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Asthma is more prevalent and severe in women, especially after
puberty. Studies suggest a potential link between dietary
antioxidants, inflammation, and oxidative stress. This study aimed
to compare the dietary intake of antioxidants in asthmatic and
healthy women, evaluating their potential associations with
inflammation and oxidative stress. This study analyzed 30
asthmatic and 30 healthy women’s lung function, anthropometry,
biochemical parameters, and dietary antioxidant intake using a
161-itemized semi-quantitative food frequency questionnaire.
Additionally, the study explored connections between serum
inflammatory markers and oxidative stress indicators in relation
to dietary intake of antioxidant nutrients and flavonoids.
Asthmatic women exhibited higher serum IL-6 levels and lower
total antioxidant status compared to healthy controls. Never‐
theless, no significant differences were observed in dietary
antioxidant micronutrient intake. Healthy controls demonstrated
a notably higher intake of anthocyanidins compared to asthmatic
women. Furthermore, the study identified a negative correlation
between flavonol intake and serum total oxidant status, as well
as between flavan-3-ols intake and serum oxidative stress index.
Dietary differences in flavonoid and flavonoid-rich foods intake
among asthmatic women may affect their serum IL-6 levels and
oxidative stress. Promoting a diverse diet rich in flavonoids could
benefit women with asthma by mitigating inflammation and
oxidative stress.
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Asthma is a chronic respiratory condition characterized by
persistent inflammation of the airways with reversible

airway hyperresponsiveness.(1) Recent reviews have described
gender differences in asthma’s prevalence and severity, with
women exhibiting higher rates of the disease after puberty. The
underlying mechanisms for these differences remain unclear, but
immunological, hormonal, and environmental factors have been
proposed.(2,3) Gender-based differences in body composition and
fat distribution are known to exist and may contribute to the
observed variations in lung mechanics.(4) Dietary habits may play
a role in the development and progression of asthma.(1,5) Women
generally consume less energy than men and prefer healthier
diets with lower energy-dense foods, such as fruits and vegeta‐
bles.(6) Misso et al.(7) revealed that women have higher intakes of
vitamins and minerals like vitamin C and carotene than men.

Poor dietary habits in adult women, low in fiber and high-fat
intake, are related to an increased risk of asthma exacerbations
during pregnancy.(8) Unintended pregnancies, associated with
adverse maternal and fetal health, are still common.(9) Therefore,
evaluating the dietary differences between asthmatic and healthy
women of reproductive age will affect fetal growth and develop‐
ment.
Oxidative stress is a clinically relevant factor in asthma,

leading to systemic and airway inflammation.(5,10) Inflammation
and oxidative stress do not exist separately in asthma, but co-
exist and influence each other.(11,12) One of the recent studies has
shown that inhibiting the release of inflammatory factors through
the transcription of inflammatory genes, lincRNA-Cox2, can
prevent airway inflammation. This inhibition can be achieved by
activation of the antioxidant signaling pathway.(11) Women with
asthma have been shown to have higher dietary antioxidant
intake but lower plasma levels, possibly due to increased oxida‐
tive stress and inflammation.(7) Evidence suggests that increasing
consumption of antioxidant-rich fruits and vegetables may posi‐
tively affect asthma and lung function.(13,14) Comprehensive
reviews suggest that consuming dietary antioxidants, such as
vitamins like A (retinol and carotenoids), C, and E (tocopherols),
as well as trace elements like zinc, copper, magnesium, and sele‐
nium, crucial for antioxidant enzyme function in adults, could
have potential links to asthma.(5,15,16) Recent research has empha‐
sized the potential advantages of flavonoids, a subgroup of
polyphenols present in various foods, including fruits, vegeta‐
bles, chocolate, olive oil, nuts, seeds, legumes, and beverages
like tea, coffee, and wine, for airway diseases owing to their anti-
allergic, anti-inflammatory, and antioxidant features.(16) While
some studies have evaluated the associations between flavonoid
groups and asthma, only a few have explored the association
between dietary flavonoid intake and asthma, and the results
remain uncertain.(13,17,18)

Research on adult asthmatics’ dietary intake of antioxidant
nutrients, including flavonoids and their relation to antioxidant
status and systemic inflammation markers, is limited. As such,
we hypothesized that asthmatic women may have a lower dietary
intake of antioxidant nutrients and flavonoids, which may be
related to increased systemic inflammation and oxidative stress
parameters. This study aims to compare the dietary antioxidant
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nutrient and flavonoid intake of asthmatics to that of healthy
controls and to assess the possible associations between dietary
antioxidants, systemic inflammation, and oxidative stress param‐
eters.

Materials and Methods

Study population and design. This study recruited 30 indi‐
viduals diagnosed with asthma at least one year prior who had
been admitted to the Pulmonology Outpatient Clinic of the
Antalya Training and Research Hospital, as well as 30 healthy
controls, between May 2019 and October 2021. Sample size was
calculated using G*Power, ver. 3.1, considering results from
previous studies, with an error rate of 0.05 and power of 0.90.
The two groups were similar in terms of age and body mass
index (BMI). Inclusion criteria were as follows: women who are
aged between 19 and 50 years, non-smokers. Exclusion criteria
were as follows: under 18 and over 50 years, smoking, preg‐
nancy, breastfeeding, menopause, respiratory tract infection in
the past four weeks, malignancy, or chronic diseases other than
asthma, regular antioxidant dietary supplement use, unreliable
nutritional information, and lack of voluntary participation. The
majority of the asthmatic women (83.4%) were on inhaled corti‐
costeroid treatment, and patients using systemic corticosteroids
or in exacerbation, which might affect food intake and pulmonary
functions, were excluded.(19)

All procedures performed in this study involving human
participants were by the regional ethics committee of the Antalya
Training and Research Hospital, University of Health Sciences,
Türkiye (Decision number: 12/29, Date: 02.05.2019) and 1964
Helsinki declaration and its later amendments or comparable
ethical standards. Ethics approval was obtained from the Univer‐
sity of Health Sciences, Antalya Training and Research
Hospital’s Clinical Ethics Committee before conducting this
research. Demographic data, including age, marital status, total
education time, alcohol use, and physical activity were collected
by a survey.

Lung function. Pulmonary functions were evaluated using a
ZAN-GPI 3.00 spirometer (Nspire Health GmbH, Oberthulba,
Germany), and a healthcare specialist recorded the best value
from 3 maneuvers as an absolute value. The forced expiratory
volume in one second (FEV1) and forced vital capacity (FVC)
were presented as a percentage of predicted values adjusted for
age, sex, and height.

Anthropometry. The anthropometric measurements such as
height, waist circumference, and hip circumference were taken
using a stretch-resistant tape, and an electronic scale sensitive to
0.1 kg (Premier “PWS 2039” scale, Nasmina Electronic, Zhong‐
shan Guangdong, China). Height was measured using stretch
resistant tape, without shoes, and on a Frankfort plane position.
Waist and hip circumference were obtained following the
protocol established by the World Health Organization
(WHO).(20) Following the WHO guidelines, the participants’
BMI (kg/m2) and waist-hip ratio were calculated and classified
accordingly.(20,21)

Biochemical analysis. After an overnight fast of at least 8 h,
blood samples were collected from the participants. Eosinophil
and immunoglobulin E (Ig E) levels were determined using the
laboratory procedures of the hospital. The serum levels of IL-6
and TNF-α were measured using commercial ELISA kits from
Elabscience Inc. (Houston, TX) (Catalog nos. E-EL-H0102 and
E-EL-H0109, respectively). The turbidimetric method was used
to identify high-sensitivity CRP parameters (Catalog no.
OSR6299) with Beckman Coulter Au5811. The levels of plasma
total antioxidant status (TAS) and total oxidant status (TOS) were
measured using a method developed by Erel.(22,23) TAS results
were expressed as μmol Trolox equiv./L, and TOS results were
expressed as μmol H2O2 equiv./L. The oxidative stress index

(OSI) was calculated using the formula: [TOS (μmol H2O2
equiv./L) × 100/TAS (μmol·Trolox·equiv/L)]. All tests were
conducted in duplicate according to the manufacturer’s guide‐
lines.

Dietary intake assessments. A 161-itemized semi-
quantitative food frequency questionnaire (FFQ) was utilized by
a research dietitian to estimate the participants’ dietary data
through face-to-face interviews. Portion sizes were determined
using a photographic atlas,(24) and daily intake was calculated by
multiplying consumption frequency by standard portion size
weight. Daily dietary energy and antioxidant micronutrients were
calculated using BEBİS 8.1 (Nutrition Information System)
program.(25) Flavonoid intake was assessed using the expanded
USDA Flavonoid Database for the Assessment of Dietary Intakes
(FDB-EXP)(26) and the USDA Flavonoid Content of Selected
Foods 3.3,(27) while excluding animal-based products; however,
including eggs in isoflavone intake calculations due to the poten‐
tial contribution of soybean meal in poultry.(28) The intake of
flavonoids was calculated by multiplying the consumption
frequency of each food by the flavonoid content of the specified
portion size, and the total flavonoid consumption was calculated
as the sum of all flavonoid subclasses (isoflavones, anthocyani‐
dins, flavan-3-ols, flavanones, flavones, and flavonols)(24) from
the 119 kinds of foods and beverages commonly consumed by
the FFQ.

Energy-adjustment calculation. To control for potential
confounding effects of differences in energy intake, we used the
residuals method described by Willet et al.(29) to analyze the asso‐
ciation between energy-adjusted dietary antioxidants and the risk
of asthma. Linear regression equations were established for each
dietary antioxidant group, where the dependent variable was
nutrient or flavonoid intake, and the independent variable was
total energy intake. The energy-adjusted intake for each antioxi‐
dant was computed by adding the mean dietary intake of the
study population to the residual of the regression analysis.

Statistical analysis. The data were reported using means ±
SD, median (interquartile range), frequency, and percentage (%).
Chi-square tests were used to analyze categorical data, while the
Mann–Whitney U test and Student t test were employed for
continuous and numerical data, respectively, based on their
appropriateness after verifying normal distribution. Due to the
non-normal distribution of serum inflammation and antioxidant
parameters, the correlation between dietary antioxidants and
serum parameters was analyzed using Spearman correlation
analysis. Multivariate logistic regression was used to investigate
dietary intake differences between the two groups, adjusting for
potential confounding factors such as total education time,
alcohol intake, and waist circumference. IBM SPSS ver. 23 was
used for statistical analysis with a significance set at p<0.05.

Results

Table 1 presents the general characteristics of the study.
Although asthma cases and healthy controls had similar age and
BMI ranges, asthmatic women exhibited a significantly higher
mean waist circumference (p = 0.035) and lower total education
time, alcohol use, and physical activity levels (p = 0.001, p =
0.003, and p = 0.033, respectively). Asthmatic women also
demonstrated worse lung function and higher levels of blood
eosinophils %, Ig E, and IL-6, while having a lower serum TAS
than healthy controls (p = 0.018, p = 0.004, p = 0.001, and p =
0.037, respectively). No significant differences were found in the
dietary intake of antioxidant nutrients or other serum inflamma‐
tory markers or oxidative stress parameters. Notably, only one
asthmatic woman in the study consumed alcohol, while healthy
women exhibited a significantly higher alcohol consumption rate.
Additionally, healthy women preferred wine, although this was
not shown in Table 1.
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The dietary intake of antioxidant vitamins and minerals did not
differ significantly between asthma cases and healthy controls.
However, asthmatic women had a significantly higher total
energy intake, while anthocyanidin intake was significantly lower
compared to healthy controls. No differences were found in other
flavonoid subgroups or total flavonoid intakes (Table 2). After
adjusting for potential confounding factors, participants with
higher anthocyanidin intake demonstrated a significantly lower
risk for asthma (OR = 0.975, 95% CI: 0.954, 0.998). However,
after further adjustments for Ig E (Model 2), the association
attenuated (OR = 0.981, 95% CI: 0.954, 1.009).

In the total sample, we found significant negative correlations
between IL-6 and dietary vitamin E intake, and TNF-α and
magnesium, respectively (Fig. 1). Figure 2 illustrates a negative
correlation between flavonols and serum TOS, flavan-3-ols,
flavonols and serum OSI in asthma cases (p<0.05). Additionally,
in healthy controls, a significant negative correlation between
IL-6 and vitamin C was observed (p<0.05) (the figure is not
shown).

In Table 3, the dietary intake of food groups is presented for
both asthma cases and healthy controls. Asthma cases demon‐
strated higher legume intake and lower coffee consumption
compared to healthy controls. Regression analysis indicated a
significant association between coffee consumption and asthma
risk when adjusted for potential confounding factors (Model 1)
(OR = 0.991, 95% CI: 0.983, 1.000). However, after further

adjustments for Ig E (Model 2), this association weakened to
non-significance (OR = 0.989, 95% CI: 0.975, 1.003).
Conversely, in Model 2, asthma was found to be significantly
associated with olive oil consumption (OR = 0.809, 95% CI:
0.679, 0.963) (Table 3).

Discussion

Our study investigated the differences in dietary antioxidants
in asthmatic women compared to healthy women of reproductive
age. No significant differences were found in dietary antioxidant
nutrients between asthmatic women and healthy controls.
However, asthmatic women had a lower intake of anthocyani‐
dins, a subclass of flavonoids, compared to healthy controls. A
higher intake of anthocyanidin was associated with a decreased
risk of asthma in women. In addition, asthmatic women exhibited
elevated plasma IL-6 levels and decreased plasma TAS levels in
comparison to healthy controls.
The relationship between dietary intake of antioxidant

nutrients and adult asthma remains uncertain due to conflicting
findings in the literature.(15,16) Although certain studies have
stated significant differences in antioxidant intake(30–32) and
plasma antioxidant levels(33,34) between asthmatics and healthy
individuals, others have not. Previous studies(7,35,36) showed no
significant differences in the intake of ascorbic acid, vitamin E
(tocopherols), and vitamin A (carotene, and retinol), magnesium,

Table 1. Baseline characteristics and biochemical variables of the asthma cases and control groups

Variables Asthma cases (n = 30) Healthy controls (n = 30) p*

Age (years) 35.00 (22.75, 42.25) 30.00 (28.75, 37.00) 0.888a

Marital Status

 Married 19 (63.3) 17 (56.7) 0.598b

 Single 11 (36.7) 13 (43.3)

Total education time 12.30 ± 4.39 16.07 ± 3.44 <0.001c

Alcohol use 1 (3.3) 10 (33.3) 0.003b

Physical activity 3 (10.0) 11 (36.7) 0.033d

Weight (kg) 67.68 ± 10.40 64.89 ± 10.06 0.296c

BMI (kg/m2) 25.65 (21.48, 28.90) 24.60 (21.50, 26.73) 0.255c

Waist circumference (cm) 87.9 ± 12.52 81.45 ± 10.59 0.035c

Waist circumference evaluation

 Healthy 9 (30.0)a 15 (50.0)a 0.059e

 Increased risk 6 (20.0)a 9 (30.0)a

 Substantially increased risk 15 (50.0)a 6 (20.0)b

Waist/Hip ratio 0.84 ± 0.06 0.81 ± 0.08 0.105c

Respiratory Function

 FEV1 % predicted 94.07 ± 12.13 101.37 ± 10.98 0.018c

 FVC % predicted 96.67 ± 11.40 101.03 ± 7.87 0.090c

 FEV1/FVC % 102.07 ± 8.97 104.50 ± 7.75 0.266c

Biochemical variables

 Eosinophils % 2.40 (1.68, 3.48) 1.50 (1.28, 2.28) 0.004a

 Immunoglobulin E (IU/ml) 97.05 (30.75, 190.50) 19.50 (18.90, 35.15) <0.001a

 IL-6 (pg/ml) 17.87 (15.33, 38.56) 14.02 (11.43, 19.40) 0.037a

 TNF-α (pg/ml) 13.42 (6.45, 41.60) 14.80 (5.27, 29.21) 0.668a

 hs-CRP (mg/L) 1.85 (0.65, 6.90) 0.84 (0.19, 2.36) 0.085a

 TAS (mmol/L) 1.26 (1.16, 1.30) 1.35 (1.20, 1.44) 0.029a

 TOS (μmol/L) 4.61 (3.92, 5.56) 3.99 (2.77, 5.80) 0.169a

 OSI 0.37 (0.32, 0.44) 0.32 (0.19, 0.45) 0.107a

Data were presented as mean ± SD, n (%), or median (Interquartile range), where appropriate. BMI, body mass index; IL-6, interleukin 6; TNF-α,
tumor necrosis factor-alpha; hs-CRP, high-sensitivity C-reactive protein; TAS, total antioxidant status; TOS, total oxidant status; OSI, oxidative stress
index. *The detailed explanation of p values were is as follows: aMann–Whitney U test, bchi-square test, cIndependent t test, dYate’s continuity
correction in chi-square test, eFisher–Freeman–Halton test.
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zinc, copper, or manganese between asthmatics and controls. Our
study aligns with these previous findings and suggests that
flavonoids, rather than micronutrients, might be involved in the
association between dietary antioxidants and asthma.
Over the past decade, the immunomodulatory, anti-

inflammatory, anti-allergic, and antioxidant properties of
flavonoids in asthma have been emphasized.(16,37) Flavonoids are
known to reduce inflammation and exert immunomodulatory
effects by inhibiting histamine release, enzymes in arachidonic
acid metabolism, cytokine production, and regulating transcrip‐
tion factors.(38) They also have antioxidant effects due to their
ability to scavenge reactive substances and regulate antioxidant
enzymes.(13,38,39) While earlier studies indicate that a higher intake
of flavonoids is linked with a reduced risk of asthma,(18,35) other
studies have shown no association.(13,17) Our study revealed that
asthmatic women had a lower energy-adjusted intake of antho‐
cyanins compared to healthy women, which may be explained by
their lower berries and wine consumption. Our results also
revealed that energy-adjusted flavonols intake and flavan-3-ols
related to TOS and OSI. The conflicting results of previous
studies on the dietary intake of flavonoids could be attributed to
variations in the types of flavonoids examined, databases utilized
for flavonoid calculation,(37) and differences in consumption
of flavonoids based on geographical location and cultural
factors.(13,17,18,40)

Anthocyanins, responsible for the colors of foods, can reduce
cyclooxygenase gene activation, a key factor in the inflammatory
reaction, associated with the pathogenesis of asthma. A recent
experimental study showed that anthocyanins inhibited the NF-
κB pathway, leading to reduced airway hyperresponsiveness and
Ig-E-related inflammation.(41) However, after adjusting for Ig E,
the relationship between dietary anthocyanidin intake and asthma
risk became non-significant, possibly due to flavonoids’ assumed
anti-allergic property. Studies on the link between higher
consumption of fruit, vegetables, wine, and tea and a reduced risk
of asthma have produced mixed results.(17,35,42,43) Recent studies
suggest that coffee and wine consumption may also be related to
asthma risk,(44,45) possibly due to their other parameters like
methylxanthines, phenolic acids, or stilbenes, which can promote
stable gut microbiota and reduce inflammation linked to allergic
conditions.(46) Although controlling for serum Ig E concentration
attenuated the association between coffee consumption and
asthma risk, adjusting for all covariates, including Ig E, revealed
a significant inverse association between consuming olive oil and
asthma risk. Olive oil’s antioxidant and anti-inflammatory
properties, as well as its content of fatty acids, vitamin E and
polyphenolic compounds such as tocopherols, oleuropein, and
hydroxytyrosine, may be responsible for its protective effect on
asthma/atopy.(47) In a study by Cazzoletti et al.(48) reported that
olive oil consumption was associated with reduced asthma risk in
adults, which aligns with our own findings.

Our study has some strengths. Firstly, we evaluated the dietary
intake of antioxidants alongside systemic inflammatory and
antioxidant/oxidant parameters. Secondly, using six subclasses of
flavonoids calculated from current USDA databases that provide
updated information on the flavonoid content of foods and bever‐
ages, we examined the association between asthma and flavonoid
intake. This data enabled us to quantify flavonoid intake with
more robust evidence than in previous studies. Finally, our FFQ
included an extensive list of fruits and vegetables and other

dietary sources known to be flavonoid-rich.
Determining whether the observed differences in dietary

antioxidants and systemic inflammation and oxidative stress
parameters are a cause or a consequence of asthma is limited by
the cross-sectional case-control design of our study. We cannot
conclude whether asthma causes an altered dietary intake of
flavonoids or vice versa. Furthermore, the role played by the
colonic microbiota in metabolizing these antioxidants makes it
difficult to interpret these results. To clarify these findings,
further large case-control and cohort studies with other inflam‐
matory and oxidative stress parameters are needed.
This study indicates that women with asthma in reproductive

age have similar dietary intake of antioxidant nutrients but may
differ in their intake of flavonoids and flavonoid-containing
foods, which could be linked to serum IL-6 and antioxidant
status. The literature supports increasing dietary intake of
flavonoid-rich groups, such as fruits and vegetables, to benefit
clinical practice. Encouraging a diverse and colourful diet to
increase flavonoid intake may have potential benefits for asthma
in women.
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