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Abstract: The reactivity of the reduced anthracene complex
of scandium [Li(thf)3][Sc{N(tBu)Xy}2(anth)] (2-anth-Li) (Xy=

3,5-Me2C6H3; anth=C14H10
2� , thf= tetrahydrofuran) toward

Brønsted acid [NEt3H][BPh4] and azobenzene is reported.
While a stepwise protonation of 2-anth-Li with two equiv-
alents of [NEt3H][BPh4] afforded the scandium cation [Sc
{N(tBu)Xy}2(thf)2][BPh4] (3), reduction of azobenzene gave a
thermolabile, anionic scandium reduced azobenzene com-
plex [Li(thf)][Sc{N(tBu)Xy}2(η

2-PhNNPh)] (4), which slowly lost
one of the anilide ligands to form the neutral scandium
azobenzene complex dimer [Sc{N(tBu)Xy}(μ-η2:η2-Ph2N2)]2 (5).

Exposure of 3 to CO2 produced the scandium carbamate
complex [Sc{k2-O2CN(tBu)(Xy)}2][BPh4] (6) as a result of CO2

insertion into the Sc� N bonds. In an attempt to prepare
scandium hydrides, the reaction of 3 with the hydride sources
LiAlH4 and Na[BEt3H] led to the terminal aluminum hydride
[AlH{N(tBu)Xy}2(thf)] (7) and the scandium n-butoxide [Sc
{N(tBu)(Xy)}2(μ-OnBu)] (8) after Sc/Al transmetalation and
nucleophilic ring-opening of THF, respectively. All reported
compounds isolated in moderate to good yields were fully
characterized.

Introduction

The chemistry of early transition metals is dominated by their
high-valent states owing to their highly oxophilic and electro-
positive nature.[1] In recent years low-valent early transition
metal complexes have attracted attention due to their stoichio-
metric as well as catalytic applications in small molecule
activation,[2] reductive coupling[3] and radical reactions.[4] High
reactivity and the tendency towards oxidation to their highest
oxidation states often makes isolation of these low-valent early
transition metal complexes challenging. Specifically, for scan-
dium, the transition metal with the lowest atomic number, only
a limited number of complexes in its low valent states are
known, with just a few of them isolated and structurally
characterized.[5] For instance, the first isolated examples of ScII

complexes [M(L)]][Sc{N(SiMe3)2}3] (M=K and Cs; L=2.2.2-crypt-
and and 18-crown-6) were reported by Evans et al. only in 2017
and were shown to activate CO2 and N2 even at low
temperature.[6] General paucity of such low-valent scandium
complexes hindered the exploration of their reactivity. The use
of transition metal reduced arene complexes to mimic the
property of low-valent transition metal complexes is an
alternative approach that has been applied in recent years.[7] In

this regard, a series of scandium reduced arene complexes of
the general formula [(NNfc)Sc]2(μ-RA) (NN

fc= (NSitBuMe2)2fc; fc=

1,1’-ferrocenediyl; RA=C10H8
2� (I), C14H10

2� (II))[8] and [M(thf)n][Sc
{N(tBu)Xy}2(RA)] (M=Li–K; n=1–6; RA=C10H8

2� (2-naph-M) and
C14H10

2� (2-anth-M); Xy= 3,5-Me2C6H3)
[9] were prepared by

Diaconescu et al. and our group. While I and II were shown to
activate P4,

[10] C� F bonds,[11] and promote reductive C� C
coupling reaction of alkynes[12] and pyridine,[8] 2-anth-Li endure
C� C coupling reaction of nitriles with reduced anthracene
ligand.[9] As a continuation of our work, we present here a
systematic study on the protonation of the reduced anthracene
complex 2-anth-Li with Brönsted acid to afford a dianilide
scandium cation, and the use of 2-anth-Li as a 2e� donor
reagent in the reduction of azobenzene.

Results and Discussion

A systematic study on the protonation of transition metal
complexes of dianionic naphthalene or anthracene ligand has
not been reported,[8] prompting us to investigate the proto-
nation of the recently reported scandium reduced anthracene
complex [Li(thf)3][Sc{N(tBu)Xy}2(anth)] (2-anth-Li) (Xy=3,5-
Me2C6H3; anth=C14H10

2� ). In our earlier report we have shown
that the protonation of 2-anth-Li with one equivalent of
[NEt3H][BPh4] led to the formation of the scandium anthracenyl
complex [Sc{N(tBu)Xy}2(C14H11)(thf)].

[9] Here we present a step-
wise protonation of 2-anth-Li with two equivalent of
[NEt3H][BPh4] in THF that produced the bis(anilide) scandium
cation [Sc{N(tBu)Xy}2(thf)2][BPh4] (3) after elimination of 9,10-
dihydroanthracene (Scheme 1, Figure S5). After work-up, com-
pound 3 was isolated as a spectroscopically pure, colorless solid
in 81% yield (See supporting information (SI), Sec. 2.2).
Compound 3 was also obtained in a more efficient way starting
from the scandium alkyl complex [Sc{N(tBu)Xy}2(CH2SiMe3)(thf)]
(1-CH2SiMe3), which was prepared by salt metathesis of [ScCl

[a] Dr. P. Ghana, Dr. T. P. Spaniol, Prof. Dr. J. Okuda
Institute of Inorganic Chemistry
RWTH Aachen University
Landoltweg 1, 52056 Aachen (Germany)
E-mail: jun.okuda@ac.rwth-aachen.de
Supporting information for this article is available on the WWW under
https://doi.org/10.1002/asia.202100684
This manuscript is part of a special collection on Metals in Functional Ma-
terials and Catalysis.
© 2021 The Authors. Chemistry - An Asian Journal published by Wiley-VCH
GmbH. This is an open access article under the terms of the Creative
Commons Attribution Non-Commercial NoDerivs License, which permits use
and distribution in any medium, provided the original work is properly cited,
the use is non-commercial and no modifications or adaptations are made.

Full Paperdoi.org/10.1002/asia.202100684

3170Chem Asian J. 2021, 16, 3170–3178 © 2021 The Authors. Chemistry - An Asian Journal published by
Wiley-VCH GmbH

Wiley VCH Freitag, 01.10.2021

2120 / 217291 [S. 3170/3178] 1

https://doi.org/10.1002/asia.202100684


{N(tBu)Xy}2(thf)] (1-Cl) with LiCH2SiMe3 (Scheme 1) and fully
characterized by multinuclear magnetic resonance spectro-
scopy, elemental analysis, and single crystal X-ray diffraction
(See SI, Sec. 2.1 and 3). Protonation of 1-CH2SiMe3 with one
equivalent of [NEt3H][BPh4] under ambient condition afforded
the scandium cation 3 in 88% isolated yield (See SI, Sec. 2.2).
Thermally stable compound 3 is highly soluble in THF but
insoluble in Et2O, benzene, or aliphatic hydrocarbons.

The molecular structure of 3, as confirmed by single crystal
X-ray diffraction, revealed that the cation is well separated from
the BPh4 anion with a closest Sc···H distance of 5.8829(5) Å.
Compound 3 represents a rare example of a structurally
characterized scandium cation.[13,14] In the solid state the tetra-
coordinate scandium atom resides in a distorted tetrahedral
environment formed by the two anilide ligands and two THF
molecules (Figure 1). The Sc� N distances of 1.9913(16) and
2.0327(18) Å in complex 3 are significantly shorter compared to
that of the precursor 2-anth-Li (d(Sc� N)avg=2.126 Å)[9] or 1-
CH2SiMe3 (d(Sc� N)avg=2.072 Å) (Figure S28), indicating an in-
creased N!Sc donation due to the increased positive charge
on the scandium atom. Similarly, Sc� O bonds (d(Sc� O)avg=

2.1418 Å) in 3 are also shorter compared to that found in 1-
CH2SiMe3 (d(Sc� O)=2.190(2) Å) (Figure S28).

Further structural information of 3 was obtained from
multinuclear magnetic resonance spectroscopy. The 1H and 13C
{1H} NMR spectra in [D8]THF corroborate well with the solid-
state structure and display a single set of signals in a 2 :1 ratio
for the anilide ligands and [BPh4]

� anion. The most character-
istic spectroscopic feature of compound 3 is the broad 45Sc
NMR signal at δ=312 ppm (Δv1/2= ~10000 Hz, Figure S9) that
appears at a higher field when compared to that of the

scandium alkyl complex 1-CH2SiMe3 (δ(45Sc)=464 ppm, Δv1/2=

~10000 Hz, Figure S4). As expected, the 11B{1H} NMR spectrum
shows a sharp singlet at δ= � 6.5 ppm for the [BPh4]

� ion
(Figure S8).

Previously we have shown that 2-anth-Li acts as a one-
electron donor in the reduction of nitriles.[9] Here we present
the reduction of trans-azobenzene with 2-anth-Li, where it acts
as a two-electron donor reagent. Thus, the addition of an
orange solution of trans-azobenzene in THF to 2-anth-Li at

Scheme 1. Synthesis of the scandium alkyl complex 1-CH2SiMe3 and scandium cation 3.

Figure 1. Molecular structure of 3 in the solid state with displacement
parameters at 30% probability level. H atoms and [BPh4] anion are omitted
for clarity. Selected interatomic distances (Å) and angles (°): Sc1-N1
1.9913(16), Sc1-N2 2.0327(18), Sc1-O1 2.1478(14), Sc1-O2 2.1357(14); N1-Sc1-
N2 118.46(7), N1-Sc1-O1 122.76(6), N2-Sc1-O1 113.88(6), N1-Sc1-O2
103.24(6), N2-Sc1-O2 101.96(6), O1-Sc1-O2 86.69(5).
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� 36 °C led to an immediate reaction as observed by a rapid
color change from dark red to light yellow. Monitoring the
reaction by 1H NMR spectroscopy confirmed the formation of
the reduced azobenzene complex [Li(thf)2][Sc{N(tBu)Xy}2(η

2-
PhNNPh)] (4) along with free anthracene (Scheme 2, Figure S10).
After work-up, 4 was isolated as a colorless solid in 46% yield
(See SI, Sec. 2.3). Compound 4 can also be prepared starting
from scandium cation 3. Thus, the reaction of 3 with one
equivalent of [Li2N2Ph2] in THF at � 36 °C led to a selective
formation of 4 along with one equivalent of Li[BPh4] (Scheme 2).
Compound 4 was obtained as an analytically pure solid in 51%
yield (See SI, Sec. 2.3). Despite its ionic character, 4 is soluble in
aliphatic solvents. In the solid-state compound 4 is thermally
stable but in solution it slowly but selectively loses one of the
anilide ligands (vide infra).

The reduced azobenzene complex 4 was fully characterized
by multinuclear magnetic resonance spectroscopy and elemen-
tal analysis. In addition, the molecular structure was confirmed
by X-ray diffraction on a suitable single crystal obtained upon
storing a saturated solution of 4 in diethyl ether/n-pentane
mixture at room temperature. The molecular structure revealed
a contact ion pair with the tricoordinate, planar lithium ion
(�ffLi=359.4°) connected to the anionic fragment through
bonding with one of the nitrogens of reduced azobenzene
ligand (d(Li1-N1)=1.961(7)) and anilide ligands (d(Li1-N3)=
2.126(8)) (Figure 2). Compound 4 represents the second exam-
ple of a structurally characterized reduced azobenzene complex
of scandium, just after the recently reported cyclopentadienyl
complex [K(crypt)][(η5-C5Me5)(C(tBu){N(iPr)}2)Sc(η

2-N2Ph2)]
(crypt= [2.2.2]-cryptand).[15] As expected, the dianionic azoben-

zene ligand is bonded to the penta-coordinate scandium(III)
center in an η2-fashion and behaves as a π-donor ligand, as
evident from the torsion angle CPh� N1-N2-CPh of � 91.4(4)°.[16]

Due to the coordination of one of the nitrogen atoms of the

Scheme 2. Synthesis of scandium azobenzene complexes 4 and 5.

Figure 2. Molecular structure of 4 in the solid state with displacement
parameters at 30% probability level. H atoms are omitted for clarity.
Selected interatomic distances (Å) and angles (°): Sc1-N1 2.150(3), Sc1-N2
2.038(3), Sc1-N3 2.206(3), Sc1-N4 2.055(3), Sc1-O1 2.207(3), N1-N2 1.469(4),
Li1-N1 1.961(7), Li1-N3 2.126(8), Li1-O2 1.912(6); N1-Sc1-N2 40.96(11), N3-
Sc1-N4 131.24(10), N1-Sc1-N3 89.84(11), N1-Sc1-N4 110.40(12), N2-Sc1-N3
107.28(11), N2-Sc1-N4 117.10(12), N3-Sc1-O1 93.85(10), N4-Sc1-O1 96.02(10),
N1-Li1-N3 97.6(3).
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azobenzene ligand with the lithium cation, the Sc� N bond
distances (d(Sc1-N1)=2.150(3) Å, d(Sc1-N2)=2.038(3) Å) differ
significantly from each other. For the same reason, the Sc� N
bond distances (d(Sc1-N3)=2.206(3) Å, d(Sc1-N4)=2.055(3) Å)
of the anilide ligands also differ markedly from each other. Such
an elongation of the Sc� N bonds for the tetra-coordinate
nitrogen atoms (N1 and N3) compared to that of the tri-
coordinate nitrogen atoms (N2 and N4) can be explained by the
higher coordination number and a decreased N!Sc donation.
The N1-N2 bond distance of 1.469(4) Å in the reduced
azobenzene ligand is significantly longer than that of free
azobenzene (d(N=N)=1.249(4) Å),[17] but compares well with
the N� N distance of the reported scandium azobenzene
complex [K(crypt)][(η5-C5Me5)(C(tBu){N(iPr)}2)Sc(N2Ph2)] (d(N� N) -
=1.4727(15) Å).[15]

Further structural information of 4 in solution was obtained
by multinuclear magnetic resonance spectroscopy in [D8]THF. In
contrast to the C1-symmetric structure in the solid-state, the 1H
NMR spectrum of 4 at 296 K indicates a more symmetric
structure (Cs), as confirmed by a single set of signals both for
the phenyl and the xylyl groups (Figure S11). Such a higher
symmetry in solution suggests a fluxional structure at room
temperature. At 253 K, the 1H and the 13C{1H} NMR spectra
display two sets of signals for the ortho- and meta-CH of the
phenyl groups and broadening of the signals corresponding to
tBu and para-CH of the xylyl groups, implying a lower symmetry
at low temperatures. The 45Sc NMR spectrum of 4 in [D8]THF at
253 °K displays a very broad signal at δ=349 ppm (Δv1/2= ~
35000 Hz, Figure S15), which is at a slightly lower field
compared to that of the scandium cation 3 (δ=312 ppm, Δv1/
2= ~10000 Hz). The 7Li{1H} NMR spectrum of 4 displays a sharp

signal at δ � 0.5 ppm for the lithium cation (Figure S14) and the
value appears slightly upfield shifted compared to that of LiCl
in [D8]THF (δ=0.5 ppm).

Compound 4 is thermolabile in solution under ambient
conditions. The 1H NMR spectroscopy of a [D8]THF solution of 4
revealed that the decomposition slowly but selectively leads to
the neutral scandium azobenzene dimer [Sc{N(tBu)Xy}(μ-η2:η2-
Ph2N2)(thf)]2 (5) after elimination of [LiN(tBu)Xy] (Scheme 2).
Compound 5 was prepared on a synthetic scale by heating a
[D8]THF solution of 4 for 8 h at 70 °C and isolated, after work-
up, as an analytically pure, colorless solid in 62% yield (see SI,
Sec. 2.4). The elimination of an anilide ligand from a metal
center under ambient conditions is quite unusual, though it
was observed before under strongly reducing conditions.[9,18]

Unlike the precursor 4, compound 5 is sparingly soluble in THF
at room temperature and a thermally stable solid under
complete exclusion of air.

The molecular structure of 5 was confirmed by single crystal
X-ray diffraction. Compound 5 represents the first example of a
dimeric scandium reduced azobenzene complex. Such dimeric
complexes were mainly observed for lanthanides,[19] and except
La,[20] similar complexes have never been isolated for other
transition metals. This observation suggests that group 3 metals
behave like lanthanides. The molecular structure of 5 revealed a
centrosymmetric molecule with a very short Sc···Sc distance
(3.0313(9) Å) between two hexacoordinate scandium centers
(Figure 3). The reduced azobenzene ligands unsymmetrically
bind the scandium centers, as evident from a short and a long
Sc� N bond. The short Sc1-N1 bond distance of 2.0781(18) Å is
appropriate for a Sc-Namide bond and compares well with that of
the anionic complex 4 (d(Sc� N)avg=2.094 Å) as well as its own

Figure 3. Molecular structure of 5 in the solid state with displacement parameters at 30% probability level. H atoms are omitted for clarity. Selected
interatomic distances (Å) and angles (°): Sc1-N1 2.0781(18), Sc1-N2 2.5155(19), Sc1-N3 2.042(2), Sc1-O1 2.1953(16), N1-N2 1.457(2); N1-Sc1-N2 35.39(7), N1-Sc1-
N3 110.86(7), N2-Sc1-N3 137.05(7), O1-Sc1-N1 127.98(7), O1-Sc1-N2 96.49(6), O1-Sc1-N3 93.97(7), Sc1-N1-Sc1’ 86.98(7), Sc1-N2-Sc1’ 81.90(6).
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Sc1-N3 bond (2.042(2) Å). On the other hand, the Sc1-N2 bond
distance of 2.5155(19) Å is significantly higher (21%) than the
Sc1-N1 bond distance and characteristic for a Sc-Namine bond.

[21]

The N� N bond distance of 1.457(2) Å of the azobenzene ligands
is comparable to that of the precursor 4 (d(N� N)=1.469(4) Å)
and also comparable with that of the lanthanide complexes of
reduced azobenzene dimer.[19,20] The long N� N bond along with
the bond angles around each tetra-coordinate nitrogen atom
clearly supports their sp3 hybridization.

The solution structure of compound 5 is consistent with the
solid-state structure, as confirmed by the multinuclear magnetic
resonance spectroscopy in [D8]THF that revealed a single set of
signals for the anilide and the azobenzene ligands. Akin to
precursor 4, the resonance corresponding to the ortho-CH
signal of the aryl groups of 5 appears as a broad signal in the
region δ=6.30–6.55 ppm (Figure S16), indicating a hindered
rotation around N-Cph bond. Several attempts to observe a 45Sc
NMR signal remained unsuccessful due to the low solubility of 5
in [D8]THF.

The reaction of a THF solution of 3 with CO2 led to the
selective formation of the scandium dicarbamate complex [Sc
{k2-O2CN(tBu)(Xy)}2(thf)3][BPh4] (6) after insertion of CO2 into the
Sc� N bonds (Scheme 3). The insertion of CO2 into the TM-Namide

(TM= transition metal) bond is well-known[22] and such a CO2

insertion into the TM-Nanilide bond was also observed in few

cases.[23] The formation of a scandium carbamate complex
through CO2 insertion into the Sc� N bond was never observed.
Compound 6 was isolated as an analytically pure, colorless solid
in 92% yield. (see SI, Sec. 2.5).

The solid-state structure of 6, as determined by single
crystal X-ray diffraction, revealed a seven-coordinate scandium
center bonded to two k2-coordinated carbamate ligands (O2CN-
(tBu)(Xy)) and three THF molecules in a distorted pentagonal
bipyramidal coordination geometry (Figure 4). Compound 6 is
the first example of a structurally characterized dicarbamate
complex of scandium. While the four oxygen atoms of the two
carbamate ligands and a THF molecule reside in the pentagonal
plane (O� Sc� O bond angle range between 61.22(5) and
82.19(6)°), the other two oxygen atoms from the remaining THF
molecules occupy the axial positions (ffO5-Sc1-O7=175.61(6)°).
The large deviation of the O� Sc� O bond angles from the ideal
72° of the pentagonal plane arises from the small bite angle of
the carbamate ligands. As expected, the Sc� O bond distances
between the Sc and the k2-coordinated, anionic carbamate
ligands are nearly the same and appear in the range of
2.1407(13)–2.1625(12) Å, those are only marginally shorter than
the Sc� O distances (d(Sc-OTHF)avg=2.1744 Å) of the THF mole-
cules.

Further structural information of 6 in solution was obtained
by multinuclear magnetic resonance spectroscopy measured in

Scheme 3. Reaction of scandium cation 3 with CO2.

Figure 4. Molecular structure of 6 in the solid state with displacement parameters at 30% probability level. H atoms and [BPh4] anion are omitted for clarity.
Selected interatomic distances (Å) and angles (°): Sc1-O1 2.1407(13), Sc1-O2 2.1625(12), Sc1-O3 2.1571(12), Sc1-O4 2.1468(12), Sc1-O5 2.1622(14), Sc1-O6
2.1951(12), Sc1-O7 2.1659(14), C1-N1 1.354(2), C2-N2 1.353(2); O1-Sc1-O2 61.22(5), O3-Sc1-O4 61.27(6), O5-Sc1-O6 91.54(5), O5-Sc1-O7 175.61(6), O1-Sc1-O4
82.19(6), O2-Sc1-O6 78.59(6), O3-Sc1-O6 76.85(5).
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[D8]THF at 296 K. The 1H and 13C{1H} NMR spectra shows a single
set of signals for the carbamate ligands (Figure S18 and S19),
indicating a symmetric structure in solution, as found in the
solid-state. The most characteristic signal in the 13C{1H} NMR
spectrum is that of the O2C carbon atoms of the carbamate
ligands at δ=170.6 ppm that compares well with the value
found in group 4 metal carbamate complexes.[24] The 45Sc NMR
spectrum of 6 displays relatively a sharp signal at δ=67 ppm
(Δv1/2= ~1100 Hz) that is significantly upfield shifted compared
to the value found for the precursor 3 (δ=312 ppm). As
expected, the 11B{1H} NMR spectrum gave a sharp signal at δ=

� 6.5 ppm for the [BPh4]
� ion.

Molecular scandium hydrides are rare but constitute an
important class of homogeneous olefin hydrogenation and
polymerization catalysts.[25] This inspired us to attempt the
synthesis of scandium hydride by reacting scandium cation 3
with hydride reagents. Reactions of 3 with hydride sources such
as LiAlH4 and Na[BEt3H], however, did not give any scandium
hydrides ‘‘[ScH{N(tBu)(Xy)}2(thf)]’’. The addition of LiAlH4 to 3 in
THF at � 30 °C resulted in the aluminum hydride [AlH{N-
(tBu)(Xy)}2(thf)] (7) after transmetalation of scandium with
aluminum (Scheme 4). After work-up, compound 7 was isolated
as an analytically pure, colorless crystals in 55% yield (see SI,
Sec. 2.6). A similar transmetalation reaction was also used
before to synthesize aryl-substituted aluminum hydride
[Mes*2AlH] starting from the corresponding gallium and indium
hydride [Mes*2MH] (Mes*=C6H2-2,4,6-tBu3; M=Ga, In) and
LiAlH4.

[26] The formation of such an aluminum hydride from any
transition metal complex through transmetalation is quite
unusual.[27] The fate of scandium remained undetermined.

The monomeric structure of 7 in the solid-state was
confirmed by single crystal X-ray diffraction analysis (Figure 5).
The molecular structure revealed an expected distorted tetrahe-
dral geometry around the tetra-coordinate aluminum center.
The Al1-H1 bond distance of 1.52(2) Å compares well with that
of the above-mentioned three-coordinate, terminal aluminum

hydride [Mes*2AlH] (d(Al� H)=1.53(4) Å)[26a] or with the Al� H
distance found (d(Al� H)=1.49(2) Å) in the recently reported
four-coordinate, terminal aluminum hydride [(NON)AlH] (NON=

4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimeth-
ylxanthene).[28] The Al� N bond distances (1.8437(15) and
1.8223(15) Å) are in the expected range for a bond between an
Al(III) and an amide ligand.[29]

Compound 7 was also characterized by 1H and 13C{1H} NMR
and solid-state IR spectroscopy. Apart from a single set of
signals for THF and the anilide ligands, the 1H NMR spectrum of
7 shows a characteristic very broad signal for Al-H at δ=

Scheme 4. Reaction of scandium cation 3 with hydride.

Figure 5. Molecular structure of 7 in the solid state with displacement
parameters at 30% probability level. H atoms (except Al bonded H) are
omitted for clarity. Selected interatomic distances (Å) and angles (°): Al1-N1
1.8437(15), Al1-N2 1.8223(15), Al1-O1 1.9083(13), Al1-H1 1.52(2); N1-Al1-N2
117.25(8), N1-Al1-O1 105.12(6), N2-Al1-O1 101.78(6).
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4.66 ppm (Δv1/2= ~125 Hz) due to the quadrupolar effect of
27Al nucleus (Figure S22). This was confirmed by the 27Al
decoupled 1H NMR spectrum that displays a sharp singlet for
the Al-H. The Al� H signal of 7 appears at a similar position that
has been observed in the previously reported compounds
containing terminal Al� H, such as [Mes*2AlH] (δ=5.72 ppm) or
[(NON)AlH] (δ=4.99 ppm).[28] The solid-state IR spectrum of 7
using KBr pellet shows an intense band at v=1773 cm� 1,
characteristic of the Al� H stretching vibration (Figure S24).

To avoid the transmetalation reaction, we decided to use
Na[BEt3H] as the hydride source. When Na[BEt3H] was added to
the scandium cation 3 in THF at � 36 °C an immediate reaction
occurs, as confirmed by an in situ 1H NMR spectroscopy. The 1H
NMR spectrum shows a clean conversion of the starting
materials into a possible scandium hydride, which at r.t. slowly
ring-opens the coordinated THF to form the scandium n-
butoxide complex [Sc{N(tBu)(Xy)}2(μ-OnBu)] (8) (Scheme 4).
Compound 8 was isolated as an analytically pure, colorless solid
in 58% crystalline yield (see SI, sec. 2.7). The formation of the
THF ring-opened product 8 from the scandium cation 3
presumably occurs via nucleophilic attack of a hydride to the Cα

atom of the activated THF molecule at the Lewis acidic
scandium center. Such nucleophile-assisted ring-opening of
THF at the Lewis acidic group 3 metal center was also observed
earlier.[30] For instance, the formation of a similar THF ring-
opened product [(η5-C5Me5)Sc(BH4){μ-O(CH2)3CH3}]2 was also
observed when [Sc(BH4)3(THF)1.5] was treated with K[C5Me5] in
THF.[31]

Compound 8 was fully characterized using multinuclear
magnetic resonance spectroscopy and elemental analysis. In
addition, the molecular structure was confirmed by single
crystal X-ray diffraction, which revealed a centrosymmetric,

dimeric structure with the n-butoxide groups bridging the
scandium centers (Figure 6). The tetracoordinate scandium
centers reside in a distorted tetrahedral coordination environ-
ment and form a perfectly planar Sc2O2 core, as evidence by the
Sc1� O1� Sc1’� O1’ torsion angle of 0.00(6)°. The Sc� N bonds in 8
are marginally elongated (d(Sc� N)avg=2.0504 Å) compared to
those in the scandium cation 3 (d(Sc� N)avg=2.012 Å), indicating
a weaker N!Sc donation in the former complex due to the
presence of an anionic n-butoxide group in comparison to the
neutral THF ligand in 3. The shorter Sc� O bonds (d(Sc� O)avg=

2.0782 Å) in 8 than those found in 3 (d(Sc� O)avg=2.1418 Å) are
also consistent with the stronger coordination of the n-butoxide
groups to the scandium centers.

The solution NMR spectra of 8 in [D6]benzene at 296 K are
also consistent with the solid state structure. Apart from a
single set of signals for the aniline ligand, the 1H NMR spectrum
of 8 displays a triplet at δ=0.95 ppm and three multiplets at
δ=1.08, 1.62 and 3.50 ppm for the CH3 and CH2 protons of the
n-butoxide groups, respectively. In the 45Sc NMR spectrum, the
scandium nucleus of 8 appears as a very broad signal at δ=

347 ppm (Δv1/2= ~35000 Hz), which is only marginally down-
field shifted compared to that found in the precursor 3
(312 ppm; Δv1/2= ~10000 Hz).

Conclusion

In summary, the stepwise protonation of [Li(thf)3][Sc{N(tBu)
Xy}2(anth)] (2-anth-Li) producing the corresponding scandium
anthracenyl and the cationic scandium complex support the
description of 2-anth-Li as an adduct of ‘‘[ScIII{N(tBu)Xy}2]

+ ‘‘ and
‘‘[C14H10]

2� ‘‘. The elimination of the anilide ligand from 4 to give

Figure 6. Molecular structure of 8 in the solid state with displacement parameters at 30% probability level. H atoms are omitted for clarity. Selected
interatomic distances (Å) and angles (°): Sc1-N1 2.0788(11), Sc1-N2 2.022(1), Sc1-O1 2.0869(9), Sc1’-O1 2.0695(9); N1-Sc1-N2 111.49(5), N1-Sc1-O1 121.11(4),
N2-Sc1-O1 107.27(5), N1-Sc1-O1’ 111.82(4), N2-Sc1-O1’ 124.55(4).
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the scandium azobenzene dimer not only indicates more ionic,
weaker Sc-Namide bonds but also this formation shows that
scandium behaves like lanthanides when compared with the
formation of analogous dimeric azobenzene complexes through
cyclopentadienyl ligand elimination reactions. The low Sc-Namide

bond strength was also evidenced from the CO2 insertion
reaction of the scandium cation that gave a scandium
dicarbamate complex. Finally, attempts to add hydride to the
scandium cation did not give the desired scandium hydride but
resulted in Sc/Al transmetalation as well as nucleophile-assisted
THF ring-opening reaction. The present work demonstrates that
the scandium reduced arene complexes serve as precursors for
new structural motifs of scandium.

Experimental Section
Crystallographic data: Deposition numbers CCDC 2091773-2091779
contain the supplementary crystallographic data for this paper.
These data are provided free of charge by the joint Cambridge
Crystallographic Data Centre.
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