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Abstract

Background: In recent years, a variety of imaging techniques operating at nanoscale resolution have been reported. These
techniques have the potential to enrich our understanding of bacterial species relevant to human health, such as
antibiotic-resistant pathogens. However, owing to the novelty of these techniques, their use is still confined to addressing
very particular applications, and their availability is limited owing to associated costs and required expertise. Among these,
scattering-type scanning near field optical microscopy (s-SNOM) has been demonstrated as a powerful tool for exploring
important optical properties at nanoscale resolution, depending only on the size of a sharp tip. Despite its huge potential to
resolve aspects that cannot be tackled otherwise, the penetration of s-SNOM into the life sciences is still proceeding at a
slow pace for the aforementioned reasons. Results: In this work we introduce SSNOMBACTER, a set of s-SNOM images
collected on 15 bacterial species. These come accompanied by registered Atomic Force Microscopy images, which are useful
for placing nanoscale optical information in a relevant topographic context. Conclusions: The proposed dataset aims to
augment the popularity of s-SNOM and for accelerating its penetration in life sciences. Furthermore, we consider this
dataset to be useful for the development and benchmarking of image analysis tools dedicated to s-SNOM imaging, which
are scarce, despite the high need. In this latter context we discuss a series of image processing and analysis applications
where SSNOMBACTER could be of help.
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Context

Bacterial pathogens surround us, being found not only in in-
fected patients, but also in soil, water, wild and domestic ani-
mals, and food. While diseases caused by some pathogenic bac-
teria can be prevented by immunization or relieved by antibi-
otic therapy, others still represent a major public health prob-
lem accounting for tens of millions of deaths annually across the
globe. Furthermore, some pathogenic species can be regarded
as possible warfare agents and thus carry military relevance [1].
Among the most dangerous pathogenic bacterial species in de-
veloped countries are those in the ESKAPE group (Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobac-
ter baumannii, Pseudomonas aeruginosa, and Enterobacter species)
[2]. These are among the most common bacterial pathogens in
nosocomial infections, causing extensive morbidity and mortal-
ity, especially in critically ill and immunocompromised patients
[3]. All these species are characterized by a high level of resis-
tance to a variety of antibiotics [4], which recently prompted the
World Health Organization to list ESKAPE pathogens among the
greatest threats to human health and to boost research on new
effective drugs for treatment of antibiotic-resistant infections
[5].

A complete and detailed characterization of different bac-
terial pathogens plays a fundamental role in many biomedical
studies, related to bacterial infection diagnosis and treatment.
The determination of morphology and other biophysical param-
eters could provide additional information about both cellular
structures and biochemical properties of bacteria. These param-
eters allow an accurate characterization, which could be used
to discriminate pathogenic from harmless commensal bacteria.
However, the major part of bacterial structures cannot be inves-
tigated in detail by using conventional microscopy techniques
owing to resolution limitations. For example, the lateral resolu-
tion that can be achieved by using such conventional microscopy
techniques based on laser excitation (e.g., confocal laser scan-
ning microscopy) is limited by the light diffraction phenomena
to half the wavelength of the excitation light, which translates
to a ∼200 nm resolution barrier. As a result, an exact under-
standing of fundamental structures and processes of bacteria
at subcellular levels is yet to be achieved, higher resolution be-
ing necessary for elucidating aspects that are still not well com-
prehended [6, 7]. Optical nanoscopy techniques based on super-
resolved fluorescence, such as Stimulated Emission Depletion
Microscopy (STED) [8], Fluorescence Photoactivation Localiza-
tion Microscopy (PALM) [9], or Stochastic Optical Reconstruction
Microscopy (STORM) [10] overcome the diffraction barrier, offer-
ing typical resolutions in the range of 30–100 nm. However, their
lack of chemical sensitivity and dependence on (very specific)
fluorescent probes limits their applicability. In the case of bio-
logical samples, the advantages of fluorescence super-resolution
microscopy (SRM) techniques come accompanied by a series of
drawbacks related to the fact that exogenous and genetically
engineered contrast agents can influence the phenotype (e.g.,
morphology, metabolism, motility) of the cells that are imaged
and can also lead to cyto- and phototoxicity. Furthermore, recent
studies suggest that unpredictable anomalous processes related
to the SRM fluorophore distribution in biological samples exist
[11]. These limitations and concerns motivate interest in alter-
native ways of overcoming the diffraction barrier in the form of

optical imaging techniques that do not require contrast agents
(label-free).

Among the label-free optical nanoscopy techniques that
have emerged over the past years, two prominent families can
be easily distinguished: (i) near-field techniques based on the
interaction of light and a sharp tip scanned across the sam-
ple surface, such as scattering-type scanning near-field optical
microscopy (s-SNOM) [12], tip-enhanced fluorescence [13], tip-
enhanced photoluminescence [14], tip-enhanced Raman spec-
troscopy (TERS) [15], photoinduced force microscopy (pi-FM) [16],
or photothermal atomic force microscopy [17]; and (ii) far-field
techniques based on pump and probe strategies where two or
more incident beams compete [18–21]. All these label-free tech-
niques have the capacity to advance the current knowledge on
structural, chemical, and optical features of biological samples
(and also of advanced [bio]materials). However, due to their nov-
elty, their use is still confined to addressing very specific appli-
cations, and their availability is severely limited owing to asso-
ciated costs and required expertise. Access to datasets collected
with these techniques is also widely limited for the same rea-
sons, which translates to huge delays in transferring them to im-
portant applications that lie outside the scientific interest of the
reduced number of scientific groups developing and using them.
Furthermore, modern methods for automated image analysis
that have taken the fields of bioimaging (and microscopy in gen-
eral) by storm over the past few years [22–24] have had insignif-
icant intersections with these emerging label-free modalities,
owing to the same reasons expressed above. With this effort,
we aim to alleviate the situation by establishing a new trend
for sharing relevant datasets collected with such modalities, and
other emerging or novel ones. In our view, this would be of great
help for enlarging and overcoming the aforementioned bottle-
necks.

In the context discussed in the previous paragraph, we fo-
cus our attention on s-SNOM, a generally applicable label-free
method for surface characterizations at nanoscale resolution
[12], whose working principles rely on a sharp tip that is scanned
across the sample while being excited with a focused laser
beam. The tip converts the incident radiation into a highly lo-
calized and enhanced near field at the tip apex, which mod-
ifies both the amplitude and the phase of the scattered light.
This process depends on the local dielectric properties of the
sample [25], given the mutual perturbations occurring between
the polarizabilities of the sample and the probe. Interferomet-
ric detection of the backscattered light yields thus nanoscale-
resolved amplitude and phase images, which can reveal vari-
ous important properties of nanostructured materials [12, 26].
Measuring the amplitude and the phase changes separately is of
interest given that these two different signals contain comple-
mentary information about the sample. The amplitude shows
the magnitude of the electric field enhancement at the tip apex,
which can be quantified by the scattering efficiency, e.g., the
number of photons reaching the detector. The phase of near-
field signals is related to the complex optical constants using
quasi-electrostatic theory [27] and importantly, in their land-
mark work Stiegler et al. [28] showed that the near-field phase
spectra of small particles correlate well with their far-field ab-
sorption spectra. Notably, the scattered field comprises a series
of terms [29], namely, the incident field (i) scattered by the tip,
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(ii) scattered by the sample, (iii) scattered by the sample and
then by the tip, (iv) scattered by the tip and then by the sample,
and (v) scattered by the tip, then the sample, and finally the tip
again. The sample properties dictate the weight of each of these
terms in the recorded signals, but for an s-SNOM configuration
based on detection at higher harmonics of the tip’s oscillation
frequency, the incident field scattered by the sample should be
discarded [29]. From the s-SNOM amplitude and phase images
one can typically extract material contrasts instead of absolute
values, but in the case of samples where a reference material
is available next to unknown ones, absolute values of optical
parameters (e.g., refractive index, reflectance) are also available
[26].

The complex, but reliable, contrast mechanisms of s-SNOM
have thus far enabled a wide range of discoveries in condensed
phase materials and 2D materials [30–38]. With respect to imag-
ing biological species, a growing number of experiments demon-
strate s-SNOM’s usefulness to resolve various properties of bio-
logical samples, unavailable with other techniques [39–42]. For
example, in the recent work of Mészáros et al. [43], s-SNOM was
used to assess the local infrared absorption of single bacterial
cells. In particular, illumination at 1,660 cm−1 (6,024 nm) was
used to visualize the protein content (amide I band) and distribu-
tion in a number of representative cells. In the work of Berweger
et al. [44], the authors used nano-FTIR spectroscopy (available
with an s-SNOM system equipped with a broadband laser) to
identify the distribution and density of the membrane pro-
tein bacteriorhodopsin in dried purple membrane patches pu-
rified from Halobacterium salinarum. The authors demonstrated
s-SNOM images at 20 nm spatial resolution, with the s-SNOM
phase images depicting contrast from the amide I vibrational
mode of bacteriorhodopsin available under illumination with
1,667 cm−1. In a more recent experiment addressing s-SNOM
imaging of the same purple membrane patches of H. salinarum
based on amide I band contrast, Pfitzner and Heberle [45] in-
troduced a hardware configuration that allows imaging in liq-
uid environments. This represents an especially important fea-
ture given that investigating biological samples in their na-
tive environment allows various dynamic processes to be as-
sessed including structural changes and others. While in a dif-
ferent experiment the authors used s-SNOM to investigate the
same amide bands of individual tobacco mosaic viruses and fer-
ritin complexes, insulin aggregates, and purple membranes [46],
another notable effort is that of Paulite et al. [47], who used
s-SNOM to assess the composition variations and secondary
structure of individual amyloid fibrils, which result from the
nucleation-dependent polymerization of proteins, holding im-
portant pathological significance wrt. brain disorders. In a dif-
ferent work showcasing the power of s-SNOM with regard to
understanding important features of biochemical components,
Kästner et al. [48] showed that SNOM-based nano-FTIR spec-
troscopy can identify and chemically detect domain formation
in mixed phospholipid and surfactin monolayers at nanoscale.
While these briefly surveyed studies base their conclusions on
contrast observable in s-SNOM specific amplitude and phase im-
ages/spectra, we find important to mention that s-SNOM ampli-
tude and phase images can be processed to result in maps of the
real and imaginary parts of the refractive index (RI). In the pre-
vious work of Tranca et al. [40], a proof-of-concept experiment
focused on nanoscale RI mapping of erythrocytes showed that
such properties (that are much easier to interpret compared with
raw s-SNOM data) are easily available with s-SNOM, supposing
that a ground-truth reference (a region of known RI) is available
on the sample [40]. The utility of s-SNOM imaging for quanti-

tative imaging of the dielectric function and connected optical
parameters has been also showcased in a recent experiment in
connection to various types of nanomaterials [26].

To augment the popularity of s-SNOM and promote new ap-
plications in the life sciences, we introduce here SSNOMBAC-
TER [49], a collection of s-SNOM images assembled by imag-
ing 15 bacterial species, including those in the ESKAPE group.
These s-SNOM images come accompanied by registered Atomic
Force Microscopy (AFM) data, intrinsically available in an s-
SNOM imaging session, owing to the underlying data acquisition
principles. The s-SNOM–AFM image pairs are useful for placing
nanoscale optical information in a relevant topographic context;
the latter’s importance for understanding the structure of bacte-
ria is nicely presented in the recent landmark work of Pasquina-
Lemonche et al. [50]. The potential uses of the dataset presented
here include the topographical, biophysical, and morphologi-
cal analysis at nanoscale level of different bacterial species.
The dataset includes the most representative reference strains
of ESKAPE and cystic fibrosis–associated pathogens, including
also Streptococcus pyogenes, an important human pathogen that
causes a wide variety of acute morbidities (soft-tissue infec-
tions and pharyngitis), severe life-threatening infections (i.e.,
streptococcal toxic shock syndrome), and devastating postinfec-
tious sequelae such as rheumatic fever and glomerulonephri-
tis [51]. Notably, the proposed dataset has been assembled by
imaging both Gram-positive and Gram-negative bacteria. With
respect to the latter, we include in our dataset s-SNOM im-
ages collected on an Escherichia coli strain, which still repre-
sents the most prominent model among Gram-negative bacte-
ria. Given the diversity of information included in the SSNOM-
BACTER dataset (e.g., optical phase and amplitude, topography,
morphology), we believe that it can potentially be useful to de-
vise novel bacterial identification strategies that rely on com-
bined s-SNOM/AFM datasets. For this purpose, additional Gram-
positive species were incorporated in SSNOMBACTER, namely,
the Gram-positive model organism Bacillus subtilis and the com-
mensal/opportunistic pathogen Staphylococcus epidermidis. In our
view, all tested species could represent a relevant starting point
to develop new s-SNOM/AFM image analysis workflows aimed
at distinguishing commensal from pathogenic bacteria.

In the following, we describe how the dataset is structured,
provide details on how the s-SNOM/AFM imaging was per-
formed, and reflect on a series of computer vision applications
where SSNOMBACTER would be useful to support and inspire
the development of new s-SNOM–oriented image analysis tools.

Methods
Bacterial sample preparation

The bacterial strains used in this work are listed in Table 1.
All the bacterial species were routinely grown on nutrient agar
plates, except for S. pyogenes, which was grown on blood agar
plates. Three colonies of each bacterial strain were inoculated
in Tryptic Soy Broth or in Todd-Hewitt broth for S. pyogenes, and
incubated at 37◦C for 24 hours under vigorous shaking (300 rpm
in an orbital shaker). After the incubation, the bacterial cultures
were centrifuged at 3,000g × 5 min, washed twice, and diluted
in sterile distilled water to reach a final absorption at 600 nm
(OD600) = 1. Aliquots of 20 μL of each bacterial suspension at
OD600 = 1 were spotted on glass coverslip (Zeiss, Jena, Germany),
with a refractive index of 1.5077 (at 1,550 nm) and air-dried under
the laminar flow hood for 20 minutes at room temperature. After
the desiccation, the samples were imaged with AFM/s-SNOM.
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Table 1: Bacterial strains and FOV configurations addressed in the proposed SSNOMBACTER dataset

Bacterial strain Gram Bacterial strain reference No. of imaged regions × FOV dimensions

Achromobacter xylosoxidans ATCC 27061
(DSMZ 2402)T

− Yabuuchi and Oyama 1971 [52] 3 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)

Acinetobacter baumannii ATCC 17978 − Sahm et al. 1989 [53] 4 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)
Acinetobacter baumannii ATCC 19606T − ATCC (Bouvet and Grimont 1986) [54] 3 × (10 μm × 10 μm); 2 × (2 μm × 2 μm)
Bacillus subtilis subsp. spizizenii DSMZ 347 + ATCC 3 × (10 μm × 10 μm); 1 × (4 μm × 4 μm)
Burkholderia cenocepacia ATCC BAA-245
(LMG 16656)T

− Govan et al. 1993 [55] 3 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)

Enterobacter aerogenes ATCC 13048 (DSMZ
30053)T

− Bascomb et al. 1971 [56] 3 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)

Enterobacter cloacae ATCC 13047 (DSMZ
30054)T

− Hormaeche and Edwards 1960 [57] 3 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)

Enterococcus faecalis ATCC 29212 + ATCC 3 × (10 μm × 10 μm); 3 × (2 μm × 2 μm)
Enterococcus faecalis ATCC 700802 (V583) + Sahm et al. 1989 [53] 3 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)
Enterococcus faecium ATCC 19434 (DSMZ
20477)T

+ Schleifer and Kilpper-Bälz 1984 [58] 3 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)

Escherichia coli MG1655 (ATCC 700926)T − ATCC 4 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)
Klebsiella pneumoniae ATCC 27736 − ATCC 3 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)
Pseudomonas aeruginosa PAO1 (ATCC 15692)T − ATCC 3 × (10 μm × 10 μm); 2 × (2 μm × 2 μm)
Staphylococcus aureus ATCC 25923 + ATCC 4 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)
Staphylococcus aureus ATCC 43300 + ATCC 3 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)
Staphylococcus epidermidis SP1 + Spallanzani Hospital, clinical isolate 4 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)
Stenotrophomonas maltophilia ATCC 13637
(DSMZ 50170)T

− Palleroni and Bradbury 1993 [59] 4 × (10 μm × 10 μm); 1 × (3 μm × 3 μm)

Streptococcus pyogenes ATCC 19615 + ATCC 4 × (10 μm × 10 μm); 1 × (2 μm × 2 μm)

ATCC: American Type Culture Collection.

At least 3 different 10 × 10 μm fields of view (FOVs) were ac-
quired including both glass substrate regions (used as reference,
required for potential quantitative s-SNOM image analyses [26,
40, 60]) and bacterial cells. In addition, ≥1 FOV was imaged at
higher magnification (i.e., by scanning a region of lower dimen-
sion, namely, of 2 × 2 or 4 × 4 μm). The considered FOV dimen-
sions were selected depending on the dimensions of the selected
species; in particular, the minimum FOV has been selected to in-
clude a single cell of the species under examination. The image
dataset available for each of the considered bacterial species is
summarized in Table 1.

s-SNOM/AFM data acquisition

For acquiring the images available in the SSNOMBACTER dataset
we used a NeaSNOM Microscope (Neaspec, Munich, Germany)
equipped with a laser source of fixed wavelength, 1,550 nm. Im-
portantly, s-SNOM configurations are also available with visible,
IR, and THz laser excitation sources [61–67], and also with broad-
band lasers that allow spectroscopic assays [46, 68].

While the wavelength that we used (1,550 nm = 6,451.61
cm–1) was not specifically chosen to match a particular optical
property of the bacteria (e.g., the absorption properties of bac-
terial components lie elsewhere [69]), it nonetheless provides s-
SNOM amplitude and phase images that correspond to the di-
electric properties of the investigated sample, as discussed ear-
lier. Furthermore, it is important to mention that despite the
bacterial samples having been desiccated before imaging with
AFM/s-SNOM, a small amount of water may have been however
retained by these in response to the osmotic shock induced by
dehydration [70]. Thus, some features in the s-SNOM phase im-
ages may be linked to the absorption of water molecules near/on
the bacterial membrane. One additional important aspect to dis-
cuss is the non-invasive effect of the wavelength used. In a pre-
vious work [71], the effects of lasers with wavelengths ranging

from 500 to 1,550 nm were investigated on different bacterial
species (i.e., the Gram-negative E. coli and the 3 Gram-positive
microorganisms B. subtilis, Bacillus cereus, and Micrococcus luteus),
2 of which are included in the database presented in our work
(i.e., E. coli and B. subtilis). The 1,550 nm laser line showed the
lowest laser-induced cell lysis, preserving the intracellular RNA
and minimizing the effects on intracellular enzymatic activity.
Thus, the features available in the s-SNOM phase and amplitude
images correspond to the intrinsic properties of desiccated bac-
teria (except for potential water contamination) and not to po-
tential compounds that may result from phototoxicity.

In s-SNOM the available resolution is dictated by the size and
geometry of the tip, and in the case of this experiment a Hq:
NSC19/Cr-Au gold-coated probe (Mikromasch, Sofia, Bulgaria)
with <35 nm tip radius was used. Its resonance frequency and
force constant are 65 kHz and 0.5 N/m, respectively.

Dataset Structure

SSNOMBACTER is a dataset comprising 4,400 images collected
with AFM and s-SNOM in various workmodes, each of these
made available in both .tiff and .gsf file format. The .tiff files can
be opened with any image viewer/processing software, e.g., the
freeware image viewer IrfanView or ImageJ, while the .gsf files
represent the default file format of the NeaSNOM system that
was used in this experiment for AFM/s-SNOM imaging. The .gsf
files can be accessed with the open-source Gwyddion software
[72]. The collection of .tiff and .gsf files is divided in 15 folders, 1
for each of the bacterial species reported in Table 1. Some of the
folders are further structured in subfolders, depending on the
bacterial strains, which exist for some of the considered species.
Each bacterial strain (or bacterial species) folder harbors a num-
ber of subfolders that are numerically titled. For each sample ≥3
FOVs of 10 × 10 μm were imaged; for this FOV dimension the
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Table 2: List of abbreviations of the AFM/s-SNOM imaging modes

Abbreviation a Description

M0A AFM topography error
M1A AFM topography error; first harmonic
M2A AFM topography error; second harmonic
M3A AFM topography error; third harmonic
M4A AFM topography error; fourth harmonic
M5A AFM topography error; fifth harmonic
M1P AFM topography phase; first harmonic
M2P AFM topography phase; second harmonic
M3P AFM topography phase; third harmonic
M4P AFM topography phase; fourth harmonic
M5P AFM topography phase; fifth harmonic
O0A s-SNOM amplitude
O1A s-SNOM amplitude, first harmonic
O2A s-SNOM amplitude, second harmonic
O3A s-SNOM amplitude, third harmonic
O4A s-SNOM amplitude, fourth harmonic
O5A s-SNOM amplitude, fifth harmonic
O0P s-SNOM phase
O1P s-SNOM phase, first harmonic
O2P s-SNOM phase, second harmonic
O3P s-SNOM phase, third harmonic
O4P s-SNOM phase, fourth harmonic
O5P s-SNOM phase, fifth harmonic
Z AFM Topography

aThe letter R reported in the dataset files indicates that the image was collected

in the reverse scanning direction (e.g., RZ—topography collected in reverse scan-
ning direction).

names of these subfolders are equivalent to the number of the
imaged sample region. For lower dimension FOVs (e.g., 2 × 2 or
4 × 4 μm), the FOV dimension (and FOV number) are explicitly
presented in the subfolder name. The number of imaged FOVs
for each specimen is presented in Table 1. For each FOV we pro-
vide data collected in complementary s-SNOM and AFM imaging
modes, listed in Table 2.

The ∗.gsf and the corresponding ∗.tiff are titled according to
the following nomenclature:

[bacterial strain] [FOV number] [imag-
ing mode abbreviation].

For instance, the filename “Achromobacter xylosoxidans ATCC
27061 1 M2A.gsf” indicates that the respective ∗.gsf file corre-
sponds to the second harmonic of the topography error image,
collected on the first FOV for A. xylosoxidans strain ATCC 27061.
In each FOV folder we provide a ∗.txt file that presents all the ac-
quisition parameters used for the respective measurement (e.g.,
pixel area, scan area). In Fig. 1, we provide a sample image sub-
set consisting in AFM topography and phase, and s-SNOM am-
plitude and phase images collected on S. aureus ATCC 25923.

Each file of SSNOMBACTER [49] can be downloaded individu-
ally, or the whole set can be downloaded as a ZIP archive.

Reuse: utility of SSNOMBACTER for the
development of s-SNOM–oriented computer
vision applications

The SSNOMBACTER dataset consists of 4,400 images collected
with s-SNOM and AFM modalities on 15 bacterial species. The
dimensions of this dataset can be further expanded by process-
ing the available images to extract other types of data represen-
tations (e.g., by assembling 3D representations from the avail-

able AFM topographic information or by calculating dielectric
function maps from the amplitude and phase s-SNOM images
[26]). A different way to expand our dataset can rely on data aug-
mentation strategies that apply various transformations to an
initial image in order to render new representations that simu-
late other potential acquisition conditions. Such data augmen-
tation strategies have been demonstrated as being particularly
useful in deep learning approaches [73]. Given the content, di-
mension, and variability available in our dataset, we envision
that it represents a useful resource to develop novel image pro-
cessing and analysis tools dedicated to AFM and s-SNOM imag-
ing, and benchmark existing ones. While such tools have already
been reported for AFM imaging, they are still largely unavail-
able for the more recent s-SNOM modality, whose spread and
number of applications have escalated over the past years [12].
The importance of reference datasets that enable objective com-
parisons between competing microscopy-oriented image anal-
ysis/processing approaches is discussed in detail by Rubens et
al. [74]. In the following, we discuss potential use-cases of our
dataset.

Image restoration and denoising

By employing digital restoration methods, an image whose qual-
ity is affected by noise, artifacts, or improper acquisition con-
ditions is processed to obtain a better estimate of the original
object. The aforementioned causes are technique or equipment
dependent; thus they greatly differ between imaging modalities
that rely on optical and scanning probe principles. In the case of
the latter, probe damage, mismatch between probe and sample
geometry, scanner drift, vibrations, surface contamination, and
others impede an unbiased visualization of the imaged sample
[75, 76]. Furthermore, these causes are further extended in s-
SNOM by inconsistencies in the alignment of the s-SNOM exci-
tation beam and the apex of the probe, which may occur dur-
ing image collection [77]. Such inconsistencies translate to sig-
nal variations that raise problems with respect to manual and
automated analysis of the recorded image. Moreover, interfer-
ences between near-field and background signals contained in
the scattered field contributing to the image are also known to
produce artifacts in s-SNOM [78].

The proposed dataset can be used to develop novel image
restoration methods oriented towards s-SNOM and AFM imag-
ing and benchmark existing ones. We envision 2 potential sce-
narios for such efforts. In the first, the images available in our
set can be restored (Fig. 2), and afterwards the quality of the cor-
rected image can be evaluated by means of no-reference (blind)
image quality algorithms [79]. In an alternative approach, the
proposed images can be regarded as ground truth, and degraded
instances can be synthetically generated. In this second case,
because ground truth exists, the results of image restoration
methods developed for addressing AFM and s-SNOM data can be
evaluated by means of full-reference image quality assessment
algorithms [80].

Quantitative imaging meets image fusion and
correlative display

Quantitative imaging is especially important for achieving an in-
depth understanding of both biological and materials samples.
The availability of quantifiable features allows objective analy-
ses to be performed on the sample properties, and consequently
unbiased conclusions to be drawn. While topographic informa-
tion collected with AFM is intrinsically quantitative in nature,
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Tranca et al. demonstrated that s-SNOM images of the same FOV,
but collected under different acquisition conditions (e.g., differ-
ent modulation harmonics) or depicting complementary infor-
mation (amplitude and phase), can be processed on the basis of
a methodology that relies on the oscillating point dipole model,
in order to extract a nanoscale map of precise values of the di-
electric function, and intrinsic optical properties (e.g., refrac-
tive index, absorption, reflectance) [40, 60] (Fig. 3). In a follow-
up study [26], the usefulness of such approaches was demon-
strated in the case of different types of distinct nanomaterials.
The availability of AFM and s-SNOM images enables the devel-
opment and benchmarking of methods aimed at fusing and in-
tegrating these complementary information categories, which is
useful for their joint visualization and analysis. The importance
of software tools that jointly process and display topographic
and optical data has been thoroughly discussed [81–84].

Image segmentation

Image segmentation is the process of partitioning an image into
sets of pixels known as segments to allow for easier and mean-
ingful representation [85]. In bioimage analysis applications, im-
age segmentation is a crucial task, which precedes further anal-
yses carried out at the single structure (e.g., cell) level [86, 87].
Specific to the dataset proposed here, segmentation of bacte-
ria can be realized by using images corresponding to a single
or to multiple modalities. In the latter scenario, complementary
information originating from entirely distinct modalities (e.g.,
AFM and s-SNOM) or from distinct but related contrasts of the
same modality (e.g., amplitude and phase images of s-SNOM)
can be used to design segmentation algorithms with improved
segmentation accuracy (Fig. 4). The availability of images of bac-
teria collected with different techniques or different contrast
principles of the same techniques is also useful to support the
development and benchmarking of generic algorithms that aim

to be workmode invariant [88, 89]. Furthermore, it can support
the development of adversarial methods that transfer knowl-
edge [90, 91] learnt from a widely available imaging modality
(e.g., confocal or brightfield) to 1 or more imaging modalities
with reduced availability (e.g., s-SNOM) for which sufficient la-
beled training data are not available. SSNOMBACTER can thus
help expand past work that has been done on segmenting bac-
teria, addressing important tasks such as classification [92], pro-
liferation and lineage analyses [93], and others [87, 94].

Image feature extraction

Previous studies have shown that morphological features such
as shape, cell size and size distribution, cell wall thickness, and
many others can be useful in distinguishing between various
bacterial species or between different types of the same species
[95]. Measuring such properties manually is possible but tedious
and time consuming. Fortunately, computer vision algorithms
can be of great help for automating such tasks, but obviously
they need to be developed and benchmarked using relevant
datasets. SSNOMBACTER comprises both AFM and s-SNOM im-
ages of 15 bacterial species, collected at different scales, and
hence can consistently support such efforts. The provided im-
age sets are helpful in developing methods that automatically
identify and extract various descriptive features, whose impor-
tance for various tasks has already been demonstrated, or for
designing new features that can bring added value to important
problems such as diagnostics, screening, and so forth. Further-
more, the proposed dataset can also support the development
of methods that exploit such descriptive features to answer var-
ious biologically motivated image analysis questions, such as
“can we distinguish one bacterial species from the others by ap-
plying machine learning on images?” or “can we discriminate
viable bacteria from the dead using image features only?” Such
methods for automated classification/identification of different

Figure 1: Sample AFM and s-SNOM images collected on S. aureus ATCC 25923. The AFM phase image corresponds to the first harmonic of the tip’s tapping frequency
(M1P); the s-SNOM amplitude and phase images correspond to the third harmonic of the tip’s tapping frequency (O3A, O3P).

Figure 2: Restoration of s-SNOM data by digital image processing. The raw s-SNOM amplitude (A) and phase image (B) collected on S. aureus ATCC 25923 have been
processed in the Gwyddion software with 3 operations: “Align rows by median,” “Correction of horizontal strokes,” and “Correct small grains marked by >90% threshold

by interpolation.” The resulting s-SNOM images (right of arrow) have homogeneous background, and the bacterial cells are displayed with better contrast.
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Figure 3: Quantitative representation of the refractive index (imaginary part and real part) assembled using s-SNOM amplitude and phase images collected on S. aureus

ATCC 25923 under different settings, using a previously reported methodology [40]. (A) s-SNOM amplitude (O3A); (B) s-SNOM phase (O3P); (C) refractive index real part
(n); (D) refractive index imaginary part (k) (a.k.a. extinction coefficient).

Figure 4: Multi-modality segmentation example of amplitude and phase images of s-SNOM and AFM collected on Acinetobacter baumannii ATCC 17978. The boundaries
of the bacteria present in the field of view are manually delineated and visualized as overlays using the publicly available ImageJ/FIJI program. (A) AFM amplitude; (B)

AFM phase; (C) s-SNOM amplitude; (D) s-SNOM phase.

bacterial types can obviously be of immense help for saving time
and human resources [96]. Notably, given that the s-SNOM and
AFM images are by default registered, SSNOMBACTER supports
as well the development of computer vision algorithms capable
to generalize, and hence to address dual-mode or multi-mode
imaging applications [97]. Fig. 5 displays an exemplary use-case
on identification of image features extracted from bacteria on
AFM and s-SNOM data, where information such as intensity pro-
files or size- and shape-related characteristics (e.g., area, round-
ness) from bacteria regions can be obtained. As aforementioned,
such features can subsequently be used in various computer vi-
sion tasks promoting speed and efficiency.

Image registration and stitching

Image acquisition of bacteria can be performed at different
scales to allow for visualization and examination of details at
different scales, such as imaging a group of bacteria at low mag-
nification versus imaging a single bacterium at high magnifica-
tion. These different imaging scales will of course cover differ-
ent levels of detail, which can be merged to allow a more com-
prehensive view (and understanding) of the specimen. Further-
more, when high-magnification image acquisition of particular
cells or features is performed in an unsupervised manner, iden-
tifying them in a group of many similar ones imaged at low
magnification (which is many times necessary for context un-
derstanding, e.g., [98]) is time consuming and difficult. In these
cases, the automated alignment of 2 or more images of the same
scene collected at different magnifications, known as image reg-
istration [99], can be of great help. Within the context of SSNOM-
BACTER, registration can be performed between images of the
same modality (e.g., AFM images acquired at different scales as

in Fig. 6) or different modalities [100] (e.g., alignment of AFM to-
pography image on an s-SNOM image). The result of such a reg-
istration will allow for fusion of information obtained from dif-
ferent imaging techniques and/or at various scales (e.g., [82]).

Furthermore, similar to the popular computer vision appli-
cation of panorama creation [101, 102], image stitching appli-
cations are useful for visualizing microscopy FOVs larger than
those available in an imaging system [103]. While SSNOMBAC-
TER does not contain images depicting overlapping regions,
which could be stitched to result in mosaics, it is nonethe-
less useful for developing and benchmarking such AFM- and s-
SNOM–oriented algorithms. This can be done by synthetically
generating image tiles with a degree of overlap, by controlled
cropping of the available images.

Conclusions

We introduce SSNOMBACTER, a collection of 4,400 images col-
lected with s-SNOM and AFM modalities on 15 bacterial species,
including harmless species regarded as model organisms as well
as pathogens included in the ESKAPE group. By publishing this
carefully crafted collection, our interest is 3-fold: (i) we wish to
increase the awareness of relevant stakeholders in the life sci-
ences field of this valuable imaging technique, s-SNOM; (ii) we
wish to draw the attention of more groups active in the field
of s-SNOM towards its huge potential for enabling novel high-
impact studies and applications in microbiology; and (iii) we
wish to offer to the computer vision community the means to
interact with s-SNOM outputs, leading to the advent of novel
s-SNOM–oriented methods for automated image analysis. With
respect to the latter, we carried out a detailed discussion on rel-
evant use-cases. In the future we plan to extend this collection
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Figure 5: Example on automated feature extraction in the case of s-SNOM amplitude and phase and AFM topography images collected on Burkholderia cenocepacia ATCC
BAA-245 using an in-house–developed software. Once the user clicks on a bacteria, ellipse fitting on the gradient image is realized and the intensity profiles along the
major and minor axes of the fitted ellipse are extracted and displayed along with various features such as area and circularity of the ellipse.

Figure 6: Example of cross-scale registration of s-SNOM amplitude and phase images collected on A. baumannii ATCC 17978 using an in-house–developed multi-scale

mutual information–based registration approach. The result of the registration is visualized on the right as a transparent overlay.

of images to cover additional pathogens, imaged with multiple
laser wavelenghts. We hope that our effort will inspire similar
ones, originating from other groups, leading to wider availability

of datasets collected on bacterial species with emerging imag-
ing modalities that could enhance our current understanding of
prokaryotic organisms.
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Availability of Supporting Data and Materials

All data supporting this work are openly available in the OSF
Platform [49].
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