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Collegiate athlete brain data for 
white matter mapping and network 
neuroscience
Bradley Caron   1,2,10, Ricardo Stuck1,10, Brent McPherson3, Daniel Bullock1,3, 
Lindsey Kitchell3,4,9, Joshua Faskowitz   1,3, Derek Kellar3, Hu Cheng1,3, Sharlene Newman1,3,5, 
Nicholas Port1,2,3,4 & Franco Pestilli   1,2,3,4,6,7,8 ✉

We describe a dataset of processed data with associated reproducible preprocessing pipeline collected 
from two collegiate athlete groups and one non-athlete group. The dataset shares minimally processed 
diffusion-weighted magnetic resonance imaging (dMRI) data, three models of the diffusion signal in 
the voxel, full-brain tractograms, segmentation of the major white matter tracts as well as structural 
connectivity matrices. There is currently a paucity of similar datasets openly shared. Furthermore, 
major challenges are associated with collecting this type of data. The data and derivatives shared here 
can be used as a reference to study the effects of long-term exposure to collegiate athletics, such as the 
effects of repetitive head impacts. We use advanced anatomical and dMRI data processing methods 
publicly available as reproducible web services at brainlife.io.

Background & Summary
Elite athletes are highly motivated individuals with physical and psychological characteristics that make them 
uniquely fit to compete in a sport. Understanding the impact of sports (positive as well as negative) to the brain is 
an ongoing and active research need1–26. Advancing understanding of the effects of sports on the brain is currently 
hindered by a lack of openly shared datasets and the challenge of collecting data from elite athletes. Our datasets 
address this challenge by providing magnetic resonance imaging data from 33 athletes and 9 matched controls. As 
of today, this is the first publicly available and openly shared datasets of college-level athletes.

Relatively recently, efforts to generate large-scale neuroimaging datasets to study the effects of sport on the 
brain have been funded. Take for example, trackTBI27, ENIGMA28, and the CARE consortium29, which are large 
scale projects involving multiple investigators and institutions. To contribute to the advancement of science, a 
good percentage of the data in these projects is or is planned-to-be released for sharing. Because of the admin-
istrative burden and funding models, these datasets share data with several restrictions spanning all the way 
from requirements for co-authorship, study participation or research partnership. Our dataset is different, as we 
collected a smaller sample of subjects (42) from a single institution and shared the data set openly without admin-
istrative overhead. We release this dataset with the intent for it to be used in combination with other datasets, as 
the size of this dataset alone limits the power for inferences and generalizations.

We share the data utilizing a recently developed unique approach that exploits the free and secure cloud 
computing platform brainlife.io. The approach integrates, into a single record, both data and reproducible 
web-services implementing the full processing pipeline30–32. The raw data contains both anatomical (T1 weighted) 
and diffusion-weighted (dMRI) magnetic resonance imaging data. The processed data contains 14 types of 
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derivatives across 42 participants, comprising of 84 brain masks (2 per participant), 42 Freesurfer outputs (1 per 
participant), 168 fiber orientation distribution (FOD) images (4 per participant), 588 diffusion parameter maps 
(14 per participant), 42 tractograms (1 per participant), 2,562 segmented major tracts (61 per participant), 756 
connectivity matrices (18 per participant), and 42 cortex map data types (1 per participant). The total size of the 
repository is approximately 676.08 GB of data derivatives comprising 1470 datasets.

The processing pipeline implemented to process this dataset utilizes mainstream neuroimaging software 
libraries including FSL33–35, FreeSurfer36–55, MRTrix 3.056, DIPY57, and connectome_workbench58. The corre-
sponding brainlife.io Apps were developed with a light-weight specification and utilizing modern methods for 
software containerization making the analyses trackable, reproducible, and reusable on a wide range of comput-
ing resources59. The present descriptor describes the repository and pipelines published via brainlife.io mech-
anisms. These resources will allow the broader research community to explore the effects of long-term sports 
participation by exploring high-quality preprocessed neuroimaging, replicate previous examinations of the data, 
and examine a wide variety of hypotheses without the impediment of the aforementioned barriers.

Methods
Data sources.  Data is publicly available at https://doi.org/10.25663/brainlife.pub.14.

Neuroimaging data sources.  Data were collected at the Indiana University Imaging Research Facility 
(IRF, https://www.indiana.edu/~irf). Data collection was approved by the Indiana University Institutional Review 
Board.

Study participants.  A total of fifty-one male participants participated in the study. Twenty-one partici-
pants were 4th and 5th-year varsity Indiana University (IU) football “starters” (age 21.1 ± 1.5 years). This number 
accounts for approximately 60% of the total IU football team active players matching our criteria. Potential par-
ticipants were excluded if they reported a diagnosed concussion within 6 months of the beginning of the study. 
The only other exclusion criteria was for safety in the MRI environment. One football player did not complete the 
study, and three football players did not complete the diffusion MRI (dMRI) scans. This left 17 usable datasets 
from the Football group. Following scanning, football players received a socioeconomic status survey gathering 
information regarding estimated family income and the area in which they were raised (i.e. urban, small town, 
suburbs). Nineteen members of the IU cross-country running team (age 20.2 ± 2.5 years) were included as a 
non-collision sports group and were matched to the football players based on age and experience level. Three of 
the players’ anatomical (T1w) images were unusable and thus their data was not included. This left us with 16 eli-
gible members. Our access to the socioeconomic status of non-athlete undergraduates was limited to Psychology 
and Neuroscience undergraduates who had filled out the socioeconomic survey in an IRB approved subject pool. 
Eleven controls (non-athletes; age 19.9 ± 3) participants were selected from the limited pool matched on age, 
sex, estimated family income. None of these individuals were athletes, no additional information on the exercise 
habits was collected for this group. Two of the controls’ diffusion data contained artifacts that were beyond cor-
rection with our processing protocol and thus their data were not included, leaving nine usable datasets. Overall, 
the released dataset contains usable data from 17 football players, 16 cross-country runners, and 9 non-athletes 
for analysis (N = 42). In regards to concussion history, two football players had been diagnosed with a concus-
sion approximately 3 years before the study and one player had been diagnosed approximately 2 years before the 
study. There was no history of concussion in the cross-country runners while at IU. No information was collected 
regarding the concussion history of the participants before their arrival at IU, however. Although we did not have 
this information available, we can estimate around 7.25% of football players have been diagnosed with a concus-
sion prior to college given estimates from the literature (Dompier et al., 2015). Participants gave informed written 
consent that was approved by the Indiana University Institutional Review Board. All participants were recruited 
through flyers handed out by the athletic trainers of each team or posted around campus. Participants were com-
pensated for participation with a cash payment.

The data detailed here was collected as part of a larger study, which included task-related functional MRI 
(fMRI) data. The results from the fMRI portion of the study is described in60. Due to this, and the limitations 
of gathering information via subject pool, focus was placed on collecting neuroimaging data. No other cogni-
tive or behavioral data was collected on the participants, including handedness, IQ, GPAs, or diagnoses of any 
neuro-cognitive or- developmental disorders.

Neuroimaging parameters.  Participants were imaged using a 3-Tesla TIM Trio scanner located in the 
Imaging Research Facility at Indiana University. A 12-channel head coil was used as the 32-channel coil did not fit 
the heads of our larger subjects. Diffusion-weighted magnetic resonance imaging (dMRI) data were collected with 
two phase-encoding schemes, i.e anterior-posterior (AP) and posterior-anterior (PA). The following parameters 
were used for the dMRI pulse sequence: TR/TE = 4930/99.6 ms, iPAT acceleration factor = 2; voxel size = 2x2x2 
mm isotropic, 143 diffusion-weighting directions. As student athletes have demanding schedules, emphasis was 
given to minimizing time of participation when designing the study. Because of this, and the additional fMRI 
component of the larger study, only two diffusion gradient strengths (b-values) were collected. Sixty-four diffu-
sion gradient directions were collected for each gradient strength,b = 1000 s/mm2 and b = 2000 s/mm2, respec-
tively. Fifteen non-weighted images were also acquired (b = 0). On T1-weighted (T1w) anatomical image was 
acquired for each participant using the following sequence: TR/TE = 1800/2.67 ms, TI = 900 ms, flip angle = 9°, 
bandwidth = 150 Hz/pixel, 160 sagittal slices, FOV = 256 mm, matrix = 256 × 256, slice thickness = 1 mm, result-
ing in 1 mm isotropic voxels.
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Anatomical (T1w) preprocessing.  Raw anatomical (T1w) images were preprocessed using the fsl_anat 
functionality provided by the FMRIB Software Library (FSL)33–35 implemented as brainlife.app.273. In brief, the 
raw anatomical (T1w) images were cropped and reoriented to match the orientation of the MNI152 template. 
Then, the cropped and reoriented images were linearly and non-linearly aligned to the MNI152 0.8 mm tem-
plate using flirt and fnirt respectively61–63. The linearly aligned images will hereafter be referred to as the ‘acpc 
aligned’ anatomical (T1w) images. The warps generated from the non-linear alignment were subsequently used 
for mapping diffusion metrics to the cortex64. Following alignment, the ‘acpc aligned’ anatomical (T1w) images 
were processed via Freesurfer’s recon-all function to generate pial (i.e. cortical) and white matter surfaces and 
to parcellate the brain into known anatomical atlases36–55 implemented as brainlife.app.0. The Destrieux (aparc.
a2009s) atlas was used for subsequent white matter tract segmentation and for mapping of diffusion metrics to 
the cortical surface65. For network generation, the multi-modal 180 cortical node parcellation66 was mapped 
to the Freesurfer segmentation of each participant implemented as brainlife.app.23. Finally, the ‘acpc aligned’ 
anatomical (T1w) image was segmented into different tissue-types using MRTrix 3.0’s 5ttgen functionality55,56 
implemented as brainlife.app.239. The gray- and white-matter interface mask was subsequently used as a seed 
mask for white matter tractography.

Preprocessed anatomical images, and their derivatives, were visually QA’d for common artifacts by BC, 
RS, and FP. Specifically, the ‘acpc aligned’ anatomical (T1w) images were examined for proper alignment and 
tissue-contrast. Freesurfer surfaces and parcellations were examined for common surface artifacts and improper 
voxel identification in parcellations. Any identified issues were manually corrected in Freesurfer and reuploaded 
before further analysis. The gray- and white-matter interface mask was visually examined for proper separation 
of the gray- and white-matter in the ‘acpc aligned’ anatomical (T1w) issue.

Diffusion (dMRI) preprocessing.  Raw dMRI images were first reoriented to match the orientation of the 
MNI152 template using the fslreorient2std command provided by FSL. The gradients orientation were then 
checked using MRTrix 3.0’s dwigradcheck functionality67. Following gradient checking, PCA denoising was per-
formed using MRTrix 3.0’s dwidenoise functionality68. This was followed by Gibbs deringing using MRTrix 3.0’s 
mrdegibbs functionality69. The opposite-facing distortions corresponding to each phase encoding direction (i.e. 
PA and AP) were then combined into a single corrected image in a method similar to the one described in 
Andersson and colleagues (2003)34,70 (i.e. top-up command) as provided by FSL33,35. Eddy-current and motion 
correction was then applied via the eddy_cuda8.0 with replacement of outlier slices (i.e. repol) command provided 
by FSL71–74. Following this, dMRI images were debiased using ANT’s n4 functionality75 and the background noise 
not associated with the diffusion signal was cleaned using MRTrix 3.0’s dwidenoise functionality68. Finally, the 
preprocessed dMRI images were registered to the ‘acpc aligned’ anatomical (T1w) image using FSL’s epi_reg func-
tionality61–63 and resliced to 1 mm isotropic voxels. The preceding steps were implemented as brainlife.app.68. In 
sum, the dMRI data was interpolated 4 times: 1) following top-up, 2) following eddy, 3) following epi_reg, and 4) 
during reslicing. These steps were implemented as brainlife.app.68. Brainmasks of the preprocessed, acpc-aligned 
dMRI images were then used for subsequent modelling and tractography using FSL’s bet2 functionality76 imple-
mented as brainlife.app.163.

Quality control was estimated by calculating the Signal to Noise Ratio (SNR) of the diffusing data. To quantify 
the SNR in the preprocessed, acpc-aligned dMRI data, the workflow provided by Dipy to map SNR in the corpus 
callosum was used57,77,78 implemented as brainlife.app.120. SNR values reported are generated from this step.

White matter microstructure modeling (DTI).  In order to investigate advanced microstructural prop-
erties of white matter, the diffusion tensor (DTI) model was fit to the preprocessed, acpc-aligned dMRI data using 
FSL’s dtifit functionality implemented as brainlife.app.292. For white matter tract profiles, the default parameters 
of dtifit were used and the b = 1000 shell was chosen for fitting. However, for mapping of the DTI measures to the 
cortex, both the b = 1000 and b = 2000 shells were used, kurtosis was calculated, and the sum of squared errors 
was outputted following the parameters used in Fukutomi et al.64.

White matter microstructure modeling (NODDI).  In order to investigate advanced microstructural 
properties of white matter, the Neurite Orientation Dispersion and Density Imaging (NODDI)79 model was fit to 
the multi-shell (i.e. b = 1000, 2000 s/mm2) acpc-aligned dMRI data via the Accelerated Microstructure Imaging 
via Convex Optimization (AMICO; https://github.com/daducci/AMICO80) toolbox implemented as brainlife.
app.365. The AMICO toolbox was used in order to significantly speed-up the time necessary to fit the NODDI 
model by reformulating the NODDI model as a linear system, without sacrificing accuracy80. For major white 
matter tract analysis, the isotropic diffusivity parameter (diso) was set to 3.0 × 10−3 m2/s (the rate of unhindered 
diffusion of water) while the intrinsic free diffusivity parameter (d∥) was set to 1.7 × 10−3 mm2/s. For cortical 
white matter parcel analyses, the isotropic diffusivity parameter was also set to 3.0 × 10−3 mm2/s while the intrin-
sic free diffusivity parameter was set to 1.1 × 10−3 mm2/s, which is the optimal value of diffusivity found by 
Fukutomi et al.64.

White matter microstructure modeling (CSD).  The CSD model was fit to the preprocessed multi-shell 
data utilizing MRTrix 3.0 dwi2fod function across 4 maximum spherical harmonic orders (i.e. Lmax) parameters 
(2,4,6,8) implemented as brainlife.app.23867,81–83. Lmax’s 6 and 8 were chosen for subsequent white matter tractog-
raphy, however, all Lmax’s are included in the released data.

White matter microstructure modeling (Tractography).  Anatomically-constrained probabilistic trac-
tography (ACT)84 via MRTrix3’s tckgen functionality implemented as brainlife.app.297 was used to generate trac-
tograms on preprocessed multi-shell dMRI data for each participant. A total of 1.5 million was tracked over both 
lmax6 and lmax8. The two tractograms were then combined to create a single tractogram of 3 million streamlines 
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via Vistasoft functionality implemented as brainlife.app.305. The step-size was set to 0.2 mm for both lmax6 and 
lmax8. The minimum length of streamlines was set to 25 mm, and the maximum length was set to 250 mm. A 
maximum angle of curvature of 35° was set. The merged tractogram of 3 million streamlines was then used for 
subsequent white matter tract segmentation and network generation.

White matter microstructure modeling (Segmentation & Cleaning).  61 human white matter tracts 
were segmented using a custom version of the white matter query language85 implemented as brainlife.app.188. 
These tracts include the following: L/R arcuate, aslant, corticospinal tract (CST), contralateral anterior frontal 
cerebellar tracts, contralateral motor cerebellar tracts, inferior fronto-occipital fasciculus (IFOF), inferior longi-
tudinal fasciculus (ILF), middle longitudinal fasciculus-angular gyrus (MDLF-ang) and superior parietal lobule 
(MDLF-spl), motor cerebellar tracts, occipital cerebellar tracts, superior longitudinal fasciculus components 1&2 
and 3 (SLF-1 & 2, SLF-3), temporal-parietal connection, thalamic cerebellar tracts, uncinate, vertical occipital 
fasciculus (VOF), Baum’s and Meyer’s loops, cingulum, frontal thalamic tracts, motor thalamic tracts, parietal 
arcuate (pArc), parietal thalamic tracts, spinothalamic tracts, and temporal thalamic tracts. The callosal tracts, 
including anterior frontal, forceps major, forceps minor, middle frontal, and parietal corpus callosum, are also 
included.

Following tract segmentation, outlier streamlines were removed using mba’s mbaComputeFibersOutliers 
functionality86 implemented as brainlife.app.195. For each tract, the spatial ‘core’ representation of the tract was 
computed by averaging the streamline coordinates across all streamlines in a tract. Streamlines were removed if 
their length was 4 standard deviations from the length of the ‘core’ representation and/or were located 4 stand-
ard deviations away from the ‘core’ representation of the tract. The cleaned segmentations were then used for all 
subsequent analyses.

White matter microstructure modeling (Tract profiles).  Tract profiles87 for each DTI parameter esti-
mate (i.e. AD, FA, MD, RD) and NODDI parameter estimate (i.e. NDI, ODI, ISOVF) were generated by estimat-
ing the “core” representation of each tract, resampling and segmenting each streamline into 200 equally-spaced 
nodes, applying a gaussian weight to each streamline based on the distance away from the “core”, and obtaining 
the weighted average metric at each node. This was performed using MATLAB code utilizing the Compute_
FA_AlongFG command provided by Vistasoft (https://github.com/vistalab/vistasoft) implemented as brainlife.
app.361.

White matter network modeling (Network generation).  Structural networks were generated using 
the multi-modal 180 cortical node atlas and the merged tractograms for each participant using MRTrix3’s 
tck2connectome88 and tcksift289 functionality implemented as brainlife.app.394. SIFT2 was used to generate a 
cross-sectional area weight value for each streamline in order to accurately reflect density. Connectomes were 
then generated by computing the number of streamlines intersecting each ROI pairing in the 180 cortical node 
parcellation. Multiple adjacency matrices were generated, including: count, density (i.e. count divided by the 
node volume of the ROI pairs), length, length density (i.e. length divided by the volume of the ROI pairs), and 
average and average density AD, FA, MD, RD, NDI, ODI, and ISOVF. Density matrices were generated using the 
-invnodevol option90. For non-count measures (length, AD, FA, MD, RD, NDI, ODI, ISOVF), the average measure 
across all streamlines connecting and ROI pair was computed using MRTrix3’s tck2scale functionality using the 
-precise option91 and the -scale_file option in tck2connectome. These matrices can be thought of as the “average 
measure” adjacency matrices. Before figure generation, nodes in which less than 50% of the participants had a 
connection were removed.

Cortical white matter microstructure modeling (Cortex mapping).  DTI and NODDI measures 
were mapped to each participant’s cortical white matter parcels following methods found in Fukutomi and 
colleagues64 using functions provided by Connectome Workbench58 implemented as brainlife.app.379. First, 
mid-thickness surfaces between the cortical pial surface and white matter surface provided by Freesurfer segmen-
tation were computed using the wb_command -surface-cortex-layer function provided by Workbench command. 
A Gaussian smoothing kernel (FWHM = ~4 mm, σ = 5/3 mm) was applied along the axis normal to the surface, 
and DTI and NODDI measures were mapped using the wb_command -volume-to-surface-mapping function. 
Freesurfer was used to map the average NODDI parameter estimates to subcortical white matter parcels.

Demographics, brain size, body size.  We performed multiple one-way ANOVAS between the groups 
utilizing the python repository statsmodels’ ols function to test for differences in the following: age, body weight, 
SNR, average gray-matter cortical thickness, total brain volume, gray-matter cortical volume, and white matter 
volume. Bonferroni multiple comparisons correction was performed, and all reported p-values were significantly 
below a corrected p < 0.0083 (0.05/6 measures).

Data visualization.  A majority of the images generated for this descriptor were generated using a number 
of brainlife.io applications utilizing functionality from FSL and DIPY. A list of these Apps include: Generate 
images of NODDI/DTI, Generate figures of whole-brain tractogram (TCK), Generate images of mask overlaid on 
DWI, Generate an image of ODF, Generate images of DWI overlaid on T1, Generate images of tissue type masks, 
Generate images of T1/DWI, and Plot response function. The other images were generated using brainlife.io’s 
visualization functionality.
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Data Records
The data outputs on brainlife.io are organized using https://brainlife.io/datatypes. These DataTypes allow applica-
tions to exchange and archive data. Data outputs can be conveniently downloaded from brainlife.io using the BIDS 
standard92. The data outputs described below can be downloaded at https://doi.org/10.25663/brainlife.pub.1493.  
The standard does not yet provide a specification for processed dMRI, tractograms, white matter tracts, and 
connectivity matrices. The brainlife.io platform will be updated as soon as the BIDS standard fully describes a 
specification for the models and tractography, tractometry, and network data. For the time being the specification 
follows the work previous work30. We also provide two additional online tables reporting input and output speci-
mens as requested by the Scientific Data guidelines (see Online-only Table 1 and Supplemental Table 1).

T1-weighted anatomical.  T1w image preprocessed and linearly- and nonlinearly- aligned to the MNI152 
0.8 MM template using FMRIB Software Library (FSL)’s fsl_anat functionality.

upload/sub-{}/anat/
      sub-{}_tag-preprocessed_tag-acpc-aligned_desc-{}_T1w.json
      sub-{}_tag-preprocessed_tag-acpc-aligned_desc-{}_T1w.nii.gz
      sub-{}_tag-preprocessed_tag-standard_desc-{}_T1w.json
      sub-{}_tag-preprocessed_tag-standard_desc-{}_T1w.nii.gz

Non-Linear image warping.  Warp files describing the non-linear alignment between the raw anatomical 
(T1w) image and the template image generated from fsl_anat. No current BIDS structure exist, brainlife.io struc-
ture is as follows:

dt-neuro-warp.tag-preprocessed.tag-standard.id-{}
      _info.json
      inverse-warp.nii.gz
      warp.nii.gz

Freesurfer.  Freesurfer output directory containing all derivatives generated during Freesurfer’s recon-all. No 
existing BIDS structure, brainlife.io structure is as follows:

dt-neuro-freesurfer.tag-preprocessed.tag-acpc_aligned.tag-hippocampal.
tag-thalamic_nuclei.id-{}
      _info.json
      output

Multi-atlas Transfer Tool (MaTT).  The surface and volumated mapping files of the 180 node multimodal 
parcellation to individual participant surfaces. No existing BIDS structure, brainlife.io structure is as follows:

dt-neuro-parcellation-surface.id-{}
      _info.json
      lh.parc.annot.gii
      lh.parc.white.gii
      rh.parc.pial.gii
      key.txt
      lh.parc.inflated.gii
      rh.parc.annot.gii
      rh.parc.white.gii
      label.json
      lh.parc.pial.gii
      rh.parc.inflated.gii
dt-neuro-parcellation-volume.tag-SupraTentorial.id-{}
      _info.json
      key.txt
      label.json
      parc.nii.gz

Tissue-type masks.  The 5-tissue type images (GM, WM, CSF, GMWMI) used for tracking. No existing 
BIDS structure, brainlife.io structures is as follows:

dt-neuro-mask.tag-5tt_masks.id-{}
      _info.json
      csf.nii.gz
      gm.nii.gz
      wm.nii.gz
      mask.nii.gz

Diffusion-weighted imaging (dMRI).  The final preprocessed dMRI data used for all further modeling and 
analyses following FSL Topup & Eddy - CUDA and MRTRix3 preproc.
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upload/sub-{}/dwi/
      sub-{}_tag-preprocessed_tag-normalized_desc-{}_dwi.bvals
      sub-{}_tag-preprocessed_tag-normalized_desc-{}_dwi.json
      sub-{}_tag-preprocessed_tag-normalized_desc-{}_dwi.nii.gz

dMRI Brainmask.  The final dMRI brain mask used for all modeling and analyses. No existing BIDS struc-
ture, brainlife.io structures are as follows:

dt-neuro-mask.tag-brain.id-{}
      _info.json
      mask.nii.gz

Neurite Orientation Dispersion Density Imaging (NODDI).  The neurite density, orientation disper-
sion, and isotropic volume fraction maps generated from NODDI AMICO. No existing BIDS structure, brainlife.
io structure is as follows:

dt-neuro-noddi.id-{}
      _info.json
      dir.nii.gz
      ndi.nii.gz
      odi.nii.gz
      isovf.nii.gz

Diffusion Tensor Imaging (DTI).  The fractional anisotropy, mean diffusivity, axial diffusivity, and radial 
diffusivity maps generated from DTIFIT.

upload/sub-{}/dwi/
      sub-{}_tag-fsl_desc-{}_AD.nii.gz
      sub-{}_tag-fsl_desc-{}_GFA.nii.gz
      sub-{}_tag-fsl_desc-{}_MD.nii.gz
      sub-{}_tag-fsl_desc-{}_RD.nii.gz

Constrained Spherical Deconvolution (CSD).  CSD models fit across Lmax = 2,4,6, and 8 using Fit 
Constrained Spherical Deconvolution Model For Tracking. No existing BIDS structure, brainlife.io structure is 
as follows:

dt-neuro-csd.tag-preprocessed.id-{}/
      _info.json
      lmax2.nii.gz
      lmax4.nii.gz
      lmax6.nii.gz
      lmax8.nii.gz
      response.txt

Tractograms.  The merged tractograms across Lmax = 6 and Lmax = 8, totaling 3 million streamlines generated 
from the Anatomically-constrained tractography (ACT) app.

upload/sub-{}/dwi/
      sub-{}_tag-merged_desc-{}_tractography.json
      sub-{}_tag-merged_desc-{}_tractography.tck

White Matter Anatomy (wma) Segmentation.  Major track segmentation generated from White Matter 
Anatomy Segmentation. No existing BIDS structure, brainlife.io structure is as follows:

dt-neuro-wmc.id-{}
      _info.json
      classification.mat
      surfaces
      tracts

Segmentation cleaned.  The cleaned tracks from Remove Fiber Outliers. No existing BIDS structure, 
brainlife.io structure is as follows:

dt-neuro-wmc.tag-cleaned.id-{}
      _info.json
      classification.mat
      output_fibercounts.txt
      tracts
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Tract profiles.  Mapping of DTI and NODDI metrics along the core of the segmented white matter tracts 
using the Tract Analysis Profiles app. No existing BIDS structure, brainlife.io structure is as follows:

dt-neuro-tractprofile.id-{}
      _info.json
      profiles

Network generation.  Network adjacency matrices were generated using the Structural Connectome 
MRTrix3 (SCMRT) (SIFT2) app. No existing BIDS structure, brainlife.io structure as follows:

dt-raw.tag-networkmatrices.id-{}
      _info.json
      output

Cortical DTI and NODDI mapping.  Surfaces and DTI and NODDI measure files mapped to the surface 
generated from Cortical Tissue Mapping. No existing BIDS structure, brainlife.io structure is as follows:

dt-neuro-cortexmap.id-{}
      _info.json
      cortexmap
      Func
      Label
      surf

Technical Validation
In this section, we provide a qualitative evaluation of the data derivatives made available on brainlife.io. We 
provide qualitative analysis of the preprocessing of the anatomical (T1w) image, including the seed mask, and 
pial and white matter surfaces generated from Freesurfer. Qualitative images of the dMRI preprocessing, dMRI 
modeling (CSD and NODDI), dMRI tractography, network generation, and mapping of diffusion measures to 
the cortical surface are also provided. We further provide a quantitative analysis of the SNR of the dMRI data 
following preprocessing.

Anatomical (T1w) preprocessing.  Anatomical (T1w) images were linearly aligned to the MNI152 0.8 mm 
template and further segmented into gray-matter, white-matter, CSF, and gray- and white-matter interface masks 
using brainlife.app.273. See Methods: Anatomical (T1w) preprocessing for more details. Each participant’s 
aligned anatomical images (T1w), and all derivatives generated from the aligned images, are provided.

Figure 1a exemplifies the quality of the linear alignment obtained with brainlife.app.300 in representative 
participants from each athlete group (i.e. Football: top, Cross-Country: middle, and Non-Athlete: bottom). The 
gray- and white-matter interface mask (1b) and white matter boundary (1c) are overlaid on the ‘acpc-aligned’ 
anatomical (T1w) image to further provide quality assurance. These images were generated with brainlife.app.312.

Following alignment and segmentation, Freesurfer was used to generate cortical and white matter surfaces, 
along with the Destrieux Atlas parcellation using brainlife.app.0. Figure 2a demonstrates the quality of the surface 
generation representative participants from each athlete group (i.e. Football: top, Cross-Country: middle, and 
Non-Athlete: bottom). Images of the Destrieux (aparc.a2009s) atlas65 on the pial surface, along with images of the 
pial and white matter surface outlines overlaid on the ‘acpc-aligned’ anatomical (T1w) image, are provided as a 
means of quality assurance. Figure 2b illustrates the mapping of the 180 node multimodal atlas66 to representative 
participants from each group mapped using brainlife.app.23. These images were generated using brainlife.io’s 
Freeview and Connectome Workbench viewers.

Diffusion (dMRI) preprocessing.  Raw dMRI images were corrected for Gibbs ringing, 
susceptibility-weighting, eddy currents, motion, biasing, and Rician background noise using a combination 
of methods. Following preprocessing, the dMRI images were aligned to the ‘acpc-aligned’ anatomical (T1w) 
image. See Methods: Diffusion (dMRI) preprocessing for more details. The preprocessing was performed using 
brainlife.app.68. Following preprocessing, the signal-to-noise ratio (SNR) was computed for each subject in the 
non-diffusion weighted volumes (i.e. b = 0) and the diffusion-weighted volumes (i.e. b = 1000,2000) separately as 
a means for quality assurance. The SNR was computed using brainlife.app.120.

Figure 3a demonstrates the quality of alignment of the dMRI and ‘acpc-aligned’ anatomical (T1w) image 
from representative participants from each group. The fractional anisotropy (FA) map (see Methods: White 
matter microstructure: DTI for more details on DTI fitting) from each subject is overlaid in red-yellow on 
the ‘acpc-aligned’ anatomical (T1w) images. Overall, the alignments of the dMRI and the anatomical image are 
anatomically-sound. The fully preprocessed dMRI images from each participant, along with their corrected 
b-vectors and b-values, are provided. The images were generated using brainlife.app.309. Figure 3b documents 
the non-diffusion weighted and diffusion-weighted SNRs for each participant. The average SNR for Football 
players (orange) following preprocessing was 28.354 ( ± 5.772 SD) for non-diffusion weighted volumes. This was 
slightly lower than the SNR for Cross-country runners (pink) with an average SNR in the non-diffusion weighted 
volumes of 34.944 (±4.594 SD). Non-athletes overall had the lowest average SNR in the non-diffusion weighted 
volumes (23.002 ± 7.784 SD).

White matter microstructure modeling: DTI and NODDI.  Following preprocessing, models of micro-
structure were fit to the dMRI images. Specifically, the diffusion tensor (DTI) and neurite orientation dispersion 
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density imaging (NODDI) models were fit to the b = 1000 and b = 1000, 2000 shells respectively. See Methods: 
White matter microstructural modeling: DTI & NODDI for more details. DTI was fit using brainlife.app.292, 
while NODDI was fit using brainlife.app.365. The DTI and NODDI maps for each participant are provided. 
Figure 4 demonstrates the quality of fit of both the DTI and NODDI models on representative participants from 
each group. Specifically, mid-axial slices of the fractional anisotropy (FA),mean diffusivity (MD), axial diffusivity 
(AD), and radial diffusivity (RD) from the DTI model, and the orientation dispersion and neurite density indices 
(ODI, NDI) and the isotropic volume fraction (ISOVF) from the NODDI model are presented. There is a high 
anatomical correspondence between the measures and known anatomical properties. For example, the ventricles 
across all three participants are saturated in the MD maps, as water moves maximally isotropically. In the white 
matter, FA and NDI are highest in the highest concentrations of white matter, while ODI is lowest. The images 
were generated using brainlife.app.302 and brainlife.app.367.

White matter microstructural modeling: CSD.  In order to map white matter macrostructure via white 
matter tractography, the constrained spherical deconvolution model (CSD) was fit to each participant across 4 
maximum spherical harmonic orders (i.e. Lmax): 2,4,6 and 8. Lmax = 6,8 were chosen for tracking. See Methods: 
White matter microstructural modeling (CSD) for more details. The CSD was fit using brainlife.app.238. Each 
participant’s CSD fits across all four Lmax’s are provided. Figure 5 demonstrates the quality of fit of the CSD model 
on representative participants from each group using Lmax = 8. In the left column, the response function generated 
is mapped to a sphere, while the right column corresponds to the fiber orientation distribution function (fODF). 
The response functions demonstrate a quality fit due to the relatively flat shape and sharp folding in the center. In 
the fODF maps, clear anatomy is distinguished in regions of the highest white matter concentration. Images were 
generated using brainlife.app.311 and brainlife.app.317.

Fig. 1  Anatomical (T1w) preprocessing: Alignment and segmentation. Representative mid-plane images from 
each group of the preprocessed anatomical (T1w) image. (a) Sagittal slice of MNI152 (ACPC) aligned T1 used 
for all subsequent preprocessing, (b) Axial slice with gray - and white-matter interface outlined (red) used as 
a seed mask for tractography, and (c) Coronal slice with white-matter boundary outlined (red). Images were 
generated using brainlife.app.300 and brainlife.app.312.
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Fig. 2  Anatomical (T1w) preprocessing: Freesurfer and 180 node multimodal atlas mapping (a) Representative 
images from each group of the Freesurfer outputs: pial (red) and white (blue) matter surfaces, and the aparc.
a2009s + aseg (i.e. Destrieux) parcellation. Images were generated using brainlife.io’s Freeview viewer. (b) 
Representative images from each group of the 180-node multimodal (hcp-mmp) atlas mapped to an inflated 
representation of the cortical surface. Images were generated using brainlife.io’s Connectome Workbench 
viewer.

Fig. 3  Qualitative and quantitative quality-assurance measures following dMRI preprocessing. (a) 
Representative mid-axial images of the fractional anisotropy (FA) (red-yellow) image overlaid on the ‘acpc 
aligned’ anatomical (T1w) image. Images were generated using brainlife.app.309. (b) The signal-to-noise ratio 
for each participant from each group (football: orange, cross-country: pink, non-athlete: blue) following dMRI 
preprocessing. The average SNR was computed in the Corpus Callosum across the b = 0 shells (crosses) and 
b = 1000,2000 shells (circles). Standard deviation across the non-b = 0 shells are plotted as error bars for each 
participant.
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White matter microstructure modeling: Anatomically-constrained tractography.  Following the 
fitting of the CSD model to each participant, anatomically-constrained tractography (ACT) was performed on 
Lmax = 6,8 to generate whole-brain tractograms containing 3 million streamlines. These tractograms were used 
for subsequent segmentation and network generation. See Methods: White matter microstructure modeling 
(Tractography) for more details. The tractograms were generated using brainlife.app.297, and merged using 
brainlife.app.305. Each participant’s whole-brain tractogram containing 3 million streamlines per tractogram is 
provided. Figure 6a demonstrates the quality of the tractography in representative participants from each group. 
The whole-brain tractogram of each participant shows high densities of streamlines filling the entire brain vol-
ume, as expected. The images were generated using brainlife.app.310.

White matter microstructure modeling: Segmentation and cleaning.  Following tractography, 
each participant’s whole-brain tractogram was segmented using a recently published methodology using anatom-
ical definitions of common white matter tracts. In brief, this segmentation classifies streamlines as belonging to a 
particular tract based on their cortical terminations and known shape characteristics. See Methods: White mat-
ter microstructure modeling (Segmentation & Cleaning) for more details. Tract segmentation was performed 
using brainlife.app.188. Following segmentation, each tract was cleaned by removing outlier streamlines using 
brainlife.app.195. Each participant’s segmentation, both cleaned and uncleaned, is provided. Figure 6b provides 
representative white matter tract segmentation from participants from each group. From a qualitative perspective, 
each segmentation fills the whole-brain volume and contains a relatively high density of streamlines per tract. 
Each of the tracts is listed on the right. The images were generated using the brainlife.io tract segmentation viewer.

Fig. 4  dMRI Modelling: DTI and NODDI. Qualitative quality-assurance figures following fitting of the 
Diffusion Tensor (DTI) and Neurite Orientation Dispersion Density Imaging (NODDI) models. (a) 
Representative mid-axial images of the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), 
radial diffusivity (RD), orientation dispersion index (ODI), neurite density index (NDI), and isotropic volume 
fraction (ISOVF). Images were generated with brainlife.app.302 and brainlife.app.367.

Fig. 5  dMRI Modeling: Constrained Spherical Deconvolution. Example outputs of the fiber orientation 
distribution function (fODF) for maximum spherical harmonic order (Lmax) of 8 and the csd response functions 
(inset). Images were generated using brainlife.app.311 and brainlife.app.317.
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White matter microstructure modeling: Tract profiles.  Following white matter tract segmentation 
and cleaning, tract profilometry87 was performed for each participant and each tract. In brief, a central rep-
resentation (i.e. ‘core’) of each tract was computed by weighted-average of the X,Y, and Z coordinates of all the 
streamlines in the tract. Streamlines were then resampled to 200 equally spaced nodes, and the average micro-
structural measures (DTI, NODDI) were computed at each node. The first and last ten nodes were removed, and 

Fig. 6  Ensemble Tractography. (a) Example tractogram from each group subsampled from the ‘merged’ 3 
million streamline tractogram (50k streamlines sampled per tractogram). The images were generated using 
brainlife.app.310. (b) Example cleaned segmentation from each group. The images were generated using 
brainlife.io’s tract segmentation viewer.

Fig. 7  Tract Profiles. (a) Example of a segmented Right ILF tract from a representative Football player. (b) 
Example of the centralized ‘core’ representation of the Right ILF in the same subject as in a, with ODI mapped 
along the ‘core’. (c) Group average tract profiles for ODI (top) and FA (bottom) for the Right ILF (orange: football 
players, pink: cross-country runners; blue: non-athletes; error bars ± 1 SE.) Images were generated using the 
Matlab Brain Anatomy toolbox https://github.com/francopestilli/mba86 scripts available at https://github.com/
bacaron/athlete-brain-study.
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then the profiles for each tract were averaged across each group. See Methods: White matter microstructure 
modeling (Tract profiles) for more details. Tract profiles were computed using brainlife.app.361. Tract pro-
filometry data for all participants and tracts are provided. Figure 7a provides a representative Right ILF from 
a Football player. Figure 7b illustrates the centralized core of the ILF and the ODI values mapped along the 
tract. Figure 7c provides the group average ODI and FA tract profiles for the Right ILF. These profiles document 
the ability of this methodology for identifying group differences along a tract. Images were generated using the 
Matlab Brain Anatomy toolbox https://github.com/francopestilli/mba86 scripts available at https://github.com/
bacaron/athlete-brain-study.

White matter microstructure modeling: Network adjacency matrix generation.  The whole-brain 
tractograms from each participant were used to generate structural connectomes. Specifically, measures of 
streamline count and density are computed between each node in the multimodal 180 cortical node parcellation 
and network matrices are generated94,95. See Methods: White matter microstructure modeling (Network gen-
eration) for more details. Network adjacency matrices were generated using brainlife.app.394. Figure 8 demon-
strates group average connectivity matrices using log streamline count, log density, and average FA across the 
streamlines connecting nodes from each group and the total dataset. Images were generated using the imagesc 
function in MATLAB.

Cortical white matter microstructure mapping.  Diffusion-based measures of microstructure were also 
mapped to a surface representation of the midthickness (i.e., the average coordinates between pial and white mat-
ter boundary surface64), here after simply referred to as ‘cortical.’ For more details on the differences between the 
two mappings, see Methods: White matter microstructural modeling: DTI & NODDI. The DTI and NODDI 

Fig. 8  Average structural connectivity matrices. Twelve representative matrices of connectivity between brain 
regions defined in the 180 multimodal cortical atlas66 (i.e. HCP-MMP). Before averaging, any nodes in which 
half of the participants did not have a connection were removed. Adjacency matrices of average streamline 
count (left), density (middle), and FA (right) averaged across all subjects (top), football players (2nd row), 
cross-country runners (3rd row), and non-athlete students (4th row). Images were generated using imagesc in 
MATLAB.
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maps for each participant for the cortical white matter mapping analyses are provided as well. These measures 
were then mapped to the cortex following the procedures described in Fukutomi et al. 201864. See Methods: 
Cortical white matter microstructure mapping for more details. Diffusion measures were mapped using 
brainlife.app.379. Figure 9 demonstrates the quality of fit of DTI and NODDI measures on the cortical surface. 
Specifically, the FA and ODI maps mapped to a representative participant’s cortical surface. Anatomic landmarks, 
including higher FA and lower ODI in motor and somatosensory cortices, are consistent across participants 
and map well to the results presented in Fukutomi et al. 2018. These images were generated using brainlife.io’s 
Connectome Workbench viewer.

Mass and brain size.  To further reduce the burden to full understanding of the dataset provided, we exam-
ined the potential differences between the groups in terms of mass and brain size. We collected data from each 
participant provided by the Freesurfer segmentations regarding total brain volume, cortical volume, white 
matter volume, and cortical thickness and computed one-way ANOVAs between our groups. We identified 
a significant difference in body mass between Football players and the other two groups (F(2,39), p < 0.0001; 
Fig. 10e). However, we did not observe any significant effects of group on brain volume (Fig. 10a), cortical volume 
(Fig. 10b), white matter volume (Fig. 10c), or cortical thickness (Fig. 10d).

Usage Notes
The data are publicly available on brainlife.io using the following https://doi.org/10.25663/brainlife.pub.1493. 
Data can be accessed for visualization and download without requiring a login. The data can be browsed directly 
using any major web-browser.

Data files can also be downloaded, and some can be organized into BIDS standard92. The data derivatives are 
stored in numerous formats, including NIFTI, TCK, GIFTI, and .mat. Access to the published data is currently 
supported via (i) web interface and (ii) Command Line Interface (CLI).

The brainlife.io CLI can be installed on most Unix/Linux systems using the following command:

       npm install brainlife.io -g

The CLI can be used to query and download partial or full datasets. The following example shows the CLI 
command to download all T1w datasets from a subject in the publication data:

       bl pub query # this will return the publication IDs

Fig. 9  Surface-based mapping of microstructural white matter. Example ODI (left) and FA (right) estimates 
mapped to the cortical surface for a representative participant in each group (football: top, cross-country: 
middle, non-athlete: bottom). These images were generated using brainlife.io’s Connectome Workbench viewer.
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       bl bids download --pub <insert pub id> --subject 1_001 --datatype \
       neuro/anat/t1w–tag “fsl_anat”

The following command downloads the data in the entire project (from Release 2) into BIDS format:

       bl bids download --pub 5f2c3765beafe924c962dd8d

Additional information about the brainlife.io CLI commands can be found at https://github.com/brainlife/cli.  
Table 1

Code availability
Table 1 below reports the links to each web service and github.com URL implementing the processing pipeline. 
All code not found on brainlife.io, including visualization code, can be found at https://github.com/bacaron/
athlete-brain-study.
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Application Github repository Open Service DOI Git branch

Brain Alignment https://github.com/brainlife/app-fsl-anat https://doi.org/10.25663/brainlife.app.273 v1.0

Cortical and Subcortical Segmentation https://github.com/brain-life/app-freesurfer https://doi.org/10.25663/bl.app.0 1.11

White matter Tissue Segmentation https://github.com/brainlife/app-mrtrix3-5tt https://doi.org/10.25663/brainlife.app.239 binarize-v1.0

Multi-Atlas Transfer Tool (MaTT) https://github.com/faskowit/app-multiAtlasTT https://doi.org/10.25663/bl.app.23 0.0.5

dMRI proporcessing and model fitting https://github.com/brain-life/app-mrtrix3-preproc https://doi.org/10.25663/bl.app.68 1.6

SNR Calculation https://github.com/davhunt/app-snr_in_cc/tree/plot https://doi.org/10.25663/bl.app.120 plot

Brain mask Generation https://github.com/brain-life/app-FSLBET https://doi.org/10.25663/brainlife.app.163 dwi

NODDI model fit https://github.com/brain-life/app-noddi-amico https://doi.org/10.25663/brainlife.app.365 1.3

Diffusion Tensor Fit https://github.com/brainlife/app-fslDTIFIT https://doi.org/10.25663/brainlife.app.292 v1.0

Constrained Spherical Deconvolution Fit https://github.com/bacaron/app-mrtrix3-act https://doi.org/10.25663/brainlife.app.238 csd_generation-v1.0

Tractography https://github.com/bacaron/app-mrtrix3-act https://doi.org/10.25663/brainlife.app.297 1.3

Merging Tractography Files https://github.com/bacaron/app-mergeTCK https://doi.org/10.25663/brainlife.app.305 two-tck

White Matter Anatomy Segmentation https://github.com/brainlife/app-wmaSeg https://doi.org/10.25663/brainlife.app.188 3.7

Remove Tract Outliers https://github.com/brainlife/app-removeTractOutliers https://doi.org/10.25663/brainlife.app.195 1.3

Tract Profiles https://github.com/brain-life/app-tractanalysisprofiles https://doi.org/10.25663/brainlife.app.361 1.8

Cortex Tissue Mappin https://github.com/brainlife/app-cortex-tissue-mapping https://doi.org/10.25663/brainlife.app.379 v1.1

Structural Connectome https://github.com/brainlife/app-sift2-connectome-generation https://doi.org/10.25663/brainlife.app.394 sift2_v1.0

Table 1.  Description and web-links to the open-source code and open cloud services used in the creation of 
this dataset.
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