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Menthol, a unique urinary volatile
compound, is associated with
chronicinflammation in interstitial
e cystitis
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Chronic inflammation is a potential systemic risk factor for many bladder dysfunctions, including
interstitial cystitis (IC). However, the underlying mechanism through which a healthy bladder
protects itself from inflammatory triggers remains unknown. In this study, we identified odor
compounds in urine obtained from IC patients and healthy controls. Using comprehensive solid-phase
microextraction-gas chromatography-time-of-flight-mass spectrometry (SPME-GC-TOF-MS) profiling
and bioinformatics, we found that levels of urinary volatile metabolites, such as menthol, were
significantly reduced in IC patients, compared to healthy controls. In an attempt to understand the
mechanistic meaning of our volatile metabolites data and the role of menthol in the immune system,
we performed two independent experiments: (a) cytokine profiling, and (b) DNA microarray. Our
findings suggest that lipopolysaccharide (LPS)-stimulated inflammatory events, such as the production
and secretion of inflammatory cytokines (e.g., TNF-q, IL-6, and IL-13) and the activation of NF-xB
and associated proteins within a large signaling network (e.g., Akt, TLR1, TNFAIP3, and NF-xB), are
suppressed by the presence of menthol. These findings broaden our knowledge on the role of urinary
menthol in suppressing inflammatory events and provide potential new strategies for alleviating both
the odor and inflammation associated with IC.

Interstitial cystitis (IC) is a clinical condition that presents itself as sensory hypersensitivity of unknown cause
and is characterized by frequent urination, bladder discomfort, and pelvic pain'. IC occurs in both women and
men over a broad age range and across ethnic/racial groups®. In the United States, more than 3-8 million women
and 1-4 million men are diagnosed with IC annually’. The prevalence estimates of IC vary substantially because
of differences in source populations and case ascertainment®. Current diagnostic techniques include cystoscopy,
potassium sensitivity tests, hydrodistension et al. However, these procedures are not only invasive, painful, and
inconvenient, but also extremely costly, complicated, and minimally informative. In addition to these compli-
cations with diagnosis, the lack of consensus regarding the cause of IC has resulted in difficulties determining
effective and specific therapies.

Although there has been immense progress in the fields of genomics and proteomics, further research into
the biological end points of human diseases is needed for improved disease diagnosis, prognosis, and therapeutic
development. In recent years, metabolomic profiling, also known as metabolomics, has been viewed as a promis-
ing technique in disease diagnosis. Metabolomics focuses on utilizing and analyzing metabolites and biomarkers
as signals for cellular states. These biological biomarkers have been used to understand the metabolic changes that
occur over time in a variety of diseases®. In particular, clinical samples, such as tissues and biofluids (e.g. serum,
plasma, urine, and saliva), have proven to be valuable sources for diagnostic purposes. For instance, human
plasma proteins originate from a variety of cells and various medical studies have shown that these proteins reflect
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human physiological and pathological states. Therefore, they can potentially be utilized to increase diagnostic
efficiency and prognostic efficacy®. Other biological fluids have been quantitatively determined in regards to their
metabolic composition through procedures such as gas chromatography, high-pressure liquid chromatography,
mass spectrometry.

Urine contains a multitude of water-soluble waste products filtered through the kidneys and eliminated from
the body via micturition. It contains many metabolites, such as urea (from amino acid metabolism), inorganic
salts (chloride, sodium, and potassium), creatinine, ammonia, organic acids, water-soluble toxins, and urobilin.
While this complexity can make urine analysis difficult, the potential information that can result will be very
beneficial, and progress in the field has been promising. Additionally, collection of urine is simpler and provides
a relatively larger volume of sample compared to other biological fluids.

Odor consists of various volatile organic chemical compounds (VOCs), which can be identified through mass
spectrometry. Compared to other organic compounds, VOCs generally have a lower molecular weight and higher
vapor pressure. Many prior studies have applied VOCs into cancer research. For cancer detection, there have been
several studies on using gas chromatography-mass spectrometry (GC-MS) to detect certain odor compounds
in skin, tissue, breath, feces, and bodily fluids, such as sweat and urine’®. VOCs can also be used to assist in the
diagnosis of lung and prostate cancer'. Electronic noses capable of detecting odor signatures have been devel-
oped and successfully applied in discriminating prostate cancer patients from healthy controls®!!. In terms of IC,
perturbed VOCs may underlie the commonly reported changes in urine odor. IC is known to negatively impact
overall quality of life through its effects on urinary odor and leakage; many patients often report foul smelling
urine'?. Given our previous findings that IC patients may have a distinct metabolism'*!%, we hypothesized that
urine from IC patients might contain a distinguishing VOC signature that is reflective of disease conditions.

In our present volatile metabolomics study, we tested the hypothesis that urinary VOCs differ between IC
patients and healthy controls. Using urinary samples from the urine headspace of IC patients and healthy con-
trols. We extracted VOC:s via solid-phase micro-extraction and analyzed them using GC-MS. The aim of this
study was to identify IC-associated VOCs and further examine their biological meaning in the bladder epithe-
lium. From our comprehensive and unbiased metabolomics analysis, we found menthol to be a novel compound
involved in IC-associated inflammation. We discovered that urinary menthol decreased in IC patients and that
these reduced levels are potentially linked to the chronic inflammation commonly observed in IC.

Materials and Methods

CellLine. The mouse macrophage cell line, RAW 264.7, was obtained from Sigma Cells (St. Louis, MO, USA)
and was cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum
(FBS). The cells were kept in humidified incubators with 5% CO, at 37 °C. The medium was replaced every day
and the cells were passed every two to three days to maintain logarithmic growth.

Reagents. Menthol and bacterial lipopolysaccharide (LPS) (Escherichia coli, 0111: B4) were purchased
from Sigma (USA). Mass spectrometry grade reagents (column, buffer et al.) were all purchased from Sigma
(USA). The Mouse Proteome Profiler Array was purchased from R&D Systems (USA). The antibodies used were
CCL3 (ab25128, Abcam, USA), IL-6 (12912; Cell Signaling Technology, USA), TNF-« (11948S; Cell Signaling
Technology, USA), p-NF-kB (3033; Cell Signaling Technology, USA), NF-xB (8242; Cell Signaling Technology,
USA), p-Akt (4051; Cell Signaling Technology, USA), Akt (9272; Cell Signaling Technology, USA), TLR1(2209;
Cell Signaling Technology, USA), TNFAIP3 (5630; Cell Signaling Technology, USA), IFIT1 (14769; Cell Signaling
Technology, USA), viperin (13996; Cell Signaling Technology, USA), IL-13 (AF-401-NA, R&D Systems, USA),
and B-actin (A1978; Sigma-Aldrich, USA). HRP-conjugated secondary antibodies were obtained from Cell
Signaling Technologies (7074, 7076; USA).

Ethics Statements. The ethics committee at Inha University Hospital (Incheon, South Korea) approved
this study. Written informed consent was obtained from all subjects. The Institutional Review Board of Inha
University Hospital approved collection, curation, and analysis of all samples (IRB #10-0751)'*!%. All methods
were performed in accordance with the relevant guidelines and regulations.

Subjects and Urine Specimen Collection. Patients and healthy control subjects were recruited from an
outpatient urology clinic at Inha University Hospital. All subjects were Asian females. Subjects were instructed
to avoid tobacco, nicotine, chemical compounds, alcohol, herbal foods, caffeine, and medication 24 hrs before
their urine collection. Recruitment was conducted following the National Institute of Diabetes and Digestive and
Kidney Diseases (NIDDK) guidelines. Workup included symptom assessment, cystoscopic evaluation, physi-
cal examination, urodynamics, and/or urine culture. Patients with a history of other diseases, including cancer,
chronic inflammation, or diabetes, were excluded.

To minimize possible contamination with vaginal, rectal, or urethral cells, first morning urine specimens were
obtained using clean catch methods in a sterile environment. The de-identified specimens were sent to laboratory
and centrifuged for 10 mins to remove cell debris. Urine supernatants were then processed into individual ali-
quots and stored in 15 ml tubes at —80 °C until further analysis.

Availability of data and materials. All the data supporting the findings here is contained within the
manuscript.
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Volatile Metabolomics

Sample preparation. Metabolomics analysis was performed using urine samples obtained from IC diag-
nosed (n=10) and healthy age-matched controls (n = 10). Urine samples were prepared in triplicates in 20 ml
amber headspace vials with magnetic screw caps and silicone/PTFE septa. Urine samples (10 ml) were added to a
vial containing 2.5 g of sodium chloride that had been dried at 100-150°C for at least 2 hrs prior to weighing. The
solution was capped, vortexed, and loaded onto an autosampler tray. No more than 18 samples were prepared at
a time; this was done to minimize the length of time the last sample in the batch sat at ambient laboratory tem-
perature prior to extraction and analysis. Quality control experiments were performed as described in a previous
paper?>.

Solid-phase microextraction (SPME) and GC-TOF-MS analysis. A LECO Pegasus I1I Time-of-Flight
Mass Spectrometer (LECO, St. Joseph, MI, USA) equipped with an Agilent 6890 Gas Chromatograph (Agilent
Technologies, Santa Clara, CA, USA) was used for analysis. ChromaTOF (ver. 4.50.8.0, LECO) was used for raw
data processing, including automatic peak detection and deconvolution, as described in a previous paper'.

Urine GC-MS data pre-processing. We performed data cleaning and pre-processing using Excel and R
Studio’®. A two-way analysis of variance comparing the first and last four samples did not show any differences in
false discovery rate (FDR) corrected significance levels for peak abundances.

Differential expression analysis for volatile metabolite profiles. To identify differentially expressed
metabolites between the urines of IC patients and controls, we applied the integrative hypothesis testing
method'®. The t-test, log2-median-ratio test, and Wilcoxon rank sum test were also performed. For the t-test and
log2-median-ratio test, an empirical distribution of the null hypothesis (the means of the metabolite intensity
levels are not different) was estimated using random permutations of the samples. For each metabolite, an p-value
was computed by performing a two-tailed test on the empirical distributions. The three p-values were combined
using Stouffer’s method to compute the adjusted p-values. The FDR was computed from the adjusted p-value
using Storey’s method'”. We identified 12 metabolites with a FDR < 0.1.

Western blot analysis. Cells were lysed with a RIPA buffer (20 mM Tris, 150 mM NaCl, 1% Nonidet,
P-40, 0.1 mM EDTA) (Pierce, ThermoFisher) that was supplemented with a phosphatase inhibitor cocktail
(ThermoFisher). The protein concentration of each sample was measured using the Bradford Protein Assay Kit,
according to the manufacturer’s protocol (Pierce, ThermoFisher). Equal amounts of extracts were separated by
SDS-PAGE and transferred onto a PVDF membrane. The membranes were then blocked with 5% bovine serum
albumin or 5% nonfat milk in tris-buffered saline with tween 20 (TBST) [2.42 g/L Tris-HCI, 8 g/L NaCl, and
1 mL/L Tween 20 (pH 7.6)] and incubated overnight at 4 °C with specific primary antibodies in TBST. Following
this first incubation, the membranes were washed and incubated again with horseradish peroxidase-conjugated
secondary antibodies. 3-actin was used as an internal control.

Cytokine array. Cell lysates and conditioned media were collected and analyzed using a cytokine array from
R&D Systems (USA). They were then diluted and mixed with a cocktail of biotinylated detection antibodies. The
sample/antibody mixture was then incubated with the mouse cytokine array membrane. Any cytokine or detec-
tion antibody complex was bound to its cognate immobilized capture-antibody on the membrane. Following
a wash to remove unbound material, streptavidin-HRP and chemiluminescent detection reagents were added
sequentially. Light was produced at each spot in proportion to the amount of cytokine bound. For data quantifi-
cation Image] was used.

RNA preparation for DNA microarray analysis. Total RNA was extracted from RAW 264.7 macrophage
cells that were treated with LPS and/or menthol, using a Qiagen RNEasy Mini Kit (Qiagen Inc., Valencia, CA,
USA). The RNA concentration of the samples and quality controls was measured using the Bioanalyzer 2100 and
Nanodrop 8000a (ThermoScientific, Willmington, DE, USA).

Microarrays and data analysis. Total RNA (200 ng) was transcribed to double-stranded cRNA using
the MessageAmp Primer RNA Amplification Kit (Life Technologies, Carlsbad, CA, USA) with an oligo(dT)
primer, according to the manufacturer’s instructions. After fragmentation, 11 ug of biotin-labeled cRNA was
hybridized for 16 hrs at 45°C on the Affymetrix Mouse Genome 430 Plus 2.0 Array (Affymetrix, Santa Clara,
CA, USA). GeneChips were then washed and stained in the Affymetrix Fluidics Station 450 and scanned using
the Affymetrix GeneChip Scanner 3000 G7 (Affymetrix). Quality control was performed with the Affymetrix
Expression Console software (Affymetrix version 1.3). The raw data was normalized using the gcrma package
(version 2.10.0) in R 2.6.1. The log2 GC-RMA signals were then exported and used for differential expression
analysis. Both the CEL files and normalized data discussed here are deposited and available at Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE98933.

To identify differentially expressed genes (DEGs), we used a two-tailed Welch’s t-test. DEGs were identified
as genes with a p-value < 0.05 and fold-change >1.5. In order to reduce unreliable detection and false positives,
probe sets with average expression levels higher than the average of all probe sets in the data were also considered
for further analysis. To identify biological processes affected by LPS or menthol, we performed functional enrich-
ment analysis of Gene Ontology Biological Processes (GOBPs) using DAVID'®. Those with p-values < 0.05 and
DEGs >3 were selected as significantly represented GOBPs.
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ID conversion and pathway mapping

: ko01120 Microbial metabolism in diverse environments (10)
113 Metabolites ko01220 Degradation of aromatic compounds (9)
ko01100 Metabolic pathways (5)
‘ ko00642 Ethylbenzene degradation (3)
ko01110 Biosynthesis of secondary metabolites (2)
. ko00902 Monoterpenoid biosynthesis (2)
47 Metabolites were ko04750 Inflammatory mediator regulation of TRP channels (2)
mapped to CAS RN ko00361 Chlorocyclohexane and chlorobenzene degradation (2)
* ko00627 Aminobenzoate degradation (2)
ko00622 Xylene degradation (2)
‘ ko00350 Tyrosine metabolism (1)
ko00930 Caprolactam degradation (1)
- ko00360 Phenylalanine metabolism (1)
26 Metabolites were k000623 Toluene degradation (1)
mapped to KEGG ko00362 Benzoate degradation (1)
ko04974 Protein digestion and absorption (1)
compound ID ko00903 Limonene and pinene degradation (1)

I ko00643 Styrene degradation (1)

Figure 1. The analysis workflow of volatile metabolome identification, conversion to KEGG IDs, and pathway
mapping.

Statistical analysis. The mean of more than three replicates was used as the average. For simple compari-
sons, p-values were calculated using a standard unpaired Student’s t-test. Statistical significance was considered
as p <0.05.

Results

Volatile metabolomics profiling revealed that menthol levels are significantly reduced in the
urine specimens of IC patients. We sought to determine the VOC composition of urine in IC and healthy
patients by performing volatile metabolite profiling using SPME-GC-TOF-MS. We used fatty acid methyl esters
(FAMESs) as internal standards for quality control (including in injections) and for retention index corrections.
The method used for untargeted profiling was based on the method developed by Robinson'?, with some added
modifications (see materials and methods). The ChromaTOF software was used for automatic peak detection
and deconvolution of the raw data. After data cleaning and pre-processing, a total of 113 peaks were identified.
Quality assessment of these quantification results was done after quantile normalization® (Supplementary Fig. 1).
Peak intensities were summed for all identified metabolites (mTIC). Each peak was then normalized to the sam-
ple’s total volatile metabolome.

We then investigated the association of these peaks with known metabolic pathways. To do this, we first
selected 47 peaks that were annotated with a CAS registry number and then identified 26 peaks that can be
mapped to at least one Kyoto Encyclopedia of Genes and Genomes (KEGG) compound ID. Using the DAVID
software'®, we found that 26 metabolites were associated with 26 pathways (Fig. 1). We next performed differen-
tial analysis to identify which metabolites were significantly altered between IC patients and healthy controls. The
analysis included 76 peaks, with quantification of more than half of the samples in each condition. This resulted in
12 peaks that were identified with a FDR <0.1 (Table 1). The FDR was calculated using the integrated hypothesis
testing method (see materials and methods)'®. Among them, menthol (CAS RN: 89-78-1) was identified to be
significantly different, with a FDR of 0.024 and log2 fold-change of —0.1.467. We observed only authentic VOCs,
not chemicals or metabolites that could come from degradation processes.

Given our results demonstrating reduced menthol levels in the urine of IC patients and prior knowledge
from literature, we speculated that menthol may be influencing bladder health. We hypothesized that the urine
of IC patients contains reduced levels of anti-inflammatory metabolites, particularly menthol, which leads to an
increase in IC-associated cytokines. To test this hypothesis, we sought to evaluate whether the anti-inflammatory
effects of menthol could suppress LPS-induced inflammatory events in immune cells. We decided to use two
independent approaches: (i) mesoscale cytokine profiling, and (ii) gene expression microarray analysis.

In order to characterize the effects of menthol on macrophages, comprehensive microarray analysis was con-
ducted on RAW 264.7 cells under various conditions. Cells were treated with menthol or control vehicle for 1 hr.
The macrophages were then stimulated with LPS treatment (100 ng/ml) for the following 6 hrs. Three groups of
gene expression profiles were defined: control vs menthol (C vs M), control vs LPS (C vs LPS), and menthol vs
LPS (M vs LPS).

Cytokine profiling revealed that menthol downregulated the LPS-induced production of
inflammatory cytokines in RAW 264.7 macrophages. An inflammatory cytokine array was used to
identify the specific cytokines that were produced and secreted into the surrounding medium by the RAW 264.7
cells. To determine whether the presence of menthol affects the production and release of cytokines, RAW 264.7
cells were pretreated with menthol (500 pmol/ml) or control for 1 hr and then induced with LPS (100 ng/ml) for
6 hrs. The expression of each inflammatory cytokine was subsequently measured. The cytokine profiling data
showed that a series of cytokines, including C-C motif chemokine ligand 3 (CCL3), C-X-C motif chemokine
ligand 10 (CXCL10), and tumor necrosis factor alpha (TNF-c), were induced by LPS (Fig. 2A, LPS condition).
Compared to treatment with LPS alone, the addition of menthol significantly downregulated the produc-
tion and secretion of these cytokines (Fig. 2A, LPS+M compared to LPS). Image]J analysis software was used
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Benzaldehyde,3,5-dimethyl- 5779-95-3 NA 540.902 0.005 5246 |3.261
E’;ﬂ:’;};’:ﬁ;"l(;‘;:t;‘s(zngl 89-78-1 C00400 520.734 0.024 | —1.467 | 1.381
t-Butyl ethyl ether2 1634-04-4 Cl11344 228.028 0.026 | —0.539 | 0.597
yy054 NA NA 526.908 0.027 | —1.092 |0.767
yy088 NA NA 773.515 0.046 0.332 | 0.278
yy003 NA NA 193.042 0.049 | —0.574 | 1.109
Benzene, (1-methyl-1-butenyl)- 53172-84-2 NA 527.026 0.053 | —0.974 |0.737
yy032 NA NA 455.642 0.063 0.383 | 0.372
2-Pentanone 107-87-9 C01949 295.78 0.074 | —0.718 | 1.006
yy082 NA NA 708.541 0.085 0.429 |0.671
Benzene, (2-isothiocyanatoethyl)- | 2257-09-2 NA 643.92 0.092 1.445 |1.298
yy010 NA NA 366.443 0.096 0.770 | 0.995

Table 1. Differentially expressed metabolites in urine specimens obtained from IC patients compared to health
controls (FDR < 0.1). Menthol (KEGG compound ID: C00400) was expressed less in IC patients, compared to
controls. The CAS registry numbers of the identified metabolites were mapped to their KEGG compound IDs.
The FDR indicates the false discovery rate, which was computed using Storey’s method. FC is log2 fold change
between IC and control. SD represents standard deviation. Positive and negative FC values indicate up- and
downregulation of the metabolite in IC urine, compared to control (NA meaning not available).

B TNF-a
12500
2
® 10000
c
]
T 7500
o
x
‘3 5000
c
S 2500 I
=
m n
($] n = =
&
»
o
-
CXCL10
12500
2
‘@ 10000
s
= O 7500
+ L2 2 ae ]
g-) - e ‘2 5000
c
- , s EI 3 2500
- =
0
o w = =
&y
%)
I - g
&) - e
- =] [ee] [e=] CCL3
e @ - 12500
"Z; 10000
]
S 7500
£
c A Ex Y ‘B 5000
8 - - H
r 0 L]
O v = =
o
TNF-a CXCL10 CCL3 @
-

Figure 2. Reduced production of LPS-induced inflammatory cytokines by menthol in RAW 264.7 cells (cell
lysates) (A) Inflammatory cytokine array analysis of CCL3, CXCL10 and TNF-c. The expression of these
inflammatory cytokines is highly induced by LPS, but downregulated by menthol. (B) Quantification of array
band intensity of CCL3, CXCL10 and TNF-o with ImageJ-analysis software.
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Figure 3. Decreased secretion of LPS-induced inflammatory cytokines by menthol in RAW 264.7 cells
(conditioned media) (A) Inflammatory cytokine array analysis of IL-1(3, IL-6, CCL5, CCL12 and G-CSE. The
expression of these inflammatory cytokines is highly induced by LPS, but downregulated by menthol. (B)
Quantification of array band intensity of IL-13, IL-6, IL-1 and G-CSF with imageJ-analysis software.

to measure of the values of the scan dots, according to their intensity on the cytokine array panel (Fig. 2B).
These results suggested that menthol is involved in downregulating the production of LPS-induced inflammatory
cytokines.

We also carried out the inflammatory cytokine array to identify which cytokines were secreted into the RAW
264.7 cell culture media. We detected increased secretion of inflammatory cytokines, including interleukin 13
(IL-1B), interleukin 6 (IL-6), C-C motif chemokine ligand 5 (CCL5), C-C motif chemokine ligand 12 (CCL12),
and granulocyte colony stimulating factor (G-CSF), in the LPS-treated condition (Fig. 3A). We also found that
pretreatment with menthol significantly downregulated the secretion of these cytokines, compared to LPS alone
(Fig. 3A, LPS+M compared to LPS). The dot intensities of each inflammatory cytokine were quantified using
Image] software, as described in the Methods (Fig. 3B).

The cytokine profile array results were independently tested again with western blot analysis. The RAW 264.7
cells used for this analysis underwent the same LPS and menthol treatment as the ones used for the cytokine
arrays. Western blot data revealed that cells pre-treated with menthol had significantly reduced expression of
TNF-q, CCL3, IL-6, and IL-13 (Fig. 4A). We next decided to use western blot analysis to examine if the effects of
menthol were dose-dependent. RAW 264.7 cells were first pretreated with LPS (100 ng/ml) or control for 3 hrs.
They were then incubated with varying concentrations of menthol (50, 100, 500 pmol/ml) for 6 hrs. Our results
validated that menthol did indeed affect macrophages in a dose-dependent manner (Fig. 4B).

Gene expression altered by menthol treatment. Further analysis using nucleotide microarrays vali-
dated our previous results showing that menthol mitigates LPS-induced inflammation in RAW 264.7 macrophage
cells. Genes that were considered to be differentially expressed in C vs M, C vs LPS, and M vs LPS were selected, if
they had a fold change >1.5 and p-value < 0.05. Figure 5A shows the number of upregulated and downregulated
genes in each of the different groups. Figure 5B shows the list of DEGs for each group that were upregulated with
menthol treatment; (C vs M) Trem1, MBP1, and TES; (C vs LPS) CD52, CD40, SEPT11, and MRP152; (M vs
LPS) SEPT11, RIOK3, and MRP152. We also annotated downregulated DEGs for each group; (C vs M) WDR43,
WWP1, and XYLT?2; (C vs LPS) YPE13, ZDHHC14, and ZFP408; (M vs LPS) GCNT1, GORASP2, and MLER3.
To better understand the biological processes affected by menthol, we performed functional enrichment anal-
yses based on GOBPs. DEGs were classified into different functional categories according to their GOBPs. Genes
upregulated from LPS treatment were significantly associated with biological processes relating to inflammatory
response (GO: 0006954) and response to lipopolysaccharides (GO: 0032496) (Fig. 5C). Genes downregulated
by menthol treatment were those significantly involved in immune system processes (GO: 0002376) and the
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Figure 4. Menthol inhibits LPS-induced cytokine production in RAW 264.7 cells. (A) RAW 264.7 cells were
pretreated with menthol, followed by stimulation with LPS for 6 hrs. Expression level of TNF-q, IL-6, IL-13 and
CCL3 were induced by LPS and reduced in LPS+M compared to LPS. (B) Pretreatment of LPS (100 ng/mL) or
control for 3 hrs and followed by induction with different concentration of menthol (50, 100 and 500 pmol/mL)
for 6 hrs. Expression level of TNF-a, IL-6 and IL-103 were reduced by menthol treatment in a dose-dependent
manner. 3-actin was used as a loading control for western blot analysis.
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Figure 5. Differentially expressed genes in LPS, LPS+Menthol (LPS+M), and menthol (M) only conditions.
(A) The number of DEGs perturbed by LPS or menthol treatment. (B) Venn diagram depicts shared and
different DEGs. (C,D) Gene Ontology analysis suggested functional annotations (biological process) that
were associated with up- (C) and downregulated (D) genes. Bar graph shows significantly enriched biological
processes, which were up- and downregulated genes in test group. The inflammation events induced by LPS
were inhibited by menthol in LPS mediated signaling pathway.
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Figure 6. Menthol inhibits LPS-induced activation of NF-xB and Akt signaling pathways. (A) Phosphorylation
levels of NF-kB and Akt were reduced by menthol treatment. (B) Phosphorylation of NF-xB and Akt were
suppressed by menthol treatment in dose-dependent manner. 3-actin was used as the loading control in western
blot analysis.

lipopolysaccharide-mediated signaling pathways of different groups (GO: 0031663) (Fig. 5D). These results indi-
cate the LPS-driven inflammatory responses can be modulated by menthol treatment, suggesting that low levels
of menthol may be associated with higher levels of inflammation from immune stimulants, such as LPS.

Signaling pathways involved in the anti-inflammatory effects of menthol. We next wondered if
the specific signaling pathways involved in LPS-stimulated cytokine perturbation can be modulated by menthol
treatment. To determine the signaling pathways associated with the production and secretion of inflammatory
cytokines, we screened the activation of key signaling pathways, including those of nuclear-factor-«B (NF-xB),
Akt, and Erk1/2 MAPK. We found that the added presence of LPS induced phosphorylation of NF-xB and Akt
in RAW 264.7 macrophage cells. Pretreatment with menthol significantly attenuated the phosphorylation levels
of NF-kB and Akt, but not those of Erk1/2 MAPK (Fig. 6A, LPS+M compared to LPS). In addition, menthol
treatment significantly reduced LPS-induced phosphorylation of NF-xB and Akt in a dose-dependent manner
(Fig. 6B). This data suggest that menthol potentially inhibits LPS-induced inflammatory cytokines via the NF-xB
and Akt signaling pathways.

Nucleotide microarray analysis consistently showed that menthol affects production of
LPS-induced cytokines in RAW 264.7 macrophage cells.  We next sought to identify DEGs in cells
exposed to LPS with or without menthol via microarray analysis (Fig. 7A). Approximately 30% of the DEGs
showed increased expression patterns when stimulated by LPS alone and decreased when treated additionally
with menthol. Those DEGs included: C3, CCL2, CCL3, CCL4, CCL5, CCL9, CCL12, CXCL2, CXCL10, NFKBI1A,
toll-like microbial pattern recognition receptor 1 (TLR1), TNF-a induced protein 3 (TNFAIP3) et al. (Fig. 7A,
box). Mapping of genes and protein expression from our study suggested that menthol suppresses the TLR path-
way. The gene expression of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), TNFA1P3,
TLR1, and viperin increased in response to LPS and decreased in response to menthol. To further validate the
perturbed DEGs, western blot analysis was carried out. Protein levels of IFIT1, TNFA1P3, TLR1, and viperin
changed consistent to gene expression changes (Fig. 7B).

Collectively, these experimental results propose a potential pathway through which TNF-a production and
secretion is stimulated. This consequently leads to the activation of TLR1, TNFAIP3-NF-«B signaling, and
inflammation of the bladder. These results also lead us to suggest that menthol could suppress IC-associated
inflammation by blocking the activation of our hypothetical pathway (Fig. 7C).

Discussion

Our GC-MS peak resolution and compound identification revealed unique urinary VOC profiles between
IC patients and healthy controls. Based on these results, we further sought to understand the biological func-
tion of menthol, an identified IC-associated urinary metabolite. We identified this novel compound through
recently improved data processing that could annotate unknown VOCs. These developments include database
analysis tools, such as BinBase Database?!, AMDIS??, SpectConnect (http://spectconnect.mit.edu), MZmine?,
TagFinder*, MetAligh 3.0, and MetAlignID*%. For this study, we used BinBase; this tool can be assessed by the
public at http://vocBinBase.fiehnlab.ucdavis.edu.

Cytokines and chemokines associated with IC.  Although IC affects millions of people every year, the
etiology of this disease remains elusive. The bladders of IC patients exhibit various pathophysiological alterations
in the urothelium barrier lining, sensory nervous system, recruitment of immune cells, and activation of major
signaling pathways. The inflammation that is associated with IC is potentially a result of inflammatory or bac-
terial agents. One such agent is LPS, a component of the bacterial outer membrane, which is known to bind to
TLR4 and stimulate inflammation through upregulating the release of cytokines. Consequently, this increased
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production and secretion of cytokines leads to bladder inflammation, which induces an immune response and
may be associated with additional urinary symptoms, such as hyper-excitability and pain*-%%.

There have been a series of previous reports suggesting the use of inflammatory cytokines as IC biomarkers.
They demonstrate that levels of cytokines, such as TNF-q, IL-2, IL-6, IL-8, and IL- 13, increase in the bladder and
urine of IC patients. In our present study, we were able to observe elevated gene and protein expression levels
of TNF-q, IL-6, IL-183, and NF-kB in LPS-stimulated RAW 264.7 macrophage cells. TNF-« is a well-known
pro-inflammatory cytokine that leads to the activation of inflammation, induces the expression of adhesion
molecules, and contributes to the development of pain sensation. Prior studies have shown that pharmaceutical
inhibition of TNF-a signaling or addition of neutralizing antibodies against TNF-« reduced the development of
nociception in animal models. Collectively, the experimental data from our current study and preceding reports
suggest that the hypersensitivity and/or inflammation seen in IC bladders may be treated by targeting inflamma-
tory cytokines?.

Menthol and IC-associated inflammation. Our VOC metabolomics analysis revealed that menthol
expression is significantly less abundant in the urine of IC patients. Menthol, an aromatic and cyclic terpene
alcohol, is a compound that is commonly used in a wide variety of products. Its main use is in relieving local
inflammation, pain (e.g. joint aches), noxious heat, sensory hypersensitivity, sore throat et al. The analgesic and
anti-inflammatory effects of menthol may be attributed to the fact that it is a TRPM8 agonist®***. However, the
underlying mechanisms of menthol’s biological effects remain obscure. Because of its mitigating effects, menthol
was a particularly interesting compound in the context of IC. Chronic inflammation is typical in the pathogenesis
of IC*, and higher levels of pro-inflammatory cytokines, such as macrophage-derived chemokines®? or urinary
nerve growth factors, are reported to be associated with the disease®**.

Given its anti-inflammatory effects, ability to suppress respiratory irritation, and association with pain
relief, menthol is widely used for medicinal purposes®. Our study investigated the effectiveness of menthol
on LPS-induced cytokine production and secretion. Interestingly, we found that levels of various inflammatory
cytokines were suppressed by menthol. This was done through DNA microarrays and cytokine profiling; the
results were verified through additional independent western blot analysis. We observed that menthol signifi-
cantly reduced levels of TNF-q, IL-103, IL-6, and CCL3 in LPS-stimulated RAW 264.7 macrophage cells. Previous
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literature has suggested that histamine release from mast cells is inhibited by menthol*”*%. Furthermore, by reg-
ulating the NF-xB signaling pathway, menthol decreases carrageenan-induced inflammation processes®. Our
results were also in accordance with these past findings and were similar to outcomes observed in menthol treat-
ment of ulcerative colitis*’ and ethanol-induced gastric ulcers*!.

TNF-a is a pro-inflammatory cytokine involved in regulating a wide spectrum of biological processes, includ-
ing cell differentiation, apoptosis, coagulation, and lipid metabolism. It is associated with a number of diseases,
including autoimmune diseases, insulin resistance, and, most notably, cancer. NF-kB is protein complex respon-
sible for DNA transcription, cytokine production, and basic survival in almost all animal cells*2. Toll-like micro-
bial pattern recognition receptors (TLRs) represent a non-self-recognition system that is hardwired to trigger
inflammation®®. In our present study, LPS-induced TLR1 was downregulated by menthol treatment. TNFAIP3,
a protein whose expression is rapidly induced by TNF-q, is a ubiquitin-centered enzyme and has been shown to
constrain NF-kB activation. The encoded protein is involved in most cytokine-mediated inflammatory responses;
this is likely due to the presence of both ubiquitin ligase and deubiquitinase within the enzyme. Because of this,
TNFAIP3 serves as a negative feedback regulator of NF-« B activation when TNF is present*%. Our results provide
new insights in LPS-induced inflammation, suggesting that it can be regulated by menthol via its suppression of
TNF-q, TLR1, and/or TNFAIP3 and subsequent regulation of NF-&B activation. Altogether, this study indicates
the potential placating role of menthol in IC patients.

Although further studies are warranted to ascertain the mechanistic basis of menthol’s observed
anti-inflammatory effects, it would be interesting to investigate whether menthol can suppress any inflammation
or sensory hypersensitivity in IC patients in the pre-clinical or clinical setting. Our discoveries provide potential
therapeutic strategies; potent agonists of TNF-c, TLR1, TNFAIP3, and/or the NF-kB network may benefit IC
patients through anti-hyperalgesic and anti-inflammatory effects.

Accession numbers. The metabolomics data have been deposited in the Metabolomics Workbench Public
Repository with the study ID number ST000603. The microarray data was deposited and is available at the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), under the accession number GSE98933.
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