
ders) readily obtainable from polygon geometry. More
advanced and realistic techniques are now being devel-
oped that account, not only for geographic relationships,
but also for co-information such as population size [17].
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But in general many of the spatial weights in common use
are geographically crude (e.g. employ area centroids) and
based entirely on Euclidean spatial relationships that
ignore relevant co-information such as population size.
Later in this paper we discuss the use of spatial weights to
represent exposure mechanisms.

Subjectivity Most researchers recognize that all analytical
methods impose a model, of one type or another, on the
data and are therefore subjective. For example, the prod-
uct-moment correlation coefficient imposes a linear
model and is thus sensitive to linear relationships in
bivariate data. Similarly, all techniques for spatial pattern
analysis and modeling are founded on assumptions and
are sensitive to or descriptive of different aspects of spatial
pattern. For example, reliance on a single cluster statistic
can only reveal those disease patterns that are consistent
with that test's alternative hypothesis (e.g. circular or ellip-
tical clusters for spatial scan statistics). This has prompted
some researchers to employ a battery of spatial pattern
methods to better describe different aspects of the mor-
phology of geographic patterns in cancer incidence [12].
While employing a variety of techniques doesn't remove
subjectivity, it does illuminate different aspects of spatial
patterns, thereby providing a richer and more accurate
description of geographic variation.

Limitations imposed by data
The spatial data used in many geographic studies of cancer
have inherent limitations attributable to granularity, spa-
tial and temporal mismatch, under-reporting, misdiagno-
sis, the use of location as an exposure surrogate, human
mobility, location and attribute uncertainty, static repre-
sentation, as well as topological errors that result in erro-
neous spatial weights.

Granularity has to do with the spatial resolution of the
data. For human health applications, death certificates are
often georeferenced to location of place of residence at
time of diagnosis or death. Point-based methods then use
these coordinates directly. Area-based methods require
the point locations to be aggregated to provide raw or
adjusted rates within areas, and these areas might be cen-
sus units, metropolitan statistical areas, counties, states
and so forth. Because of the need to protect patient pri-
vacy, publicly available data are often aggregated to a suf-
ficient extent to prevent the disclosure or reconstruction
of patient identity. So, for example, point maps displaying
patient place-of-residence typically cannot be disclosed by
researchers and public health agencies. But due to the
Modifiable Areal Unit Problem (MAUP) how these data
are aggregated can dramatically impact analysis results,
and incompatible geographies (e.g. census vs. ZIP Code)
make tests for association problematic [18]. The ability to
detect and model spatial pattern depends on granularity.

One cannot, for example, detect clusters of counties using
health data that is aggregated at the state-level. It is worth
noting, however, that methods of spatial unmixing for
raster-based data have been developed that support the
construction of higher resolution maps from lower resolu-
tion information [19]. Unmixing approaches for disaggre-
gating census and spatially aggregated health data that
will allow spatial analyses using a common spatial sup-
port across variables are now available [20].

Spatial and temporal mismatch Cancer data, information on
covariates and on environmental exposures typically do
not "match up" in space or in time. For example, Jacquez
and Greiling [12] analyzed lung cancer data on Long
Island, and contrasted spatial patterns (geographic
boundaries) with data on airborne toxics from EPA's
(Environmental Protection Agency) National Air Toxics
Assessment (NATA) program. Mismatch occurred
between the cancer and air toxics data both in space (lung
cancer incidence was reported at ZIP+4 level; air toxics
data for census block groups) and in time (lung cancer
incidence was reported for 1994–97; the air toxics data
was based on emissions reported during 1996). The prob-
lem of spatial mismatch was solved by using spatial tests
for association (boundary overlap) that account for the
differing geographies within the randomization proce-
dure. Temporal mismatch was problematic because
latency for lung cancer is on the order of 15–20 years, and
air toxics information could not be reconstructed over
that time span. Thus while they found a positive geo-
graphic association between the air toxics and lung cancer
incidence, the substantial temporal mismatch means a
more detailed exposure reconstruction is required before
any conclusions can be reached.

Location and attribute uncertainty Uncertainty in spatial
health data occurs in two data components: the locations
(e.g. coordinates of place of residence) and attributes (the
values recorded at the locations). Also referred to as posi-
tional uncertainty, the impacts of location uncertainty on
spatial pattern analysis and modeling have been well doc-
umented in the geographical and natural resource sci-
ences [21,22]. In the health sciences, Jacquez and Waller
[23] evaluated the impacts of location uncertainty on
three tests for space-time interaction, and found the Man-
tel, Knox and k-nn tests to differ in their sensitivity to loca-
tion uncertainty, with the k-nn test less likely to report
false negatives as uncertainty increased. Location uncer-
tainty can be modeled using several approaches, includ-
ing lists of alternative locations for point-based data, and
polygon, population, and risk-based models for area-
based data [24]. Nonetheless, many spatial analyses of
cancer assume locations are known with 100% certainty
and that the spatial weights calculated from those loca-
tions are precise and without error in either representation
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(e.g. is it reasonable to use place of residence to represent
human activity patterns?) or measurement.

Location as an exposure surrogate Location uncertainty has
different sources, one of which is human mobility.
Attempts at describing such mobility that transcend the
use of place-of-residence to represent location include
daily activity spaces[25,26], and constructs such as time
geography and pathogenic paths [27-29]. But while
almost all researchers acknowledge that many causative
exposures occur outside of the home, most spatial analy-
ses still rely on place-of-residence to georeference loca-
tions of health events. When might place of residence
reasonably be used to georeference health data? For infec-
tious diseases exposure events require contact between
infected and susceptible individuals of sufficient duration
to allow the pathogen to pass from one to the other. The
exposure route varies from one type of pathogen to
another, and a given pathogen may have several exposure
mechanisms. These includes fecal-oral (e.g. the Norberg
virus that recently has been the bane of cruise ships), inti-
mate sexual contact (e.g. STD's and HIV), air-borne drop-
lets (e.g. tuberculosis), and contaminated foods (e.g.
hepatitis), among other mechanisms. Zoonotic and vec-
tor-borne diseases involve an animal host or reservoir,
and exposure mechanisms may include animal-human as
well as human to human routes. Spatial weights for such
exposure routes may incorporate measures of geographic
proximity, but also should be constructed to reflect the
probability of exposure between pairs of individuals (for
individual-based models) and for groups (for population-
based models). Although exposure routes for infectious
diseases are numerous and often quite complex, exposure
reconstruction for cancers with long latency and for which
mechanisms of carcinogenesis are only partially known is
even more problematic.

Use of place-of-residence in spatial analyses of cancer, and cal-
culating purely spatial weights from those locations, seems
appropriate only when individuals have resided at that location
for as long or longer than the latency period, and when poten-
tial causative exposures occur either in the household or in the
surrounding neighborhood. For what cancers might causa-
tive exposures occur in the home? Lung cancers attributa-
ble to household radon are a good example, as well as
cancers caused by combustion by-products from cooking
and second-hand smoke. Cancers of childhood reasona-
bly may use place-of-residence as an exposure surrogate
since the latency period is short and children tend to stay
near the home. For other cancers and at larger scales of
aggregation, such as census and ZIP Code geography,
human mobility, especially in commuter communities,
poses a substantial challenge to spatial analysis of cancer,
and the finding of a geographic cluster can thus be diffi-
cult to interpret when place of residence is used to repre-

sent locations of individuals. Recently, Meliker et al [30]
used the constructs of time geography within a space-time
information system to undertake the space-time modeling
of individual-level exposure to arsenic. They were able to
reconstruct individual arsenic exposure based on specific
assumptions regarding occupational exposures and the
ingestion of arsenic in drinking water. The time-geo-
graphic approach appears to provide a robust quantitative
foundation for exposure reconstruction that is not possi-
ble when a single location is used to represent an individ-
ual's location in space-time.

Under reporting and misdiagnosis: Uncertainty in the
attributes (e.g. case identifiers and the numerators in inci-
dence and mortality rates) arises from under reporting
and misdiagnosis. Under reporting is especially an issue
when working with data that encompasses health districts
with different recording and reporting practices. Because
states maintain their own cancer registries, differences in
reporting practices can pose a special problem for data sets
that cross state boundaries. For most cancers, diagnostic
accuracy decreases as one works with retrospective data
when the physician's diagnostic arsenal was not as robust.
In addition, classifications of disease change through
time, as when the International Classification of Disease
(ICD) code is updated. When either differences in report-
ing and diagnosis are present, once cannot preclude the
possibility that observed spatial variation in cancer rates is
attributable to these causes.

Static view: GIS typically represent the world as "snap-
shots" in time and do not effectively represent temporal
change [31]. The importance of time in health geography
is well recognized, since almost all geographic disease pat-
terns are the result of space-time processes [32]. There
thus are substantial limitations that arise from using con-
ventional GIS technology, especially for the mapping, rep-
resentation, and analysis of health, socioeconomic, and
environmental information for populations that are dis-
persed or mobile and in which space-time relationships
are dynamic. Advances in space-time information system
technology address this deficiency using space-time coor-
dinates and object representations that include motion
and morphing, as well as attribute change models [30].

Polygons, Topology and computational geometry: The spatial
analysis of area-based data requires the calculation of sta-
tistics such as polygon contiguity, length of common
boundaries, areas and centroids. Calculation of these sta-
tistics employs methods of computational geometry that
assume the polygons are correctly represented in the
Euclidean plane. These assumptions usually are that poly-
gons are closed (e.g. Jordan curves), and are not folded or
joined together at single points to form "bow ties". When
these assumptions are not met, techniques such as poly-
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gon triangulation will either fail or yield incorrect results,
and resulting statistics, including placement of area cen-
troids and spatial weights, will be wrong. Despite the
importance of this problem, most spatial analysis soft-
ware does not check shapefiles (which lack topological
information) to determine whether the polygons are top-
ologically well-conditioned. While this may seem an
arcane problem, we have discovered in practice that a sub-
stantial proportion of the shapefiles shared among
researchers for use in spatial analysis are flawed to a suffi-
cient extent so that the resulting spatial weights are incor-
rect. One example is the primary care service area file
http://pcsa.hrsa.gov/ that has 60 of 6000 polygons self
intersecting, a 1% error rate.

Limitations imposed by society and context
Limitations on inference in cluster investigations. Many dis-
ease cluster investigations are initiated by reports from
concerned citizens, and the attendant increase in the
probability of false positives due to such preselection bias
is well known [33,44]. Others have pointed out that the
investigation of preselected clusters is not a scientifically
valid endeavor [34], because of the tautology of testing
hypotheses on the data from which they emerged, as well
as other reasons. Several authors [35] have noted limita-
tions of the hypothesis-testing framework relative to a
more flexible spatial modeling approach. Nonetheless, it
is the mission of public health departments to respond to
public health concerns [36], and cluster investigations are
likely to continue to be undertaken within a hypothesis
testing framework such as that advocated by the Centers
for Disease Control [37].

Limitations arising from lack of communication with commu-
nity stakeholders Within public health departments spatial
analyses of cancer data are best undertaken by teams com-
prised of a community stakeholder (e.g. community end-
user of the study results), a political decision maker whose
constituency is the subject of analysis, a public health
practitioner capable of putting in place an intervention
should the results be positive, a spatial analyst with a
detailed understanding of the spatial analytic methods,
and a GIS specialist to manage data and undertake map-
ping tasks. Such a team effort is most likely to translate
analytical results into community action [43].

Information democracy vs. protection of privacy Efforts such as
the National Spatial Data Infrastructure project are lead-
ing to the advent of data portals designed specifically to
facilitate sharing and dissemination of spatial informa-
tion. The DataWeb http://www.TheDataWeb.org is a net-
work of online data libraries created in a collaboration
between the CDC and the US Census Bureau. The libraries
consist of both microdata and aggregate data, and include
census, economic, health, income and unemployment,

population, labor, cancer, crime, transportation, family
dynamics, vital statistics, and other georeferenced data.
Information in DataWeb is accessed through DataFerret,
an application that prepares data sets for the user to
download. It allows users to select a databasket of varia-
bles and then recode those variables as needed. Users
develop and customize data tables and download them to
their desktop (download formats include ASCII, SAS,
SPSS, and Excel/Access).

Launched on June 30th, 2003, the Geospatial One Stop
program http://www.geodata.gov is a web-based portal
for one-stop access to maps, data and other geospatial
services that simplifies access to geospatial data collected
by government agencies and other organizations. Geo-
data.gov is accelerating development and implementation
of the National Spatial Data Infrastructure (NSDI) and
includes state, local and tribal governments along with
the private sector and academia as data providers. Geo-
data.gov offers access to thousands of data bases in 17 cat-
egories.

The promise of these and like efforts is an information
democracy in which all citizens have ready access to infor-
mation describing health, the environment, services,
resources, the economy and other data, both for their
immediate neighborhood as well as larger areas. While
freedom of information is arguably one of the pillars of a
democratic society, the need to protect individual privacy
is a substantial countervailing consideration. There are
other important ethical considerations with the sharing of
spatial data of very high resolution. For example, satellite
imagery is now publicly available at 1 m and sub 1 meter
spatial resolution, and hyperspectral imagery at compara-
ble resolution will soon be available. From such imagery
it will be possible to identify and classify microhabitat for
disease vectors [38], and even to map the transport and
fate of heavy metals in rivers and streams [39]. But such
information also will allow even small pockets of micro-
habitat of economically valuable species to be targeted for
exploitation (for example, in the U.S. there is a black mar-
ket in native endangered frogs, turtles, snakes and lizards).
How will the need for spatial data sharing consistent with
an information democracy be balanced with individual
rights to privacy and related ethical considerations?

Assumptions and limitations of spatial analysis of 
cancer data
Every study is based on assumptions, and ideally these are
made explicit when the results are reported. This section
describes several assumptions and considerations typical
of spatial analyses of cancer, including ability to infer cau-
sality, the ecologic fallacy, and the role of higher-order
interactions. This section concludes with a discussion of
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the lack of utility of the word "cluster" as a spatial pattern
descriptor.

Power to disprove but not confirm causality
Earlier we pointed out than an important limitation of
spatial analyses of cancer data is that demonstration of
significant geographic patterns and associations is never
sufficient to demonstrate causality. This is particularly
true of cancers because of long latencies, the substantial
difficulties posed by exposure reconstruction, and because
of our lack of a full our understanding of the environmen-
tal bases of carcinogenesis. However, the exploration and
modeling of spatial cancer patterns can disprove predic-
tions based on causal hypotheses that are expressed in
spatial terms. For example, hypothesized exposure mech-
anisms that involve proximity to point sources, or for
which attributed risks vary geographically, can be evalu-
ated systematically using spatial analytic approaches.

Ecologic fallacy, and arbitrary spatial partitions
Studies of geographic clusters and cancer data must
include consideration of the potentially misleading
aspects of ecologic studies. Even ZIP Codes and census
tracts can be considered coarse spatial units for aggregat-
ing cancer cases and for estimating exposures, and expo-
sure and health data often are not available at the same
resolution. Exposure data often are reported at spatial lev-
els, such as census tracts, that partition the geography in a
manner inappropriate for the exposure process. Other
spatial divisions may be better descriptors of environmen-
tal exposure, including, for example, watersheds, aquifers,
local public water systems for water-borne substances, or
"windsheds" for airborne substances. But because of pri-
vacy concerns for the patients and the limitations on exist-
ing environmental data, the data used often are simply the
data that are available. Every data collection protocol has
a design. Is it appropriate to use data for purposes other
than for which they were collected? ZIP Code, census tract
or place of residence at diagnosis is an inadequate descrip-
tor of an individual's location during the development of
cancer. For example, using the ZIP Code of residence
assumes the patient lived within that ZIP Code area dur-
ing the period of time required to develop cancer follow-
ing exposure to an environmental compound that
influenced cancer risk. Hence the degree of exposure to
the potential risk factors over a multi-year period has been
estimated for each study subject based on their place of
residence, aggregated at the census tract level. This
assumption is clearly tenuous given the mobility of
human populations and the arbitrariness of the spatial
partition for the environmental data [45].

In the 1980's many epidemiologists considered ecologic
studies likely to lead to erroneous conclusions, and that
the most accurate findings arise from individual-level

data. Since the late 1990's, however, the potential of add-
ing "contextual variables" to multi-level analyses has pro-
vided a sound methodological mechanism for combining
individual-level data with higher geographical contextual
data. Nonetheless, issues regarding the definition of spa-
tial partitions, patient privacy, and the appropriate use of
data still pertain.

Higher order interactions
Especially for complex relationships (such as those
between environment, genetics and cancer), apparent
bivariate associations may be driven by multivariate inter-
actions that are not directly quantified by the two varia-
bles under scrutiny. For example, elevated air pollution
may be associated with lower housing prices (because of
proximity to industrial sites), which in turn attracts poorer
households with higher smoking rates. In this instance, an
observed bivariate correlation between air pollution and
cancer would actually overestimate the degree of associa-
tion between these two variables. But because of their
complexity, higher order multivariate interactions are dif-
ficult to quantify in spatial cancer studies.

The term "cluster" has little meaning
The term "cluster" by and of itself is so generic as to be
almost meaningless for describing spatial variation in can-
cers. What is a cluster? Is it an excess of cancer, and, if so,
how much extra is considered an excess? Do we use likeli-
hood statistics to find an excess, or should we use some
other statistical framework? Are we looking globally to
identify clusters anywhere in the study area, or do we
define patterns locally, or relative to a putative source?
These kinds of questions suggest that the declaration of a
"cluster" is meaningless without a precise description of
the statistical test being employed and the patterns to
which the test it is sensitive. Because different clustering
techniques are sensitive to different aspects of cluster mor-
phology, analytic approaches that employ several pattern
recognition methods can be more informative, especially
in the ESDA phase of an analysis, with the caveat that the
multiple tests will need to be accounted for should accu-
rate estimates of P-values be required. Analyses that rely
on just one kind of cluster test are incomplete in the sense
that they will have power to detect only one type of clus-
ter. Cancer morbidity and mortality evinces rich geo-
graphic variation, and it thus can make sense to employ a
variety of techniques to more fully describe relevant
aspects of spatial pattern.

The future
This last section discusses salient trends and methodolog-
ical challenges in the changing landscape of the spatial
analysis of cancer. It summarizes expected improvements
in cancer data, exposure measures, and genetic informa-
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tion, and concludes with some anticipated methodologi-
cal and technological challenges for the next decade.

Improved availability of cancer data
Recent trends in cancer registries are resulting in improved
reporting and linking of spatially referenced data,
although there is substantial variation in quality from
state to state. There is a trend towards increased availabil-
ity of aggregated cancer statistics over the World Wide
Web. Not withstanding the inherent limitations of ZIP
Code data, a good exemplar of improved availability is
New York State, which is publishing online atlases of can-
cer incidence at ZIP Code level geography. A second exam-
ple is the National Cancer Mortality Atlas published by
the National Cancer Institute. New York State also makes
available findings from spatial analyses of the cancer inci-
dence data using the spatial scan statistic [40], and the
National Cancer Atlas provides a narrative interpretation
of the cancer mortality patterns and their potential causes.
In coming months and years the quality of and speed with
which cancer incidence and mortality data are made avail-
able is expected to improve, with some of these benefits
attributable to improved Public Health Surveillance infra-
structure currently being funded by bioterrorism and first
responder initiatives.

Improved exposure and population data
Efforts cited earlier in this paper such as the CDC's
dataweb and geospatial onestop are making georefer-
enced information on socioeconomic, census, environ-
mental, remote sensing and other data readily available
for downloading over the web. In remote sensing, the
trend is towards higher spatial, spectral and temporal res-
olutions which together hold great promise for improving
environmental risk assessment, habitat classification, and
change detection [41]. Modeling efforts by organizations
such as the Environmental Protection Agency are integrat-
ing exposure models with spatial models of air-borne and
other toxins, incorporating both point and non-point
source information. Coupled with improved data on can-
cer health outcomes, enhanced exposure estimates, along
with detailed descriptions of the affected populations,
hold the promise of more detailed, accurate and predic-
tive spatial modeling of cancer outcomes. However, this
promise can only be realized when the data obtained
from disparate sources is temporally matched, aggregated
in an appropriate fashion, and collected at compatible
geographic granularities.

Improved genetic data
The recent revolution in gene sequencing, bioinformatics
and proteomics is making possible a detailed understand-
ing of genetic predispositions as well as the cascade of
genetic changes that cause normal cells to turn into cancer
cells. Research currently underway at the NCI is seeking to

elucidate gene-environment interactions and how these
interactions can lead to cancer, but in general spatial anal-
ysis has contributed little to the study of gene-environ-
ment interactions. In fact, such studies would require
population-level information on genetic profiles and
biomarkers sufficient to calculate human genetic dis-
tances, and this kind of data are not yet available. Some
research has conducted on European populations to
explore relationships between genetic distances calculated
from blood polymorphisms and differences in cancer
mortality [42]. But to fully exploit the potential of spatial
analysis for the study of gene-environment interactions,
more detailed data on the genetic profiles of human pop-
ulations in the United States is needed.

Improved technology
As noted earlier, the static view of GIS makes it difficult to
represent human mobility and temporal change in cancer,
environmental and socioeconomic data. GIS typically are
based on spatial data models that apply to static spatial
systems such as those found in geology, forestry, and
physical geography. However, this purely spatial data
model inadequately characterizes the "what, where,
when" needed to effectively analyze cancer data and
health-environment relationships. GIS built on spatial,
rather than space-time data structures, cannot deal readily
with space-time georeferencing nor space-time queries
[31], and instead are best suited for analyzing static sys-
tems. Loytonen [32] and others have called for a "higher-
dimensional GIS" (a Space-Time Information System or
STIS) to better represent space-time dynamics. STIS pro-
vide a rich framework for the generation and evaluation of
epidemiologic hypotheses founded on the exploration of
space-time disease patterns in relation to their putative
causes and covariates [9]. The advent of mobile comput-
ing and location-based services provide substantial
opportunities for increasing our understanding of human
activity patterns, and an important challenge for the spa-
tial analysis of cancer will be to more fully exploit the tem-
poral dimension as this information becomes more
readily available.

The methodological challenge
In the near future we will need techniques and methods
that take full advantage of the burgeoning data stream
while maintaining the values and ethos of an open, dem-
ocratic society. Information detailing place of death,
genetic makeup, socioeconomic status, product use, and
lifestyle indicators will be available at unprecedented spa-
tial and temporal resolution. Using these data, substantial
benefits to society are expected to accrue from the rapid
identification of cancers and other health risks. Syndro-
mic and health surveillance systems are now being
deployed that could make it possible to rapidly identify
local increases in cancer risk, and even relate them to spa-
Page 8 of 10
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tial patterns and changes in environmental data thought
linked to causative exposures. But the benefits of analyz-
ing such high spatial and temporal resolution data must
be balanced against the need to maintain individual pri-
vacy, while at the same time providing equitable informa-
tion access to all strata of society. Certain aspects of this
problem can be met by the development of appropriate
analysis techniques. Coming up with these techniques
and applying them in a responsible fashion is a substan-
tial challenge that will require the cooperation of
researchers, funding agency program managers, and legis-
lators.

Note
The author is President of a commercial company
(BioMedware) that develops software for the exploratory
spatial and temporal analysis of health and environmen-
tal data.
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