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Abstract

Central blood pressure (cBP) is a highly prognostic cardiovascular (CV) risk factor whose accurate, invasive assessment is
costly and carries risks to patients. We developed and assessed novel algorithms for estimating cBP from noninvasive aortic
hemodynamic data and a peripheral blood pressure measurement. These algorithms were created using three blood flow
models: the two- and three-element Windkessel (0-D) models and a one-dimensional (1-D) model of the thoracic aorta. We
tested new and existing methods for estimating CV parameters (left ventricular ejection time, outflow BP, arterial resistance
and compliance, pulse wave velocity, and characteristic impedance) required for the cBP algorithms, using virtual (simu-
lated) subjects (n = 19,646) for which reference CV parameters were known exactly. We then tested the cBP algorithms
using virtual subjects (n = 4,064), for which reference cBP were available free of measurement error, and clinical datasets
containing invasive (n = 10) and noninvasive (n = 171) reference cBP waves across a wide range of CV conditions. The 1-D
algorithm outperformed the 0-D algorithms when the aortic vascular geometry was available, achieving central systolic
blood pressure (cSBP) errors�2.1 ± 9.7mmHg and root-mean-square errors (RMSEs)�6.4 ± 2.8mmHg against invasive refer-
ence cBP waves (n = 10). When the aortic geometry was unavailable, the three-element 0-D algorithm achieved cSBP
errors�6.0 ± 4.7mmHg and RMSEs�5.9 ± 2.4mmHg against noninvasive reference cBP waves (n = 171), outperforming the
two-element 0-D algorithm. All CV parameters were estimated with mean percentage errors�8.2%, except for the aortic
characteristic impedance (�13.4%), which affected the three-element 0-D algorithm’s performance. The freely available algo-
rithms developed in this work enable fast and accurate calculation of the cBP wave and CV parameters in datasets contain-
ing noninvasive ultrasound or magnetic resonance imaging data.

NEW & NOTEWORTHY First, our proposed methods for CV parameter estimation and a comprehensive set of methods from the liter-
ature were tested using in silico and clinical datasets. Second, optimized algorithms for estimating cBP from aortic flow were devel-
oped and tested for a wide range of cBP morphologies, including catheter cBP data. Third, a dataset of simulated cBP waves was
created using a three-element Windkessel model. Fourth, the Windkessel model dataset and optimized algorithms are freely available.
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INTRODUCTION

Recent clinical studies have shown that central (aortic)
blood pressure (cBP) is a better cardiovascular risk indicator
than brachial blood pressure (bBP) (1–4), since cBP is more
representative of the load exerted on major organs (1, 5).
Regardless of gender or disease, cBPs in subjects with similar
brachial systolic blood pressure (SBP) may differ by up to
33mmHg, resulting in “a significant overlap of central SBP
scores between brachial SBP risk groups” (6). Furthermore,
bBP can be misleading in healthy young adults due to cen-
tral-brachial pulse pressure (PP) amplification of up to
30mmHg (7). The most direct method to measure cBP is car-
diac catheterization, which is costly and carries risks to
patients (e.g., blood clot formation and embolization) due to
its invasive nature, even when performed in specialized cen-
ters (2). Consequently, there is great value in developing
methods for estimating cBP noninvasively that are less risky
andmore suitable for frequent use.

A potential approach is to use a computational model of
the circulation to estimate cBP from noninvasive measure-
ments of aortic flow and peripheral blood pressure (BP) (8).
Aortic flow can be measured using magnetic resonance
imaging (MRI) or ultrasound (US). Peripheral systolic and di-
astolic BP can be easily measured using a brachial cuff,
whereas a peripheral BP wave can be measured using, for
example, applanation tonometry. MRI can also measure vas-
cular geometry, which can be used to further refine the
model—the importance of aortic geometry was proposed by
Westerhof et al. (9). Consequently, computational models
could be personalized to estimate cBP in cardiac MRI and US
settings. Moreover, these imaging modalities are the gold
standard when assessing cardiac anatomy (cardiac magnetic
resonance and echocardiography). Combining the informa-
tion they provide with the knowledge of cBP could enable
the noninvasive derivation of pressure-volume loops and
myocardial wall stress, two major indicators of cardiac per-
formance. Although previous studies have used reduced-
order models to estimate cBP noninvasively, they either did
not use patient-specific MRI aortic geometry (10) or did not
validate their cBP estimates against invasive cBP measure-
ments or compare the performance of several algorithms (8,
11–14).

The aim of this study was to develop and assess three
novel algorithms of increasing complexity for estimating
the cBP wave from aortic flow, using noninvasive, patient-
specific data from the thoracic aorta (Fig. 1). Each algo-
rithm used a different blood flow model: the two-element
(15) and three-element (16) zero-dimensional (0-D)
Windkessel models and a one-dimensional (1-D) model of
the thoracic aorta (11). The first step in each algorithm was
to estimate cardiovascular (CV) parameters from noninva-
sive hemodynamic data measured in the thoracic aorta
and a peripheral BP measurement. These CV parameters
were left ventricular ejection time (LVET), outflow vascu-
lar BP (Pout), total arterial resistance (RT) and compliance
(CT), aortic pulse wave velocity (PWV), and characteristic
impedance (Z0). The second step was to use these parame-
ters as inputs to one of the three blood flow models to esti-
mate a patient-specific cBP waveform. In this study, we
assessed the performance of the CV parameter estimation

methods and cBP algorithms against reference data, including
invasive cBPmeasurements.

METHODS

Datasets

The CV parameter estimation methods and cBP algo-
rithmswere initially developed and tested using two datasets
of virtual subjects. The cBP algorithms were then assessed
using three clinical datasets. The characteristics of each
dataset are shown in Table 1.

Clinical datasets.
The first clinical dataset, called the aortic coarctation data-
set, contains data acquired from 10 patients with aortic co-
arctation (17). The St Thomas’ Hospital Research Ethics
Committee approved this prospective study, and informed
consent was obtained from all patients (ethics reference
number R&D REC 08/H0804/134). Inclusion criteria com-
prised native or residual aortic coarctation. Exclusion crite-
ria were the presence of stented aortic coarctation or aortic
dissection. Data were acquired in a hybrid magnetic reso-
nance/X-ray suite guidance system. A 1.5-T MRI scanner
(Philips Intera, Philips, Best, The Netherlands) was used to
obtain a breath-hold three-dimensional contrast-enhanced
angiography of the thoracic aorta (used to obtain aortic ge-
ometry measurements) and free-breathing two-dimen-
sional phase contrast flow velocity through-plane scans at
the ascending and upper-descending aortas (used to
obtain flows at both locations). Invasive BP data were
measured using X-ray-guided cardiac catheterization
(Philips BV Pulsera). Measurements were taken simultane-
ously at the ascending and descending aortas, immedi-
ately after the flow acquisition, using multipurpose
catheters (angiographic catheter 4F with carbon dioxide-
filled balloon).

The second and third clinical datasets, called the normo-
tensive and hypertensive datasets, were obtained from (18):
1) 13 normotensive healthy volunteers at baseline and after
the administration of different doses of four inotropic and
vasoactive drugs (dobutamine, norepinephrine, phentola-
mine, and nitroglycerin) and 2) 158 subjects assessed for
hypertension (including those found to be normotensive).
Both datasets were approved by the London-Westminster
Research Ethics Committee, and written informed consent
was obtained. Aortic flow was obtained by Doppler sonogra-
phy, and peripheral BP measurements were obtained by ca-
rotid applanation tonometry. Reference cBP measureme-
nts were acquired using the SphygmoCor system (AtCor
Medical, Sydney, Australia), which uses a transfer function
to calculate cBP from carotid BP measured noninvasively by
applanation tonometry (1, 19).

The range of cBP waves contained within each clinical
dataset is shown in Fig. 2.

Datasets of virtual subjects.
Two datasets of BP and flow waves measured in virtual sub-
jects were created by simulating arterial hemodynamics
using 0-D and 1-D computational models, respectively (Fig.
3). A new 0-D dataset, whose reference CV parameter values
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were known precisely, was used to initially test existing CV
parameter estimation methods and develop new ones. An
existing 1-D dataset was used to further test and refine these
methods and the cBP estimation algorithms, as it is based on
amore physiological model of the arterial circulation (20).

The 0-D dataset was created using a three-element
Windkessel model (see, Central Blood Pressure Estimation
Algorithms). Each virtual subject’s cBP wave was simulated
using an aortic flow wave generated by the AorticFlowWave
script (21) based on prescribed values of heart rate (HR) and

Table 1. Datasets’ characteristics

Dataset

Ao Co Normotensive Hypertensive 0-D Dataset 1-D Dataset

Subjects (males) 10 (9) 13 (10) 158 (80) 15,582 (N/A) 4,064 (N/A)
Age, yr 20.8 ± 9.1 48.4 ± 9.4 46.2 ± 16.7 N/A 50 ± 17.1†
DBP, mmHg 53.2 ± 8.9 68.4 ± 10.4a 81.8 ± 12.8a 64.6 ± 9.0 75.3 ± 7.3
MBP, mmHg 69.3 ± 9.7 85.6 ± 12.1b 102.0 ± 15.8b 83.9 ± 11.2 94.2 ± 6.7
pSBP, mmHg 82.0 ± 15.2 111.4 ± 17.3c 129.6 ± 22.6c 117.6 ± 21.3 119.3 ± 11.4
cSBP, mmHg 93.7 ± 11.9 107.2 ± 17.3 126.4 ± 22.2 110.4 ± 12.5
pPP, mmHg 30.6 ± 13.0 43.2 ± 12.2 48.2 ± 16.0 52.9 ± 16.9 46.5 ± 14.1
cPP, mmHg 40.5 ± 12.7 38.8 ± 11.0 44.6 ± 15.4 35.1 ± 15.3
SV, mL 57.4 ± 29.9 100.6 ± 35.3 83.3 ± 32.8 88.4 ± 12.2 60.3 ± 12.3
HR, beats/min 65.1 ± 14.4 62.2 ± 11.2 65.5 ± 10.4 68.8 ± 11.3 75.9 ± 9.3
CO, L/min 3.6 ± 1.7 6.2 ± 2.5 5.3 ± 1.9 6.1 ± 1.3 4.6 ± 1.1

Ao Co, aortic coarctation dataset; CO, cardiac output; cPP, central pulse pressure; cSBP, central systolic blood pressure; DBP, diastolic
blood pressure; HR, heart rate; MBP, mean blood pressure; pPP, peripheral pulse pressure; pSBP, peripheral systolic blood pressure; SV,
stroke volume. †Age ranges from 25 to 75 yr, with 10-yr intervals. aBrachial oscillometric measurement. bRadial tonometry measurement.
cCarotid tonometry measurement.
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Figure 1. Study methodology. 1) Central blood pressure (cBP) estimation algorithms consisted of three steps. A: clinical data acquisition and preprocess-
ing: blood flow measured at the ascending and descending [one-dimensional (1-D) algorithm only] aorta; peripheral blood pressure (BP) measurement;
and aortic anatomy (1-D algorithm only). B: cardiovascular (CV) parameters estimated from clinical data. C: these parameters, along with the noninvasive
clinical data, were used as inputs to one of three cBP models. 2) Algorithm performance was assessed by comparing cBP estimates provided by each
model to reference values.
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stroke volume (SV) in combination with prescribed values of
RT, CT, Z0, and Pout. CV parameters were selected to create a
dataset of cBP waves representative of a sample of healthy
adults. To do so, 1) mean (m) and standard deviation (r) val-
ues of each parameter in healthy adults were identified from
the literature (see appendix A); 2) five values for each param-
eter were calculated as m, m ± 0.5r, and m ± r; and 3) a virtual
subject was created using each of the 15,625 combinations of
CV parameters.

The 1-D dataset was created by using a 1-D blood flow
model in the aorta and larger arteries of the head and limbs.
The CV properties of 25–75-yr-olds were identified through a

comprehensive literature review. Pressure, flow velocity, and
luminal area waves were simulated in the aorta and other com-
mon measurement sites of 4,374 virtual subjects and were veri-
fied by comparison against clinical data [see (20) for full details].

We removed nonphysiological data from further analysis,
based on limits derived from the hypertensive and normoten-
sive datasets (see Table 1). Maximum limits of central systolic
BP (cSBP) and central pulse pressure (cPP) were obtained
from the hypertensive dataset. Minimum limits of central dia-
stolic BP (cDBP) and cPP were obtained from the normoten-
sive dataset. Consequently, we excluded subjects with
cSBP> 220mmHg, cDBP<44mmHg, and cPP< 18mmHg
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Figure 2. Clinical central blood pressure (cBP) wave morphologies: (left) aortic coarctation dataset (obtained invasively), (middle) normotensive (noninva-
sive) dataset, and (right) hypertensive (noninvasive) dataset. Black lines illustrate a random patient’s cBP waveform. Shaded regions represent the range
of cBP waves within each dataset.
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Figure 3. Generating datasets of virtual subjects. A, top: A range of values for each cardiovascular (CV) parameter was obtained from the clinical litera-
ture for healthy individuals (see Table A1). A, bottom: the thick line illustrates the flow wave corresponding to the baseline values of stroke volume (SV)
and heart rate (HR), and the shaded region represents the range of flow waves corresponding to all SV and HR variations. B: two reduced-order models
were used to generate central blood pressure (cBP) waves. C: cBP waves generated by each model: black lines illustrate the cBP wave corresponding
to the baseline set of parameter variations, and shaded regions represent the range of cBP waves within each dataset.
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or>109mmHg. Forty-three subjects were excluded from the
0-D dataset; 310 subjects were excluded from the 1-D dataset.

Cardiovascular Parameter Estimation Methods

The following CV parameters were required as inputs to at
least one of the cBP estimation algorithms: LVET, Pout, RT,
CT, Z0, and aortic pulse wave velocity (PWV). A comprehen-
sive literature review of CV parameter estimation methods
was performed. The methods listed in Table 2 and described
in appendix B were implemented and assessed in this study.
To be included, they had to satisfy at least one of the follow-
ing inclusion criteria: they were reported as the optimal
method (22–26), their performance was similar to that of the
optimal method (23, 24, 26–28), they were the only reported
method (15, 29–47), or their performance had not been suffi-
ciently assessed due to their novelty (32, 35, 37). In addition,
new, improvedmethods were developed.

Assessing Cardiovascular Parameter Estimation
Methods

The performance of the CV parameter estimationmethods
was assessed using the mean percentage error (MPE) and r

between estimated and reference CV parameter values for
the two datasets of virtual subjects. In addition, Bland–
Altman plots (48) were created to show the bias and limits of
agreement (±1.96 standard deviation from the bias) between
estimated and reference CV parameter values. For the 0-D
dataset, reference values were obtained from the prescribed
values used for each virtual subject (Table A1) (49–52). For
the 1-D dataset, reference values for LVET, Pout, and aortic
root PWV were obtained from the prescribed values. RT was
calculated from the aortic root BP and flowwaves using (15)

RT ¼ MBP� Pout

Qin
; ð1Þ

where MBP is the mean blood pressure and Qin is the mean
blood flow. CT and Z0 were extracted from aortic root BP and
flow waves using the optimized three-element Windkessel
model described in appendix A.2.

Two common clinical scenarios were considered when
assessing CV parameter estimation methods for each data-
set: carotidþ , where the carotid BP wave was available, and
carotid�, where only brachial DBP and SBP values were
available (Fig. 1A). The 1-D dataset of virtual subjects was
used to determine, for each scenario and CV parameter, the

Table 2. CV parameter estimation methods assessed in this study

Parameter Description Sce Ref Abb Percentage Error, %

0-D dataset 1-D dataset
Left ventricular ejection time, LVET dP/dt analysis, 1 þ (32) LV1 ‡ 0.4 ± 1.0

dP/dt analysis, 2 þ (37) LV2 �12.4 ± 0.1 �5.7 ± 4.1
0.37

ffiffiffi
T

p þ , � (31) LV3 26.1 ± 8.5 6.9 ± 8.1
Q analysis þ , � † LV4 0.1 ± 0.2 0.3 ± 0.6

Outflow pressure, Pout Diastolic decay fit, 1 þ (15, 26) OP1 0.0 ± 0.0 �5.1 ± 8.0
Diastolic decay fit, 2 þ (15, 44) OP2 0.0 ±0.0 �10.5 ± 7.5
0.5 DBP þ , � † OP3 1.6 ± 16.9 9.1 ± 11.0
0.7 DBP þ , � (56) OP4 42.3 ± 23.6 52.7 ± 15.4

Arterial resistance, RT (MBP � Pout)/ �Q þ (15) AR1 0.0 ± 0.0 0.0 ± 0.1
(DBP þ 0.4PP � Pout)/ �Q þ , � (22, 15) AR2 0.7 ± 5.7 �4.9 ± 2.9

Arterial compliance, CT 2-point diastolic decay þ (15) AC1 �0.1 ± 0.0 �6.5 ± 4.9
Diastolic decay fit, 1 þ (15) AC2 0.0 ±0.0 �6.6 ± 3.3
Diastolic decay fit, 2 þ (15, 44) AC3 0.0 ±0.0 �10.2 ± 5.0
Area method þ (27, 41, 26) AC4 �10.0 ± 4.1 �11.4 ± 4.6
Two-area method þ (43, 26) AC5 �10.0 ± 4.1 �7.1 ± 7.1
DBP method þ , � † AC6 �1.5 ± 4.1 �17.3 ± 7.5
PP method þ , � (25, 26) AC7 �0.1 ± 0.2 �27.6 ± 11.6
SV/PP þ , � (27) AC8 �13.8 ± 20.3 4.9 ± 18.4
Optimized 3-Wk þ † AC9 0.0 ±0.3 �0.8 ± 4.2

Pulse wave velocity, PWV Foot-to-foot: QAo þ , � (35) PV1 – 8.2 ± 6.0
Foot-to-foot: Pc-f þ a (35) PV2 – 27.8 ± 10.8
Least-squares: QAo þ , � (35) PV3 – �12.7 ± 8.3
Least-squares: Pc-f þ a (35) PV4 – 43.0 ± 36.0
Sum of squares þ (34) PV5 – 33.2 ± 17.2

Characteristic impedance, Z0 Frequency methods þ (29, 33, 23, 36, 38, 40, 24, 42) Z1 2.5 ± 2.1 64.6 ± 44.3
PQ-loop methods þ (23, 28, 45) Z2 0.2 ± 1.4 13.4 ± 56.6
0.05RT þ , � (39, 46) Z3 �1.5 ± 40.8 133.8 ± 66.7
(MBP � DBP)/Qmax þ , � † Z4 �38.7 ± 12.4 82.3 ± 32.6
rPWV/A þ , � (47) Z5 – 90.4 ± 18.1
Optimized 3-Wk þ † Z6 �0.1 ± 0.7 37.1 ± 20.0

Errors are presented as the means ± SD of the percentage error between estimated and reference CV parameter values. A, aortic root
cross-sectional area; Abb, coded abbreviations used to refer to each method; DBP, diastolic blood pressure; MBP, mean blood pressure; P,
peripheral BP waveform; PP, pulse BP values from P; Pc-f, carotid-femoral blood BP wave pair; Q, aortic root flow waveform; �Q, mean
value of Q over T; QAo, ascending and descending aorta flow wave pair; Qmax, peak aortic flow; Ref, references; Sce, clinical scenarios (þ :
carotidþ , �: carotid�); SV, stroke volume; T, duration of cardiac cycle; 3-Wk, 3-element Windkessel; r, blood density. Performance was
assessed in two clinical scenarios (carotidþ : carotid BP wave available; carotid�: only brachial DBP and SBP available) using the 0-D
and 1-D datasets (Fig. 1A). †Newly proposed methods (described in appendix B). ‡BP waves from the 0-D dataset do not present a second
systolic peak as required by LV1. aBP waves at the carotid and femoral arteries required.
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optimal (i.e., smallest MPE and r) CV parameter estimation
methods to be used by the cBP algorithms described in
Central Blood Pressure Estimation Algorithms.

Central Blood Pressure Estimation Algorithms

The three algorithms used to estimate cBP each consisted
of two stages. First, CV parameters were estimated using the
optimal CV parameter estimation methods. Second, a cBP
wave was simulated using a computational model of arterial
blood flow. We considered the followingmodels: the two-ele-
ment (15) and three-element (16) Windkessel models and a
1-D model of the thoracic aorta (11), referred to as 1D-Ao
hereafter.

Two-element Windkessel (0-D) model.
This model, referred to as 2-Wk hereafter, idealizes the arte-
rial system as a reservoir of compliance CT. Blood flows into
the reservoir from the heart, Qin(t), at a pressure P(t),
encounters a resistance to flow, RT, and flows out into the
vascular beds at a pressure Pout (Fig. 1C, top). The governing
equation is

dP
dt

þ P� Pout

RTCT
¼ Qin

CT
; ð2Þ

which can be solved for P(t) using the integrating factor
method,

PðtÞ ¼ Pout þ P0 � Poutð Þe�
t�t0
RTCT þ e

� t
RTCT

CT

ðt
t0

Qin t
0ð Þe t

0
RTCTdt

0
;

t � t0; ð3Þ
where t0 is the initial time and P0 = P(t0).

Three-element Windkessel (0-D) model.
This model, referred to as 3-Wk hereafter, results from add-
ing an impedance, Z0, in series to the 2-Wkmodel where RT =
Z0 þ R (Fig. 1C, middle). Z0 is commonly known as the char-
acteristic impedance and was initially introduced to repre-
sent the impedance of the aorta (26). The governing
equation is

dP
dt

þ P� Pout

RCT
¼ Z0

dQin

dt
þ Z0 þ Rð ÞQin

RCT
; ð4Þ

which can be solved analytically for P(t) using the integrat-
ing factor method,

PðtÞ ¼ Pout þ P0 � Pout � Z0Q0ð Þe
�
t� t0
RCT þ Z0QinðtÞ

þ e
�

t

RCT

CT

ðt
t0

Qin t
0ð Þe

t
0

RCTdt
0
; t � t0 ; ð5Þ

where Q0 = Qin(t0).

1-D aortic model.
This model uses the 1-D equations of blood flow in the net-
work of compliant vessels shown in Fig. 1C (bottom) to com-
pute cBP (11). The inputs to the model are 1) the geometry
(i.e., lengths and cross-sectional areas) of the thoracic aorta,
including the supra-aortic arteries; 2) flow waves at the
ascending and descending aortas and, when available, each
supra-aortic artery; and 3) a peripheral BPmeasurement.

The 1-D and aortic coarctation datasets contained the
vascular geometry and PWV data required to run the 1D-
Ao algorithm. For the aortic coarctation dataset, the ge-
ometry of the thoracic aorta was extracted from MRI data
using an in-house segmentation software (53, 54).
Besides, since peripheral BP measurements were not
available, the BP acquired invasively in the descending
aorta was used instead. For the 1-D dataset, the geometry
was extracted from the corresponding arterial segments.
For both datasets, volumetric blood flow waves were
obtained at the ascending (Qin, acquired as close to the
aortic root as possible) and descending thoracic (Qout)
aortas. Qin and Qout were used to calculate the pulse wave
velocity, PWV, as described in Table 2.

Qin was imposed as an inflow boundary condition at the
aortic root and 3-Wk models were coupled to the outlet of
each terminal 1-D model segment. The parameters of each
outflow model j, Zj

0;Wk, C
j
T;Wk and Rj

Wk, were calculated using
Qin, Qout, and the outflow distribution (OD) in the supra-aor-
tic arteries, ODj

flow ¼ �Q
j
out=

�Qin, under the assumption that
DBP, MBP, and Pout remain constant within large arteries (1).
We used the following equations (11):

Zj
0;Wk ¼ ρPWV

Aj
out

; ð6Þ

Rj
Wk ¼ RT

ODj � Zj
0;Wk; ð7Þ

Cj
T;Wk ¼ CT � CT;artð Þ RT

Rj
Wk

; ð8Þ

where CT,art is the total compliance of the 1-D model arterial
segments calculated as the sum of each segment complia-
nce,

Ck
T;art ¼

�A
k
Lk

ρPWV2 ; ð9Þ

with �A
k
the average area and Lk the length of the arterial seg-

ment k. When �Q
j
out were unavailable at each outflow j, the

difference between the mean values of Qin and Qout was
distributed among the supra-aortic arteries proportionally
to their outlet areas, Aj

out, as ODj
area ¼ �Qin � �Qout

� �
Aj

out=
Rj Aj

out.

Assessing Central Blood Pressure Estimation
Algorithms

The performance of each cBP estimation algorithm
was assessed by comparing estimated cBP values with
corresponding reference values in all clinical datasets
and in the 1-D dataset. Performance was quantified using
the m and the r of the errors for central diastolic (cDBP)
and systolic (cSBP) blood pressure. In addition, the root
mean square error (RMSE) between estimated and refer-
ence cBP waves was computed. Similar to Assessing
Cardiovascular Parameter Estimation Methods, Bland–
Altman plots were used to show the bias and limits of
agreement between estimated and reference BP values.
Finally, the correlation between estimated and reference
cBP values was assessed using the coefficient of determi-
nation (R2).
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RESULTS

Assessment of CV Parameter Estimation Methods

The last two columns of Table 2 show mean percentage
error (MPE) and standard deviation (r) for all CV parameter
estimation methods assessed in the two datasets of virtual
subjects. MPE for the 1-D dataset was reduced by at least
40% if the carotid BP wave (carotidþ ) was used instead of
brachial DBP and SBP values (carotid�).

Table 3 displays the methods that led to the smallest MPE
for each clinical scenario and dataset. By using these optimal
methods, all six CV parameters were calculated in less than
1 s for each virtual subject and in less than 1h for the entire
0-D or 1-D dataset using a Dell Precision M4800 laptop
(Round Rock, TX).

All parameters from the 0-D dataset were estimated
with MPE< 2% in both clinical scenarios (Table 3, top).
Figure 4 shows Bland–Altman plots for all CV parameters
estimated using the optimal methods obtained from the
1-D dataset (Table 3, bottom). These methods were then
used in the cBP estimation algorithms (see Assessment of
cBP Algorithms).

For both scenarios, LVET, Pout, RT, CT, and PWV were esti-
mated without any considerable bias of their corresponding
reference mean values (<6% for carotidþ and<10% for
carotid�). However, Z0 was overestimated with a much
greater bias of its corresponding reference mean value (13%
for carotidþ and 82% for carotid�). The bias as a function of
each CV parameter reference value remained approximately
unchanged, with the exceptions of Pout (which had a singular
reference value) and CT for carotid� (whose absolute bias
increased with increasing reference values). The same opti-
mal methods were identified for PWV in both scenarios.

Assessment of cBP Algorithms

The cBP algorithms used the optimal CV parameter esti-
mation methods obtained from the 1-D dataset (Table 3, bot-
tom). Table 4 shows the estimation errors for all three cBP
algorithms, with each algorithm evaluated in four datasets
for both clinical scenarios. In the 1-D dataset, RMSEs for
carotidþ (m ± r: < 3.4± 1.7mmHg) were lower than those for
carotid� (<5.1 ± 2.5mmHg). In the clinical datasets, RMSEs
were similar for both scenarios and larger than those
obtained in the 1-D dataset. The 1D-Ao algorithm led to the
smallest RMSEs in the 1-D (2.0± 1.0mmHg) and aortic coarc-
tation (6.4±2.8mmHg) datasets. The 3-Wk algorithm led to
the smallest RMSEs in the normotensive (5.9 ±2.4mmHg)
and hypertensive (5.7 ± 2.4mmHg) datasets (these did not

contain the aortic geometry data needed to run the 1D-Ao
algorithm).

Overall, estimation errors for cDBP and cSBP were smaller
in the 1-D dataset compared with the clinical datasets for all
cBP algorithms and clinical scenarios. Furthermore, cDBP
errors were smaller than cSBP errors for all algorithms, data-
sets, and scenarios. However, within each dataset and
scenario, cDBP and cSBP errors changed considerably
depending on the cBP algorithm used. For both clinical sce-
narios in the aortic coarctation and 1-D datasets, the 1D-Ao
algorithm led to cSBP errors that were smaller or similar
compared with the 0-D models (<2.2 ± 5.3mmHg vs.
<4.5 ±5.9mmHg for the 1-D dataset; <2.1 ± 9.7mmHg vs.
<17.3± 7.9mmHg for the aortic coarctation dataset). The 0-D
algorithms performed similarly in both datasets and led to
smaller cDBP errors than the 1D-Ao algorithm in the aortic
coarctation dataset. R2 correlation values between reference
and estimated cBP calculated using the best-performing (i.e.,
1-D aortic) algorithm and scenario in the 1-D dataset were:
0.834 for cDBP and 0.976 for cSBP (all P < 0.001). In the aor-
tic coarctation dataset they were: 0.776 for cDBP and 0.903
for cSBP (all P< 0.001).

The normotensive and hypertensive datasets contai-
ned noninvasive reference cBP waves calculated by the
SphygmoCor device using a transfer function. For carotid�,
both 0-D models estimated cDBP and cSBP values with
errors<6.0±4.7mmHg, though the 3-Wk algorithm led to
smaller RMSEs in both datasets and scenarios. All errors for
the 3-Wk algorithm were larger for carotidþ . R2 correlation
values for these clinical datasets using the best-performing
0-D algorithm (i.e., 3-Wk) and scenarios were 0.949 for cDBP
and 0.997 for cSBP (all P< 0.001).

An extended version of Table 4, which also contains errors
for cMBP and cPP, is provided as Supplemental Table S1 (all
Supplementary material is available at https://doi.org/
10.5281/zenodo.3968540). Bland–Altman plots of cDBP,
cSBP, cMBP, and cPP are also available (see Supplemental
Figs. S1–S8). Supplemental Fig. S4 shows increases in the
absolute bias for cSBP with increasing reference BP values in
the 1-D, normotensive, and hypertensive datasets for
carotid�. Remaining estimates were less affected by varying
reference BP values.

Supplemental Figs. S9–S16 show individual cBP wave esti-
mations by each cBP algorithm for a set of randomly chosen
subjects in the 1-D dataset and for all subjects in the aortic
coarctation, normotensive, and hypertensive datasets, in
both clinical scenarios. Using a Dell Precision M4800 laptop,
the 0-D algorithms took less than 1 s per patient to compute
the cBP wave, whereas the 1D-Ao algorithm took less than

Table 3. Optimal CV parameter estimation methods for both datasets and clinical scenarios

Optimal CV Parameter Estimation Methods (MPE, %)

Dataset Sce LVET Pout RT CT PWV Z0

0-D dataset þ LV4 (0.3) OP1/2 (0.0) AR1 (0.0) AC2/3 (0.0) N/A Z6 (�0.1)
� OP3 (1.6) AR2 (0.7) AC7 (�0.1) N/A Z3 (�1.5)

1-D dataset þ LV4 (0.3) OP1 (�5.1) AR1 (0.0) AC9 (�0.8) PV1 (8.2) Z2 (13.4)
� OP3 (9.1) AR2 (�4.9) AC8 (4.9) PV1 (8.2) Z4 (82.3)

CT, arterial compliance; LVET, left-ventricular ejection time; MPE, mean percentage error for the entire dataset; Pout, outflow BP; PWV,
pulse wave velocity; RT, arterial resistance; Sce, clinical scenarios (þ : carotidþ , �: carotid�); Z0, characteristic impedance. The abbrevi-
ations for each method (e.g., LV4) correspond to those described in Table 2.
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1min (both times include the time required to calculate all
patient-specific CV parameters).

DISCUSSION

We have developed fast algorithms to estimate several
clinically relevant hemodynamic parameters of the systemic
circulation and reconstructed the cBP wave from noninva-
sive data. Our algorithms are based on physical phenomena
occurring in the thoracic aorta and are patient specific for all
physical parameters except for blood density and viscosity.
We have tested them in several in silico and clinical datasets
with a wide range of cBP wave morphologies. The 1D-Ao
algorithm outperformed the 0-D algorithms at estimating
cBP wave morphology when the aortic vascular geometry
was available. Both 0-D models estimated cBP values with
similar errors when only the aortic flow and peripheral BP

waves were available, though the 3-Wk algorithm produced
the smallest RMSEs. The aortic characteristic impedance
was the most challenging CV parameter that needed to be
estimated, limiting the ability of the 3-Wk algorithm to
achieve smaller cBP errors. The novel Windkessel model
dataset and optimized cBP algorithms are a valuable
resource for developing and testing new, improved algo-
rithms to estimate CV parameters and cBP waves.

Cardiovascular Parameter Estimation Methods

Obtaining reliable in vivo reference values for the CV pa-
rameters required to estimate cBP is challenging. We, there-
fore, assessed the accuracy of several CV parameter
estimation methods using datasets of virtual subjects for
which theoretical reference values were either known
exactly (all parameters for the 0-D dataset; LVET, Pout, and
PWV for the 1-D dataset) or could be estimated from the
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Figure 4. Bland–Altman plots for the optimal cardiovascular (CV) parameter estimation methods. They were obtained from all one-dimensional (1-D)
dataset waves using the clinical scenarios carotidþ (top) and carotid� (bottom).

ESTIMATING CENTRAL BLOOD PRESSURE FROM AORTIC FLOW

AJP-Heart Circ Physiol � doi:10.1152/ajpheart.00241.2020 � www.ajpheart.org H501

http://www.ajpheart.org


aortic BP and flow waves without measurement error (RT,
CT, and Z0 for the 1-D dataset). Unlike the 0-D models, the
1-D model accounts for wave propagation phenomena and
can capture high-frequency features of the pressure wave
such as the first systolic shoulder, thus providing informa-
tion that can be derived through pulse wave analysis. The 1-
D dataset, therefore, provided the optimal combination of
methods for the cBP algorithms and identified accurate
methods for estimating CV parameters that, by themselves,
can be used to assess cardiovascular function from noninva-
sive data available in the clinic.

Left ventricular ejection time (LVET) is a valuable met-
ric of left ventricular performance both in health and dis-
ease (55). According to our results, it can be estimated
accurately from the aortic flow wave using the novel LV 4
method (MPE ± r: 0.3 ± 0.6%).

The physiological meaning and range of values of the as-
ymptotic BP (Pout) are still not fully understood (56).
According to some studies, Pout is related to capillary and ve-
nous BP (57), though others argue this pressure is larger than
the venous BP due to waterfall effects (58–60). We have
found that estimation methods based on an exponential fit
to the diastolic part of the BP wave outperformed those using
a percentage of DBP (�5.1 ± 8.0% vs. 9.1 ± 11.0%).

Arterial resistance (RT) is also an important parameter for
assessing small blood vessel function (61, 62). According to
our results, calculation of RT from peripheral DBP and SBP
values underestimated reference RT values by 5% on aver-
age. More accurate estimates could be obtained when using
the whole peripheral BP wave (0.0±0.1%).

Changes in arterial compliance (CT) can have important
effects on the pulse wave, left ventricular dynamics, cardiac
output, and the ratio of systolic to diastolic flow into

capillary beds (63). Our proposed optimized 3-Wk method
for estimating CT led to a MPE = �0.8±4.2%, outperforming
existing methods. Similar to the study by Stergiopulos et al.
(64), we found MPE< 12% for the diastolic decay, area, and
two-area methods, though our MPE for the pulse pressure
method was higher (27% vs. 17%).

Pulse wave velocity (PWV) provides a direct measure of
aortic stiffness and is an independent predictor of cardiovas-
cular risk (65, 66). We found that methods for estimating
PWV that used the ascending and descending aorta flows
outperformed those using the carotid and femoral BP waves,
in agreement with the study by Obeid et al. (67), which also
involved in silico data and theoretical reference PWV values.

Aortic characteristic impedance (Z0) is directly related to
aortic stiffness (40, 68). In the 1-D dataset, the PQ-loopmeth-
ods led to smaller MPE (13.4%) than other methods (>37.1%),
including those withMPE< 3%when run on the 0-D dataset.
Most methods involving BP and flow waves require these to
be measured simultaneously at the same location, but in this
study, BP was taken from the periphery and combined with
the aortic flow wave, resulting in large MPE for the 1-D data-
set (>13.4%). PQ-loop methods only require a linear propor-
tionality between aortic BP and flow in early systole, which,
according to our results, is maintained between peripheral
BP and aortic flow. In fact, BP and flow morphology in early
systole are mainly dictated by the propagation of a pulse
wave traveling from the heart to the periphery, with the
backward-traveling wave having little influence (69). This
observation led to the derivation of the novel method Z4,
which provided the smallest MPE for carotid� (82.3 ±32.6%).

Finally, we note that all CV parameters were estimated
individually from the clinical data. However, due to the
interdependence between some CV parameters (e.g., RT and

Table 4. Performance of cBP estimation algorithms

Estimation Error (m ± r), mmHg

Dataset Scenario Algorithm cDBP cSBP RMSE

1-D dataset Carotidþ 2-Wk 1.2 ± 0.7 1.0 ± 0.8 3.4 ± 1.1
3-Wk 0.1 ± 1.0 1.8 ± 1.9 2.0 ± 1.7
1 D-Ao 0.1 ± 1.1 2.2 ± 1.8 2.0 ± 1.0

Carotid� 2-Wk 0.8 ± 1.5 �4.5 ± 5.9 5.0 ± 2.5
3-Wk �2.6 ± 0.8 �0.2 ± 4.7 5.1 ± 2.0
1D-Ao �1.5 ± 1.2 �1.7 ± 5.3 4.2 ± 2.1

Aortic Coarctation Carotidþ 2-Wk 0.8 ± 3.1 �15.7 ± 7.2 10.1 ± 3.9
3-Wk 0.2 ± 2.8 �15.4 ± 7.4 8.0 ± 3.2
1D-Ao �3.4 ± 4.8 �0.0 ± 9.7 6.4 ± 2.8

Carotid� 2-Wk �1.5 ± 2.4 �17.3 ± 7.9 10.9 ± 4.3
3-Wk �1.8 ± 2.5 �17.2 ± 7.9 8.4 ± 3.6
1D-Ao �6.1 ± 2.8 �2.1 ± 9.2 7.8 ± 3.3

Normotensive Carotidþ 2-Wk 4.7 ± 1.9 �8.6 ± 5.0 10.3 ± 3.0
3-Wk �4.4 ± 3.5 13.4 ± 13.4 8.6 ± 5.5

Carotid� 2-Wk �0.1 ± 0.5 �3.3 ± 3.5 11.0 ± 3.5
3-Wk 0.2 ± 0.5 �3.7 ± 4.0 5.9 ± 2.4

Hypertensive Carotidþ 2-Wk 5.0 ± 3.2 �8.3 ± 6.3 10.6 ± 4.1
3-Wk �2.9 ± 3.6 8.0 ± 10.6 7.1 ± 4.2

Carotid� 2-Wk �0.3 ± 0.8 �5.5 ± 4.0 11.1 ± 4.2
3-Wk 0.0 ±0.6 �6.0 ± 4.7 5.7 ± 2.4

Results are presented as mean (m) and standard deviation (r) errors between estimated and reference values of cDBP and cSBP. The
RMSE between estimated and reference cBP waves is shown in the last column. Each cBP algorithm was assessed in four datasets and
two clinical scenarios: carotidþ (peripheral BP wave available) and carotid� (only peripheral SBP and DBP available). cDBP, central dia-
stolic blood pressure; cSBP, central systolic blood pressure; RMSE, root mean square error.
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Pout), performance may be improved via simultaneous or
iterative estimation, as suggested by Parragh et al. (56),
though this was beyond the scope of our study.

Central Blood Pressure Algorithms

We have developed algorithms that estimate the cBP wave
from noninvasive, patient-specific measurements by using
0-D and 1-D blood flow modeling. 0-D models were chosen
for their simplicity and low number of CV parameters that
have to be estimated. The 1D-Ao model was chosen because
it captures pulse wave propagation phenomena, though at
the expense of a much larger number of parameter estima-
tions. Only the thoracic aorta was simulated using 1-D model
segments since cardiac MRI usually provides vessel anatomy
and blood flow in the upper part of the aorta only.
Furthermore, previous work has shown that it is possible to
reduce the topological complexity of the arterial network
and, hence, the number of parameters to be estimated, while
sufficiently capturing relevant BP values such as cSBP and
cPP (70, 71).

We tested the cBP algorithms in several clinical datasets to
cover a wide range of cBP wave morphologies, including
those seen in hypertensive subjects and in normotensive
subjects under the effect of four inotropic and vasoactive
drugs that significantly affect BP wave morphology (72).
When the aortic vascular geometry was available, the 1D-Ao
algorithm outperformed the 0-D algorithms at estimating
cBP wave morphology as well as cSBP values, leading to
RMSEs< 2.0± 1.0mmHg in the 1-D dataset and<6.4±
2.8mmHg in the aortic coarctation dataset. When the aortic
vascular geometry was unavailable, the three-element 0-D
algorithm achieved RMSEs< 2.0± 1.7mmHg for in silico
data and<5.9± 2.4mmHg for clinical data from the normo-
tensive and hypertensive datasets.

Relative errors for cBP estimates were smaller in the 1-D
dataset than in the clinical datasets since all hemodynamic
data in the former were free of measurement error and
inconsistencies that are inherent to clinical datasets (e.g.,
heart rate differences between pressure and flow waves) (11).
Therefore, results obtained from the 1-D dataset provided a
theoretical lower bound of cBP errors to be expected when
analyzing clinical datasets.

Recent (2017) clinical guidelines for the validation of nonin-
vasive cBP devices propose a mean absolute difference
of�5mmHg with r � 8mmHg compared with the reference
cSBP (19). The potential of the algorithms used in this study to
achieve mean absolute differences that are almost within rec-
ommended values in clinical cohorts with either invasive refer-
ence cBP values (aortic coarctation dataset) or cBP values
calculated by the widely used SphygmoCor device (normoten-
sive and hypertensive datasets) has been shown. On the one
hand, the 1D-Ao algorithm achieved mean absolute differ-
ences<2.1±9.7mmHg for cSBP values in the aortic coarctation
dataset for both scenarios. On the other hand, the 0-D models
achieved mean absolute differences<8.6± 5.0mmHg in the
normotensive dataset and<8.0± 10.6mmHg in the hyperten-
sive dataset. Furthermore, the lower-bound RMSEs obtained
when testing all algorithms in themeasurement error-free 1-D
dataset were even smaller (<3.4± 1.7mmHg for carotidþ
and<5.1 ± 2.5mmHg for carotid�), suggesting that our algo-

rithms’ performance could be within recommended values if
measurement error and data inconsistencies could be
reduced further during data acquisition.

Central BP estimates for some subjects in the normoten-
sive and hypertensive datasets showed large errors
(>50mmHg). These subjects had noisy ultrasound velocity
time integral (VTI) waves (used to calculate aortic flow
waves) characterized by either an extended diastolic phase
(resulting in LVET> 50% of the cardiac cycle duration) or a
large second peak after the systolic peak. Both artifacts could
explain the smaller cBP estimation errors for the 0-D models
in the more challenging carotid� scenario compared with
carotidþ .

A review of methods to estimate cSBP from arterial pulse
waves (73) found a mean error (95% confidence interval) of
�1.1 (�2.8 to 0.7) mmHg when calibrated using invasive BP
values and a mean error of �5.8 (�7.8 to 3.8) mmHg when
calibrated using noninvasive BP values. In our study, the
1D-Ao algorithm was found to have mean errors of 0.0
(�6.0 to 6.0) mmHg when calibrated using an invasive BP
waveform (carotidþ scenario in the aortic coarctation
dataset) �2.1 (�7.8 to 3.6) mmHg when using invasive BP
values (carotid� scenario in the aortic coarctation dataset),
and the 2-Wk algorithm was found to have mean errors
when calibrated noninvasively of �3.3 (�3.9 to �2.7)
mmHg (carotid� scenario in the normotensive dataset) and
�5.5 (�6.1 to �4.9) mmHg (carotid� scenario in the hyper-
tensive dataset). Thus, the mean cSBP error provided by the
models presented in this study was comparable with those
observed in previous studies of cSBP estimation methods.
Unlike transfer function methods, our proposed cBP algo-
rithms do not need to be trained on existing clinical data-
sets and make no assumptions regarding generalizability,
since they simulate patient-specific hemodynamic phe-
nomena occurring in the aorta where cBP is calculated.
This may be advantageous when applying these algorithms
to the wider population, including patients suffering from a
range of CV diseases or under pharmacological treatment.
However, a direct comparison against such techniques was
not possible due to the lack of required data and corre-
sponding devices.

Limitations

The peripheral pressure wave (P) required by the cBP algo-
rithms was measured invasively in the descending aorta in
the aortic coarctation dataset. Since this may give the algo-
rithms an advantage compared with noninvasive methods
using cuff or tonometry measurements, the 1-D dataset—
which contained P at the required peripheral locations—was
also used for the final cBP algorithm assessment. In the nor-
motensive and hypertensive datasets, since invasive refer-
ence cBP measurements were not available, noninvasive
measurements were obtained using the SphygmoCor device.
Although these measurements are not exactly equivalent to
invasive cBP, they allowed us to compare the performance of
the cBP algorithms to a widely used noninvasive device. We
note that the aortic coarctation dataset contained data from
10 subjects—in the future, further studies should verify the
conclusions presented here using additional data with inva-
sive referencemeasurements.
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Perspectives

Patients with cardiovascular disease would benefit from an
accurate noninvasive assessment of their cBP. Our approach
removes the risk of complications due to cardiac catheteriza-
tion and allows for a more regular assessment of a patient’s
cBP, due to its noninvasive nature. Moreover, it is relatively
quick: it only takes a few seconds (when using the 0-D algo-
rithms) or a few minutes (when using 1D-Ao algorithm) to
compute cBP on a Dell Precision M4800 laptop. The 1-D algo-
rithm is particularly relevant in clinical cardiology, where car-
diac MRI is increasingly used. Indeed, the detailed geometric
and flow data obtained using MRI can lead to important
improvements in noninvasive cBP estimation, which could
lead to a better adaption in clinical practice. In addition, the
0-D algorithms can be used in combination with US scans to
obtain patient-specific cBP estimates.

ThenovelWindkesselmodel dataset and optimized cBP algo-
rithms are freely available (see DATA ACCESS STATEMENT) to de-
velop and test new, improved algorithms for estimating CV
parameters and cBPwaves.

Conclusion

We have presented freely available, fast, patient-specific
algorithms to estimate clinically relevant CV parameters and
reconstruct the cBP wave from the aortic flowwave, using non-
invasive data and patient-specific models of aortic blood flow.
We have tested our algorithms against a wide range of cBPmor-
phologies from several clinical datasets, one of which included
catheter cBPwaves. Finally, we have shown the potential of our
algorithms to estimate cBP values within guideline-recom-
mended values. Our approach could improve CV function
assessment in clinical cohorts for which aortic ultrasound or
magnetic resonance imaging data are available.

APPENDIX

APPENDIX A: DATASETS OF VIRTUAL
SUBJECTS

Appendix A.1. 0-D Dataset: CV Parameter Variations

Appendix A.2. 1-D Dataset: Calculating Reference Z0

and CT Values at the Aortic Root

Reference Z0 and CT values for the 1-D dataset were cal-
culated from aortic root BP (P) and flow (Qin) waves
using an in-house algorithm written in MATLAB and
based on the 3-Wk model (Fig. A1). Assuming that Pout is
known and that the total resistance RT = Z0 þ R is given
by Eq. 1, a parameter estimation problem can be solved
for Z0 and CT. The estimated BP at time tk can be writ-
ten as

P tkð Þ ¼ f Z
0
0;C

0
T;Qin tkð Þ

� �
þ ek; ðA1Þ

with ek the residual error between the estimated and refer-
ence BP at each time tk, k= 1, . . ., K, and Z0

0 and CT
0 the esti-

mated parameters. The problem can be solved through
iterative minimization of the cost function e>e, where e is
the vector containing the residual errors at each time tk.
The iterative procedure starts from an initial estimate

Z
0
0;0;C

0
T;0

� �
. The parameters at iteration i þ 1 are then calcu-

lated using the recursive equation

Z
0
0;iþ 1;C

0
T;iþ 1

� �
¼ Z

0
0;i;C

0
T;i

� �
�Hiqi; ðA2Þ

where Hi and qi are the Hessian and the gradient,
respectively, of the cost function evaluated at iteration
i. This equation can be obtained by approaching the
cost function by a second-order Taylor expansion and
minimizing the approached function. The mean cBP dif-
ference shown in Fig. A1, B and C, was calculated

for each iteration as 1
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1
e2k

q
, with ek the residual

error at time tk. The iterative procedure was stopped
when either 1) the change in both Z0 and CT estimates
between iterations was smaller than 10�6 or 2) after 15
iterations.

APPENDIX B: CARDIOVASCULAR PARAMETER
ESTIMATION METHODS

All CV parameter estimation methods used in this study are
described next. Novel methods are marked with an asterisk
in the title.

Table A1. CV parameter variations used for the three-element Windkessel (0-D) dataset

Variations

Negative Baseline Positive

CV parameter, units m � r m � 0.5r m m þ 0.5r m þ r References
SV, mL 71.2 79.8 88.4 97.0 105.7 (52)
HR, beats/min 52.9 60.8 68.8 76.7 84.7 (52)
Pout, mmHg 31.7 32.5 33.2 34.0 34.7 (51)
RT, mmHg·s/mL 0.468 0.484 0.500 0.516 0.532 (44)
CT, mL/mmHg 2.20 2.23 2.27 2.30 2.34 (50)
Z0, mmHg·s/mL 0.0256 0.0358 0.0485 0.0644 0.0847 (65, 49)

m and r are mean and standard deviation values, respectively, for each CV parameter from the clinical literature. CT: total arterial com-
pliance; HR: heart rate; Pout: outflow vascular pressure; RT: total arterial resistance; SV: stroke volume; Z0: aortic characteristic imped-
ance. These values are based on observations in healthy humans from the clinical literature.
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Appendix B.1. LV—Left Ventricular Ejection Time, LVET

LV1—dP/dt analysis, 1*.

The method is described in the work by Charlton et al. (32).
LVET corresponds to the point of peak pressure after the
pressure systolic peak.

LV2—dP/dt analysis, 2.

This method is described in the work by Itu et al. (37). LVET
coincides with theminimum of

dP
dt

0:5�
����0:5�HR � t

60

����
 !2

; ðB1Þ

where P is a peripheral BP wave and HR represents the heart
rate in beats/min.

LV3—0:37
ffiffiffiffi
T

p
.

LVET is calculated using the empirical relationship
described in the work by Bazett (31): 0:37

ffiffiffi
T

p
, where T is the

duration of the cardiac cycle in seconds.

LV4—Q analysis*.

Q is analyzed from the global minimum after peak flow
to 50% of T (Fig. B1). If all Q values are smaller than 1%
of maximum Q, LVET corresponds to the time of the global
minimum. Otherwise, starting from the time of the global
minimum, all sign changes (from negative to positive),
all maxima, and all zero values are found. LVET corresponds
to either the first sign change, the first local maximum, or
the first zero value (whichever one occurs first). If all else
fails, method LV 3 is used.

Appendix B.2. OP—Outflow Pressure

OP1—diastolic decay fit, 1.

The concept of a diastolic decay fit was first described by
Frank (15). P is analyzed between LVET and the end of dias-
tole (Pd). The multidimensional unconstrained nonlinear

minimization (Nelder–Mead) MATLAB function fmin-
search.m is used to find the best fit between Pd and an expo-
nential decay curve of the form: Pexp ¼ Pout þ Pexpð
t0ð Þ � Pout Þe� t�t0ð Þ=s, where t0 = LVET. To avoid nonphysiologi-
cal values of Pout, the following filters are applied: if s < 0 or
Pout< 0,Pout is set to 0; and ifPout�DBP,Pout is set to 0.5DBP.

OP2—diastolic decay fit, 2.

Similar to OP1, but using t0 ¼ 2
3 LVET þ 1

3 T instead, as
described by Simon et al. (44).

OP3—50% of DBP*.

Pout is estimated as 50% of DBP.

OP4—70% of DBP.

As suggested by Parragh et al. (56), Pout is estimated as 70%
of DBP.

Appendix B.3. AR—Arterial Resistance

AR1—peripheral pressure waveform.

RT is calculated using Eq. 1 and MBP is calculated as the
mean of P.

AR2—peripheral DBP and SBP values.

Similarly to AR1, but using MBP=0.4SBP þ 0.6DBP instead,
as described by Bos et al. (22).

Appendix B.4. AC—Arterial Compliance

AC1—2-point diastolic decay.

The concept of a diastolic decay fit was first described by
Frank (15). Using only the first and last points of the diastolic
part of P, CT is calculated as:

T � LVET

ln PðLVETÞ�Pout
DBP�Pout

� �
RT

: ðB2Þ
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Figure A1. Extracting reference aortic characteristic impedance (Z0) and total arterial compliance (CT) values at the aortic root. A: reference central blood
pressure (cBP) wave for a one-dimensional (1-D) model virtual subject, and corresponding initial and optimal estimates. B: contour plot (in mmHg) of the
mean difference between the estimated and reference cBP waves, with Z0 in the x-axis and CT in the y-axis. Each iteration is shown in white squares;
iterations 0 and 5 correspond to the initial and optimal cBP estimates, respectively. C: the values of Z0, CT, and the cBP mean difference are shown for
the initial estimate and for every iteration until numerical convergence is reached.
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AC2—diastolic decay fit, 1.

Given that s = (RT � Z0)CT, OP1 can be used to calculate s,
and rearranging:

CT ¼ s
RT � Z0

: ðB3Þ

If s is negative, then Pout is set to 0 and s is recalculated.

AC3—diastolic decay fit, 2.

Similar to AC2, but using t0 ¼ 2
3 LVET þ 1

3 T instead, as
described by Simon et al. (44).

AC4—area method.

This method is described by Randall et al. (41). CT is calcu-
lated as: ðt2

t1

P� Poutð Þdt
RT P t1ð Þ � P t2ð Þ� � ; ðB4Þ

where t1 and t2 are equal to 2
3 LVET þ 1

3 T and 90% of T,
respectively.

AC5—two-area method.

This method is described by Self et al. (43). CT is calculated
by solving two simultaneous equations of the form:ðt2

t1

Qdt� 1
RT

ðt2
t1

P� Poutð Þdt ¼ CT P t1ð Þ � P t2ð Þ� �
; ðB5Þ

from the start of the cycle to LVET and from LVET to T.

AC6—diastolic blood pressure method*.

CT is calculated by minimizing the relative error, DBPerr =
(DBPest � DBPref)/DBPref, between the estimated (DBPest)
and reference (DBPref) values of DBP, as seen in Fig. B2. For
each iteration, j, DBPest is calculated as the minimum of the
estimated BP, Pest, using the three-element Windkessel
model (Eq. 5). The initial conditions are CT,0 = SV/PP and
P0 = DBPref. While DBPerr > 1%, CT,j = CT,j-1/DBPerr

2. CT corre-
sponds to the final value of CT,j.

AC7—pulse pressure method.

This method is described by Stergiopulos et al. (25). Similar
to AC6, butminimizing the relative PP error, PPerr, instead.

AC8—stroke volume over pulse pressure.

This method is described by Chemla et al. (27). CT corre-
sponds to SV/PP.

AC9—three-element Windkessel optimization*.

This method is described in appendix A.2. The initial value
of CT is calculated using AC8.

Appendix B.5. PV—Pulse Wave Velocity

The foot-to-foot (PV 1 and PV 2) and least-squares (PV 3
and PV 4) methods used here are described by Gaddum et
al. (35). Both methods require the measurement of two
pulse waves at both ends of a given arterial path of length

L. The foot-to-foot method focuses on detecting the feet of
both pulse waves to calculate the transit time (TT) between
them. For each pulse wave, the foot is detected as the inter-
section between a horizontal projection of the minimum
value and a projection of the maximum slope of the sys-
tolic upstroke.

The least-squares method calculates the sum of the
squared differences between the systolic upstroke of both
waves multiple times, by fixing one wave and shifting the
other one by one datapoint at a time. The temporal shift that
minimizes the squared differences is used to estimate TT.
For bothmethods, PWV is then calculated as PWV = L/TT.

PV1—foot-to-foot: aortic flow.

The inputs are two noninvasive flow waves at the ascending
and descending aortas.

PV2—foot-to-foot: carotid-femoral pressures.

The inputs are two noninvasive BP waves at the carotid and
femoral arteries.

PV3—least-squares: aortic flow.

The inputs are two noninvasive flow waves at the ascending
and descending aortas.

PV4—least-squares: carotid-femoral pressures.

The inputs are two noninvasive BP waves at the carotid and
femoral arteries.

PV5—sum of squares.

This method has been adapted from the original one
described by Davies et al. (34). PWV is calculated from the
peripheral BP, P, and aortic flow,Qwaves using

PWV ¼ 1
ρA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
dP2X
dQ2

vuut ; ðB6Þ

where r is the blood density, A is the cross-sectional area at
the aortic root, dP and dQ are differences in P and Q, respec-
tively, between two adjacent time points, and the sums
extend over a cardiac cycle. P and Q do not need to be
aligned in time.

Appendix B.6. Z—Aortic Characteristic Impedance

Method Z2 is sensitive to temporal misalignments between
P and Q, so the following restrictions were applied to
account for waves that were not recorded simultaneously
and/or at the same site: 1) P is shifted so that its value at the
start of the cycle coincides with DBP, and 2) Q is shifted so
that its value at the start of the cycle is as close as possible to
the intersection between the x-axis and the tangent of Q at
the time ofmaximum dQ/dt in early systole.

Z1—frequency methods.

Frequency domain methods to estimate characteristic im-
pedance (Z0) are based on the Fourier analysis of P and Q
extracted simultaneously at the ascending aorta. Z0 is

ESTIMATING CENTRAL BLOOD PRESSURE FROM AORTIC FLOW

H506 AJP-Heart Circ Physiol � doi:10.1152/ajpheart.00241.2020 � www.ajpheart.org

http://www.ajpheart.org


usually estimated as the average impedance modulus over a
range of frequencies where fluctuations—due to wave reflec-
tions—above and below the characteristic impedance value
are expected to cancel each other out. The following har-
monic ranges, extracted from the literature, have been
assessed in this study: 2–12th (40), 6–10th (42), 1–8th (33), 1–
9th (23), 2–10th (38), 3–10th (36), 4–10th (45), 6–8th (29), and
4–8th (24) harmonics. These methods, in their original
form, require P and Q measured simultaneously at the
ascending aorta. However, for the proposed algorithms, a
peripheral Pmeasurement is used instead.

Z2—P-Q loop methods.

P-Q loop methods analyze the relationship between aortic P
and Q during early systole, assuming that during this interval,
the effects of wave reflections areminimal (23, 28), and hence

Z0 ’ PðtÞ�DBP
QðtÞ � Qð0Þ ; ðB7Þ

whereQ(0) is the value ofQ at the start of the cycle (normally
zero). In this study, four P-Q loop methods were assessed
where Z0 was estimated as:
I the mean value of Eq. B7 between the start of the

cycle and the time of maximum Q;
II the slope of the linear least squares fit to the ratio

between P and Q between the start of the cycle and
the time of maximum flow;

III the value of Eq. B7 at the time of maximum dQ/dt in
early systole; and

IV the mean value of Eq. B7 between the start of the
cycle and the time of maximum dQ/dt in early
systole.

The best-performing P-Q loop method, IV, was used to
calculate the errors in Table 2. These methods, in their origi-
nal form, require P and Q measured simultaneously at the
ascending aorta. However, for the proposed algorithms, a
peripheral Pmeasurement is used instead.

Z3—5% of RT.

As suggested by Murgo et al. (39), Z0 is estimated as 5%
of RT.

Z4—approximated aortic characteristics*.

During early systole, wave reflections reaching the aortic
root are assumed to be absent, and characteristic impedance
can be estimated as Z0 = DP/DQ, where DP and DQ are the
changes in BP and flow rate, respectively (36). Peak flow,
Qpeak, and the first systolic shoulder/peak, P1, occur at a sim-
ilar time, so DQ = Qpeak and DP = P1, and therefore, Z0 ^ P1/
Qpeak, as seen in Fig. B3. Assuming that DBP and MBP
remain constant within the large arteries, P1 is approxi-
mated as MBP � DBP extracted from a peripheral P mea-
surement. Hence, Z0^ (MBP�DBP)/Qpeak.

Z5—aortic characteristics.

This method is described by Westerhof et al. (47). Assuming
that the aortic radius is much larger than the aortic wall
thickness, Z0 corresponds to rPWV/A, where r is the blood
density, PWV is the aortic pulse wave velocity, and A is the
aortic-root cross-sectional area.

Z6—three-element Windkessel optimization*.

This method is described in appendix A.2. The initial values
of CT and Z0 are calculated using the AC8 and Z3 methods,
respectively.
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Details of the code used to run the 1-D simulations are
available at http://haemod.uk, and access requests should
be addressed to J. Alastruey at jordi.alastruey-arimon@
kcl.ac.uk. Details of how to replicate this study can be
obtained by contacting J. Mariscal-Harana at jorge.
mariscal_harana@kcl.ac.uk. Further information about
the data and conditions of access can be found by email-
ing research.data@kcl.ac.uk.
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