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Abstract
Background: Lipopolysaccharide (LPS) is a cell wall component of Gram-negative bacteria with proved role in
pathogenesis of sepsis. Brain injury was observed with both patients dead from sepsis and animal septic models. However,
in vitro administration of LPS has not shown obvious cell damage to astrocytes and other relative cell lines while it does
cause endothelial cell death in vitro. These observations make it difficult to understand the role of LPS in brain
parenchymal injury.

Results: To test the hypothesis that LPS may cause biological changes in astrocytes and make the cells to become
vulnerable to reactive oxygen species, a recently developed highly sensitive and highly specific system for large-scale gene
expression profiling was used to examine the gene expression profile of a group of 1,135 selected genes in a cell line,
T98G, a derivative of human glioblastoma of astrocytic origin. By pre-treating T98G cells with different dose of LPS, it
was found that LPS treatment caused a broad alteration in gene expression profile, but did not cause obvious cell death.
However, after short exposure to H2O2, cell death was dramatically increased in the LPS pretreated samples.
Interestingly, cell death was highly correlated with down-regulated expression of antioxidant genes such as cytochrome
b561, glutathione s-transferase a4 and protein kinase C-epsilon. On the other hand, expression of genes encoding growth
factors was significantly suppressed. These changes indicate that LPS treatment may suppress the anti-oxidative
machinery, decrease the viability of the T98G cells and make the cells more sensitive to H2O2 stress.

Conclusion: These results provide very meaningful clue for further exploring and understanding the mechanism
underlying astrocyte injury in sepsis in vivo, and insight for why LPS could cause astrocyte injury in vivo, but not in vitro. It
will also shed light on the therapeutic strategy of sepsis.
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Background
Sepsis is a grave threat to human life in the modern soci-
ety. It is listed as the second most common cause of death
in non-coronary intensive care units and is among the top
causes leading to death in the United States [1,2]. The
severity of the pathogenesis of sepsis was thought to be
the consequence of an uncontrolled hyperinflammatory
and mostly cytokine-mediated host response. Recently, a
new theory was proposed, which emphasizes on the viru-
lence of microbial pathogens and host-pathogen interac-
tions during severe sepsis [2,3]. A number of extracellular
enzymes and microbial mediators have been identified
contributing to tissue damage in sepsis. These toxins com-
promise cellular defenses, cause damage in barriers for
microbial invasion, and help the pathogens to spread
within the host. In the spectrum of pathogenesis of sepsis,
lipopolysaccharide (LPS) has been considered to play a
crucial role in pathogen-host interaction [2]. LPS is a
major structural component of the outer membrane of
Gram-negative bacteria, so as to be often referred as an
endotoxin.

Brain injury is observed in postmortem examination of
patients dead from sepsis with lesions of multifocal necro-
tizing leukoencephalopathy, apoptosis, micro-abscesses,
and ischemia [4,5]. Systemic LPS administration led to
granulocyte influx into brain parenchyma in a mouse
model. This influx was accompanied by disruption of the
blood-brain barrier to albumin and induction of the intra-
cellular adhesion molecule 1 (ICAM-1) on affected blood
vessels [6]. Brain cell death, but no polymorphonuclear
infiltration, was also observed in some autopsy materials
of patients who died of septic shock [7]. These observa-
tions implicate multiple pathways that may underlie the
brain cell death process. Brain cell injury could be one of
the direct causes leading to septic patient death. For
instance, neuronal apoptosis in autonomic centers i.e. car-
diovascular autonomic centers indicates that the septic
pathogens may set off host mortality by means of damag-
ing host brain cells [4,8].

In the blood-brain barrier, endothelial cells are the first
interface interacting with hematogenous spreading LPS.
LPS damage to endothelial cells was shown in many stud-
ies, one of which showed that LPS induced apoptosis in a
bovine endothelial cell line via a soluble CD14 dependent
pathway [9]. LPS also induce apoptosis in human
endothelial cells [10]. Brain endothelial cell damage dur-
ing septic shock has also been noticed in clinical patients
[11]. LPS triggering brain cell death was observed by de
Bock and coworkers [12], who found that LPS endotoxic
insult caused neuronal death in cultured organotypic hip-
pocampal slices obtained from 7-day old neonatal rats
dependent on the synthesis of tumor necrosis factor alpha
(TNF-α) [12]. LPS was also reported to induce death of

glial cells in freshly isolated rat neonatal white matter in a
dose-dependent fashion [13]. LPS encephalic injection
induced endothelial cell and astrocyte injury with increase
in blood-brain barrier permeability in rat models [14].
LPS astrocyte injury was also indicated in large animals in
vivo. Oikawa and coworkers [15] found that septic shock,
featured as edema around arterioles and hemorrhages
around veins in the brain of horses after systemic admin-
istration of LPS [15]. Astrocytes are mainly layered around
the blood vessels in the brain. The edema and hemorrhage
zones indicate the involvement of astrocytes.

Astrocytes (astroglia) are a subtype of the glial cells in the
brain and star-shaped with many functions, including
biochemical support of endothelial cells forming the
blood-brain barrier, provision of nutrients to the nervous
tissue, and a principal role in the repair and scarring proc-
ess. Astrocytes are the major type of cells around blood
vessels in the brain and form the blood-brain barrier with
blood vessel endothelial cells. Therefore, in systemically
induced or infected endotoxemia, astrocytes will be the
direct defense-line of the brain after endothelium being
compromised to LPS. When the defensive line of astro-
cytes is compromised, the brain parenchyma becomes
very susceptible to pathogen infection. While LPS causes
endothelial cell death both in vivo and in vitro [14,16,17],
astrocyte derivative cell lines such as human cell lines
T98G and A172, rat cell lines C6 and immortalized rat
astrocytes are broadly used in LPS treated experiments,
and no cell injury has been reported [18,19]. If LPS does
not cause astrocyte injury in vitro, how could LPS cause
astrocyte injury in vivo in the animal tests? Whether sys-
temic administration of LPS could result in brain paren-
chyma damage also becomes a question.

Previous publications indicate that LPS alone would not
cause cell death, but LPS combined with cytokines, i.g.,
interferon-γ (INF-γ) would cause decrease in viability of
rat C6 and rat primary astrocytes [20,21]. Those reports
indicate a much more complex mechanism of LPS on
astroctyte injury compared to LPS causing endothelial
injury. LPS is involved in broad inflammatory responses.
Therefore, a comprehensive study of inflammation and
other relevant factors under LPS influence may provide
more detailed information about the behavior of astro-
cytes in sepsis.

The present study was designed to explore LPS role in sep-
sis in a comprehensive way by profiling expression of a
highly selected group of genes using an astrocyte model
(T98G). T98G cell line is a derivative of glioblastoma. Its
astrocytic origin was confirmed by Bignami et al. [22]. The
cell line has been intensively used as a model to study
astrocytes [23-25] because of its biological resemblance to
primary astrocyte. T98G cells express the specific marker
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of astrocyte, glial fibrillary acidic protein (GFAP) and
share other phenotypes to primary astrocyte such as
CD68- and HLA-I- [24].

Results
LPS potentiates H2O2-caused cell death
Without subsequent H2O2 exposure, cellular viability was
not altered when cells were treated with 1 μg/ml LPS com-
pared to PBS controls (First panels on the left in Figure 1A
and 1B). With higher concentration of LPS (5 μg/ml), it
only caused a minor (5%) reduction of cell viability com-
pared to the PBS controls without subsequence H2O2
exposure (First panels on the left in Figure. 1A and 1B).

By itself, H2O2 caused substantial cell death, but this effect
was greatly enhanced in cells pretreated by LPS (Figure 1).
H2O2 mediated decrease in cell viability was closely
related to LPS dose. 1% H2O2 treatment caused 36%
decrease in cell viability among the cells pretreated with 1
μg/ml LPS, while 5 μg/ml LPS caused 50% decrease in cell
viability, as compared to the corresponding cells which
only treated with LPS without subsequent H2O2 treat-
ment. In contrast, cell viability only dropped 24% for cells
that did not receive LPS beforehand. Similar patterns were
obtained in groups treated with 2% and 3% H2O2.

In all subgroups treated with H2O2, cell viabilities were
significantly reduced (α < 0.05) in the groups pretreated
with LPS at as low as 1 μg/ml compared with the cells
received PBS instead (Figure 1). The same is true for the
groups pretreated with 5 μg/ml LPS versus PBS controls (α
< 0.05). With the increase in LPS dosage, a further
increased cell death was observed in those cells which
received 1 μg/ml LPS or 5 μg/ml LPS and then were
exposed to 1% or 2% H2O2 (Figure 1). For 3% H2O2 treat-
ments, no significant difference was observed between the
two LPS concentrations, which may be because H2O2
induced cell death became predominant. Those results
suggest that LPS pretreatment synergistically enhances the
H2O2 caused cell death.

LPS induced gene expression changes
Using multiplex amplification and microarray, we identi-
fied 883 (78%) mRNA species with signals significantly
higher than backgrounds (p < 0.05, Welch's t-test) in
T98G cells under various conditions (Figure 2). Of the
883 genes, 51 (4.5%) were down-regulated, while 76
(6.7%) were up-regulated by different LPS treatments. In
the down-regulated group, the expression of 31 out of 51
genes began to decrease significantly (α < 0.05) at the
lower dose of LPS (1 μg/ml), and the rest also showed sig-
nificant (α < 0.05) down-regulation at higher does LPS (5
μg/ml). In the up-regulated group, 55 out of 76 mRNA
species began significantly (α < 0.05) to raise in response
to the lower dose of LPS 1 μg/ml, while 21 increased sig-

nificantly (α < 0.05) at higher dose of LPS (5 μg/ml) (Fig-
ure. 2, Additional file 1).

LPS treatments induced alteration in expression for a wide
range of genes in the T98G cells, including those relevant
to antioxidant, antibacterial, growth factor, apoptosis,
gene transcription, brain function, cytoskeletal rearrange-
ment, astrocytic differentiation, transfer of cargo between
intracellular membranes of organelles, cell adhesion, cell
cycle regulation, pro-inflammatory cytokines, etc. (Addi-
tional file 1).

Amidst the group of genes down regulated by LPS, the
ones related to antioxidation were outstanding (Addi-
tional file 1). These genes included: (1) glutathione S-
transferase A-4 (gsta4), a member of the glutathione S-
transferase family, crucially associated with glutathione
antioxidantion [26], (2) kinase C-epsilon (prkce) that
functions to prevent cell injury from ischemia-reperfusion
like insult [27], (3) cytochrome b561 (cyb561) that is a
ferric reductase to maintain ferrous-ferric homeostasis in
cells [28]. Decreased ferrous/ferric ratio was observed in
neuronal degeneration diseases [29], indicating the defi-
ciency in the antioxidant in the affected patients, (4)
vasoactive intestinal peptide (VIP) type 1 receptor (vipr1),
which is the major type of receptor mediating VIP activity.
VIP which was reported to have antioxidant effect on inhi-
bition of INF-γ stimulated nicotinamide adenine dinucle-
otide phosphate (NADPH) oxidative pathways in murine
macrophages [30], (5) macrophage stimulating protein
(mst1), which is also known as hepatocyte growth factor-
like protein, and was reported to inhibit the production of
nitric oxide (NO), a reactive oxygen species, in the injured
hypoglossal nuclei [31]. In contrast, endothelial nitric
oxide synthase (eNOS) is significantly increased after the
LPS treatment. The above data imply a decreased antioxi-
dant capacity in the LPS treated astrocytes.

Correlation between down-regulated genes and cell 
viability after H2O2 treatment
As Pearson product-moment correlation coefficient r >
0.988 (α < 0.05) was used as the significance level cutoff,
amidst the down-regulated genes, 12 are significantly cor-
related with cell viability, while only one gene whose
expression is significantly correlated with cell viability in
the up-regulated group (Table 1).

Interestingly, the r values for cytochrome b561, the ferric
reductase, are 0.771, 0.963, 0.990, and 0.999 in the
groups treated with PBS, 1%, 2% and 3% H2O2, respec-
tively (Table 1), indicating a strong intrinsic association of
cytochrome b561 gene expression and cell viability. VIP
receptor 1 displays an r of 0.995 in the 3% H2O2 treated
group (Table 1). The other antioxidant genes also had
high r values although are not significant. For instance, r
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Illustration of results from the study of astrocyte death caused by LPS treatment followed by H2O2 exposureFigure 1
Illustration of results from the study of astrocyte death caused by LPS treatment followed by H2O2 exposure. 
(A). Effect of LPS and H2O2 concentration on cell viability. "*" indicates statistically significantly different (α < 0.05) from PBS 
treatment in the same subgroups (the same H2O2 concentration), and "#" indicates statistically significantly different (α < 0.05) 
from sample pretreated with 1 μg/ml LPS in the same subgroup. Vertical bars represent range of variation of the cell viability 
error bars indexing the standard deviations (SD) based on three independent experiments. (B). The same set of data in (A) but 
are presented in percentages of viable cells compared with the PBS controls in the same subgroups.
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values for gsta4, prkc, and mst1 are 0.967, 0.968, and 0.983
in the 3% H2O2 treated groups, respectively (Table 1).

Other impressive genes with their expression highly corre-
lated with cell viability are growth factors, including c-fos
induced growth factor (figf), growth factor receptor-
bound protein 2 (grb2), insulin-like growth factor binding
protein 2 (igfbp2), v-fos FBJ murine osteosarcoma viral
oncogene homolog (fos) and FBJ murine osteosarcoma
viral oncogene homolog B (fosb). (Table 1, and Additional
file 1). The expression of figf and fos achieved a significant
level to correlate with cell viability, while fosb, grb2 and

igfbp2 show high, but not significant r values of 0.987,
0.972 and 0.985, respectively, in the 3% H2O2 group
(Table 1). The gene expressions of growth factor receptor-
bound protein 2 (grb2) and insulin-like growth factor
binding protein 2 (igfbp2) also showed high correlation
with T98G cell viability (Table 1). The gene products of
those two genes are involved in cross-talking of growth
factor pathway and other pathways [32-34]. Decline of
somatostatin receptor 2 (sstr2) gene expression was
reported to be associated with brain cell injury [35]. In the
present study, sstr2 gene expression showed significant
correlation with T98G cell viability in 1% H2O2 (Table 1).

Illustration of microarray resultsFigure 2
Illustration of microarray results. In each array, all the 1,135 oligonucleotide probes were spotted twice. (A). Microarray 
images for PBS control, 1 and 5 μg/ml LPS treatments; (B) Pie chart presentation of the expression profile of the1135 genes. 
(C) Illustration of the portion of significantly down- and up-regulated genes in the presence of 1 and 5 μg/ml LPS.

� � � � � � � � � 	 
 � � � � 
 � 	 
 � � � � 
 � 	

� � � � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � � � � �
�  � � � � � � � � �

! "

�  � � � � � � � � � � � � � � # � $ % � & ' (
�  � � � � � � � � � � � � � � ) � $ % � & ' (

� � � � � � � � � � � � � � � � � � # � $ % � & ' (
� � � � � � � � � � � � � � � � � � ) � $ % � & ' (

* +

, +
Page 5 of 13
(page number not for citation purposes)



BMC Genomics 2008, 9:608 http://www.biomedcentral.com/1471-2164/9/608
Table 1: Correlation between gene expression and cell viability

Accession Number Gene Name LPS (μg/ml) Pearson Correlation Coefficient (r)

Control (PBS) 1% H2O2 2% H2O2 3% H2O2

Down Regulated
Adhesion

NM_001797 cadherin 11, type 2, OB-cadherin (osteoblast) 
(CDH11)

5 0.7715 0.9635 0.9903 0.9993

Anti-Oxidant
NM_001512 glutathione S-transferase A4 (GSTA4) 1 0.6140 0.8818 0.9360 0.9669
NM_020998 macrophage-stimulating protein (MST1) 1 0.6693 0.9135 0.9589 0.9827
NM_005400 protein kinase C, epsilon (PRKCE) 5 0.6189 0.8847 0.9382 0.9684
NM_004624 vasoactive intestinal peptide receptor 1 (VIPR1) 5 0.7329 0.9462 0.9804 0.9953
NM_001915 cytochrome b-561 (CYB561) 5 0.7711 0.9633 0.9902 0.9992

Antibacterial Factors
NM_020993 B-cell CLL/lymphoma 7A (BCL7A) 1 0.8045 0.9765 0.9963 0.9999
NM_001735 sapiens complement component 5 (C5) 1 0.5590 0.8478 0.9100 0.9473
NM_000565 interleukin 6 receptor (IL6R) 1 0.6850 0.9220 0.9648 0.9865

Apoptosis
NM_000435 notch homolog 3 (Drosophila) (NOTCH3), 1 0.7489 0.9536 0.9848 0.9973
NM_001618 poly (ADP-ribose) polymerase family, member 1 

(PARP1),
1 0.6838 0.9214 0.9643 0.9862

NM_021136 reticulon 1 (RTN1) 1 0.6122 0.8807 0.9352 0.9663
NM_000041 apolipoprotein E (APOE) 5 0.7164 0.9381 0.9754 0.9927
NM_001964 early growth response 1 (EGR1) 5 0.7975 0.9739 0.9952 1.0000

Brain Function
NM_000027 aspartylglucosaminidase (AGA) 1 0.5997 0.8732 0.9295 0.9621
NM_000441 solute carrier family 26, member 4 (SLC26A4) 5 0.7566 0.9571 0.9868 0.9981
NM_004283 RAB3D, member RAS oncogene family (RAB3D) 5 0.8235 0.9830 0.9986 0.9988
NM_003045 solute carrier family 7 (cationic amino acid 

transporter, y+ system), member 1 (SLC7A1)
5 0.6901 0.9247 0.9666 0.9876

Cancer Marker
NM_016730 folate receptor 1 (adult) (FOLR1) 1 0.6441 0.8994 0.9489 0.9760
NM_005635 synovial sarcoma, X breakpoint 1 (SSX1) 1 0.7612 0.9591 0.9879 0.9985

Cell Cycle Regulation
NM_005982 SIX homeobox 1 (SIX1) 5 0.6397 0.8969 0.9471 0.9748
NM_005994 T-box 2 (TBX2) 5 0.6035 0.8755 0.9312 0.9634

Cytoskeletal Constitution and Rearrangement
NM_001621 aryl hydrocarbon receptor (AHR) 1 0.6673 0.9124 0.9582 0.9822
NM_000269 non-metastatic cells 1, protein (NM23A) expressed 

in (NME1)
1 0.5921 0.8685 0.9260 0.9595

NM_003289 tropomyosin 2 (beta) (TPM2) 1 0.7030 0.9314 0.9710 0.9903
NM_015873 villin-like (VILL) 1 0.5310 0.8296 0.8956 0.9361
NM_003023 SH3-domain binding protein 2 (SH3BP2) 5 0.7448 0.9517 0.9837 0.9969

Extra Cellular Matrix-Degrading Proteases
NM_007038 ADAM metallopeptidase with thrombospondin 

type 1 motif, 5 (aggrecanase-2) (ADAMTS5)
1 0.6070 0.8776 0.9328 0.9646

Growth Factor and Related Protein Factors
NM_018127 elaC homolog 2 (E. coli) (ELAC2) 1 0.6819 0.9203 0.9636 0.9858
NM_003506 frizzled homolog 6 (Drosophila) (FZD6), 1 0.7105 0.9352 0.9735 0.9917
NM_018344 solute carrier family 29 (nucleoside transporters), 

member 3 (SLC29A3)
1 0.6177 0.8840 0.9376 0.9680

NM_021724 nuclear receptor subfamily 1, group D, member 1 
(NR1D1)

1 0.6802 0.9194 0.9630 0.9854

NM_001012 ribosomal protein S8 (RPS8) 1 0.6111 0.8801 0.9347 0.9659
NM_003087 synuclein, gamma (breast cancer-specific protein 1) 

(SNCG)
1 0.7776 0.9660 0.9916 0.9996

NM_015906 tripartite motif-containing 33 (TRIM33), 1 0.7008 0.9303 0.9703 0.9898
NM_000222 v-kit Hardy-Zuckerman 4 feline sarcoma viral 

oncogene homolog (KIT)
1 0.6613 0.9091 0.9558 0.9807

Y12863 growth factor FIGF 5 0.7831 0.9683 0.9927 0.9998
NM_002086 growth factor receptor-bound protein 2 (GRB2) 1 0.6311 0.8919 0.9434 0.9722
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Nerve growth factor was detected in the present study, but
its gene expression appeared not to be affected by LPS
treatment (Table 2), implying nerve growth factor may
not be involved in causing astrocyte death in sepsis at the
gene expression level.

The present study indicates that astrocytes may not be the
major source to release chemotactic factors, and therefore,
they may not actively recruit monocytes and neutrophils
to the site under LPS treatment. Our results indicate that
gene expression of il1b, il6 and il12 were suppressed by
LPS, while mRNAs of il2, il3, il4, il5, il9 and il13 were not
detectable in T98G cells (Table 2). il11 expression was
increased by LPS treatment (Table 2), which is consistent
to the notion that il11 is expressed in astrocytes under
inflammatory stimuli [36]. Interestingly, the il11 gener-
ated by astrocytes in response to inflammation may have
a protective function for survival of oligodendroglia that
myolinated the axons of neurons [36]. The LPS induced
il11 gene expression may reflect a cell protective mecha-
nism in sepsis.

Several tumor necrosis factor (tnf) family members were
included in the present study. Gene expression of tnfα, the
most studied cytokine involved in inflammation and cell

death, was not detectable in T98G cells, while gene expres-
sion of its receptors, tnfr1 and tnfr2 were unaffected by the
LPS treatment, indicating cell death induced in the
present study was independent of gene expressions of
tnfα, tnfr1 and tnfr2 of T98G (Table 2). Gene expression of
TNF ligand superfamily member 14 (tnfsf14) was
increased as the LPS dose increased, but did not show
meaningful correlation with the cell viability (Table 2).
TNFSF14 which is a homolog of lymphotoxin was
reported to inhibit tumor growth [37]. Considering the
cancerous nature of T98G cell, LPS induced tnfsf14 expres-
sion may imply brain tumor suppression function in
some cases [38]. Conspicuously, cyclooxygenase 2 (cox2)
gene expression was significantly suppressed by LPS pre-
treatment (Table 1, and Additional file 1), though the sup-
pression level was not significantly correlated with cell
viability. The gene of cox2 is broadly expressed in cancers
and is suggested to be a potent enzyme in arachidonic
acid metabolism to favor the tumor growing [39]. Our
results are in consistent with the anticancerous effect of
LPS [38].

With the undetectable or unaffected mRNAs of TNFα and
its receptors under LPS treatment, caspase 8 and caspase
10, the key factors to mediate apoptotic signals from the

M35410 insulin-like growth factor binding protein 2 
(IGFBP2)

1 0.6801 0.9194 0.9630 0.9854

NM_001050 somatostatin receptor 2 (SSTR2) 1 0.9252 0.9996 0.9871 0.9658
NM_016135 ets variant gene 7 (TEL2 oncogene) (ETV7) 5 0.6810 0.9198 0.9633 0.9856
NM_006732 FBJ murine osteosarcoma viral oncogene homolog 

B (FOSB)
5 0.6889 0.9240 0.9662 0.9873

NM_022963 fibroblast growth factor receptor 4 (FGFR4) 5 0.6720 0.9150 0.9600 0.9834
NM_002957 retinoid × receptor, alpha (RXRA) 5 0.9264 0.9995 0.9866 0.9650
NM_004630 splicing factor 1 (SF1) 5 0.8712 0.9955 0.9993 0.9904
NM_005252 v-fos FBJ murine osteosarcoma viral oncogene 

homolog (FOS)
5 0.8257 0.9837 0.9988 0.9986

Hemostasis
NM_000624 peptidase inhibitor, clade A (alpha-1 antiproteinase, 

antitrypsin), member 5 (SERPINA5)
1 0.6092 0.8790 0.9339 0.9653

Inflammation and Immunity
NM_000963 cyclooxygenase-2 (COX2) 1 0.5186 0.8213 0.8890 0.9308

Transfer of Cargo Between Intracellular Membrane Organelles
NM_016577 RAB6B, member RAS oncogene family (RAB6B) 1 0.7002 0.9299 0.9701 0.9897

Up Regulated
Cancer Marker

NM_005814 glycoprotein A33 (transmembrane) (GPA33) 1 -0.9658 -0.9878 -0.9589 -0.9251
Cell Junction

NM_001943 desmoglein 2 (DSG2) 1 -0.6663 -0.9119 -0.9578 -0.9820
Cytoskeletal Constitution and Rearrangement

NM_002613 3-phosphoinositide dependent protein kinase-1 
(PDPK1)

1 -0.5869 -0.8653 -0.9235 -0.9577

Gene Transcription
NM_006180 neurotrophic tyrosine kinase receptor, type 2 

(NTRK2)
1 -0.6822 -0.9205 -0.9637 -0.9858

NM_013275 nasopharyngeal carcinoma susceptibility protein; 
lz16/ankyrin repeat domain 11 (ANKRD11)

1 -0.7789 -0.9666 -0.9918 -0.9997

*Genes with a Pearson's product-moment correlation coefficient (r2) > 0.85 are listed. Those with coefficient r > 0.988 (α < 0.05) are in bold face.

Table 1: Correlation between gene expression and cell viability (Continued)
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TNF family [40], was also unaffected by the LPS in their
gene expression (Table 2). Bcl-2 family plays crucial roles
in pro- or anti-apoptosis [41]. Neither mRNA of Bcl-w, a
factor functioning in blocking apoptosis, nor mRNA of
Bad, the factor playing an opposite role as to Bcl-w, was
affected by LPS (Table 2). Markedly, gene expression of
Bcl-2 binding component 3 (bbc3), a strong pro-apoptotic
factor, was induced by LPS (Table 1, 2). The bbc3 gene is a
direct target of p53 and is also induced by p53 independ-

ent apoptotic stimuli such as dexamethason treatment
and serum deprivation [42]. Interestingly, its expression
could be suppressed by growth factors [42], which may
coordinate the growth factor suppression in the present
study. The bbc3 gene expression does not show a correla-
tion with the cell death, indicating the possibility of mul-
tiple regulation levels involved in the cell death resulted
from LPS coupled with H2O2 treatment.

Table 2: Genes associated with cytokines, cell death, and growth

Accession Number Gene Name mRNA*

Interleukins
NM_000576 interleukin beta; il1 b U/A
M14584 interleukin 6 (interferon; beta 2); IL-6 U/A
NM_000882 interleukin 12a; il12a U/A
NM_000641 interleukin 11; il11 Up
NM_000640 interleukin 13 receptor alpha 2; il13ra2 Up
NM_000565 interleukin 6 receptor; IL-6Ra Down
NM_000586 interleukin 2; il2 U/D
NM_000588 interleukin 3 colony-stimulating factor multiple; il3 U/D
NM_000589 interleukin 4; il4 U/D
NM_000879 interleukin 5 colony-stimulating factor eosinophil; il5 U/D
NM_000590 interleukin 9; il9 U/D
NM_002188 interleukin 13; il13 U/D
NM_001562 interleukin 18; il18 U/D

Tumor Necrosis Factors
NM_003807 tumor necrosis factor ligand superfamily member 14; tnfsf14 Up
NM_001065 tumor necrosis factor receptor 55kd; tnfrsf1a U/A
NM_001066 tumor necrosis factor receptor 2 75kd; tnfrsf1b U/A
NM_006291 tumor necrosis factor alpha-induced protein 2; tnfaip2 U/A
NM_032945 tumor necrosis factor receptor superfamily member 6b precursor isoform d; tnfrsf6b U/A
NM_003811 tumor necrosis factor ligand superfamily member 9; tnfsf9 U/A
NM_003810 tumor necrosis factor ligand superfamily member 10; tnfsf10 U/A
NM_003842 tumor necrosis factor receptor superfamily member 10b; tnfrsf10b U/A
NM_006573 tumor necrosis factor ligand superfamily member 13b; tnfsf13b U/A
NM_003820 tumor necrosis factor receptor superfamily member 14; herpesvirus entry mediator; tnfrsf14 U/A
NM_000594 tumor necrosis factor cachectin (TNF) U/D
NM_001244 tumor necrosis factor ligand superfamily member 8; tnfsf8 U/D
NM_003844 tumor necrosis factor receptor superfamily member 10a; tnfrsf10a U/D

Apoptosis
U82987 Bcl-2 binding component 3 (bbc3) Up
NM_003879 casp8 and fadd-like apoptosis regulator; cflar U/A
NM_032977 caspase 10 isoform d small subunit; casp10 U/A
NM_033356 caspase 8 isoform c; casp8 U/A
NM_000043 apoptosis apo-1 antigen 1; tnfrsf6 U/A
NM_001160 apoptotic protease activating factor isoform b; apaf1 U/A
U59747 BCL2-like 2; Bcl-w U/A
NM_032989 bcl2-antagonist of cell death protein; bad U/A
AF022224 Bcl-2-associated athanogene; BAG-1 U/A
NM_003766 beclin coiled-coil myosin-like bcl2-interacting protein; becn1 U/A
NM_000639 apoptosis apo-1 antigen ligand 1; tnfsf6 U/D
NM_021631 apoptosis inhibitor; fksg2 U/D
NM_004874 bcl2-associated athanogene 4; bag4 U/D

Nerve Growth Factors
NM_002507 nerve growth factor receptor; ngfr U/A
X52599 nerver growth factor; beta polypeptide; NGF U/A

*U/A, unaffected. U/D, undetectable
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Discussion
Our results showed that LPS itself was insufficient to cause
T98G cell death. However, when subsequently treated
with H2O2, the LPS effect in inducing cell death could be
significantly enhanced, which might be underlain by
altered gene expression through pre-exposure of LPS. In
systemic sepsis, LPS first accesses the endothelial layer of
the blood-brain barrier. In addition to cell death leading
to compromise integrity of endothelial layer in the blood-
brain barrier, the permeability of the vascular barrier can
also be changed in response to LPS via paracelluar perme-
ability. The paracellular pathway is composed of both
tight junctions and adherens junctions between endothe-
lial cells. These inter-endothelial junctions are compro-
mised under LPS stimulation and leaky to liquid and
solutes [43]. In this case, astrosytes are exposed to LPS
directly.

LPS treatment suppressed expression of antioxidant genes
such as cyb561, gsta4, prkce, mst1 and vipr1 (Table 1, and
Additional file 1). Suppression of antioxidant gene expres-
sion subjects the cells to increased oxidative stress. When
this happens in astrocytes, LPS may simultaneously stim-
ulate neighboring cells, i.e., endothelial cells to release
chemotactic factors such as TNFα, IL-1β, INF-γ to attract
monocytes and nerutrophils to the niche. Subsequently,
monocytes and neutrophils are triggered by LPS and
proinflammatory cytokines to generate H2O2. In the
brain, microglial cells are the member of the monocyte/
macrophage family and it may be activated by LPS to gen-
erate H2O2 in order to destroy invading bacteria but may
cause injury to brain tissues as well [44]. The coexistence
of microglia may explain LPS induced cell death in cul-
tured brain slices and in freshly isolated white matter glial
cells [12,13].

Cyt b561, GSTA4 and PRKCE are not directly associated
with NO pathways, though an increase in NO generation
was observed under LPS stimulation in macrophage/
monocyte [45], neutrophil [46] and even astrocyte
[47,48] via inducible nitric oxide synthase (iNOS). LPS as
an exogenous inducing factor to iNOS has long been
established. Therefore, iNOS was not included in the
present study. The scavenging of H2O2 may reduce the tis-
sue level of superoxide (O2

.) on a stoichiometric basis
because it is produced from O2

. catalyzed by superoxide
dismutase. It is plausible that a reduction of tissue O2

. may
reduce the production of peroxinitrite that is produced by
interaction of O2

. and NO and is a major toxic metabolite
of NO causing cell injury [49]. Moreover, MST1 is known
to inhibit the production of NO [31]. Its gene expression
is also down regulated by the LPS with an r value of 0.98
correlated with cell death in the present study, indicating
that a weakened defensiveness to NO and its toxic metab-
olites may also occur in astrocyte under LPS stress.

Furthermore, the present study showed that LPS sup-
pressed gene expression of growth factors and associated
factors. Among the suppressed genes, gene product of figf
was reported to be a survival factor in human cell lines by
increasing Bcl-2 expression, decreasing caspase activities
and inhibition of poly(ADP-ribose) polymerase cleavage
to resist hypoxia and chemical induced cell death [50]. fos
is a cellular proto-oncogene belonging to the immediate
early gene family of transcription factors in response to
growth factor and other stimuli [51]. The fos gene family
is comprised of four members: fos, fosb, fosl1, and fosl2,
which encode leucine zipper proteins that can dimerize
with proteins of the JUN family, thereby forming the tran-
scription factor complex AP-1, regulating cell prolifera-
tion, differentiation, and transformation [52]. FosB
encoded by fosb acts as a regulator in cell proliferation, dif-
ferentiation, and transformation [51]. GRB2 is a plasma
protein involved in mediating growth factor signals via
promoting growth factor induced growth-receptor endo-
cytosis [53] and interacting with Ras as well as p21-acti-
vated kinase 1 (PAK1) to weave the growth factor
pathways [33,34]. IGFBP2 was reported to play a key role
in driving glioma cell growth via activation of the Akt
pathway and to collaborate with K-Ras or platelet-derived
growth factor β in the development and progression of gli-
oma [32]. In consistent with the previous studies that
expression of sstr2 declined in brain cells in rat trauma
model and was associated with brain cell injury [35], the
sstr2 gene expression displayed significant correlation
with cell viability in 1% H2O2 in our present study (Table
1). Since sstr2 was reported to have neuroprotective
potential [35], suppression of sstr2 gene expression may
also contribute to astrocyte death in the present study.

The present study outlines a rational profile on the possi-
ble mechanisms that LPS compromises the blood-brain
barrier during sepsis. Suppression of antioxidant gene
expression of cyb561, gsta4, and prkce indicates a reduction
of cell antioxidative capacity. Furthermore, the co-sup-
pression of growth factors and related factors such as figf,
fos, fosb, grb2 and igfbp2 may further weaken the cell sur-
vival ability to resist harsh stress such as that caused by
H2O2. Growth factors are involved in broad functions in
maintaining cell survive. In addition to regulate Bcl-2 and
caspase activities, and inhibition of poly(ADP-ribose)
polymerase cleavage [50], growth factor may also pro-
mote glutathione redox cycling. For instance, nerve
growth factor has potent effect to resist H2O2 damage on
neurons via a rapid activation of glutathione redox cycling
[54], indicating the direct effect of growth factor to protect
cells from reactive oxygen species. Interestingly, in the
present study, gene expression of nerve growth factor was
not affected by LPS (Table 2), indicating gene expression
of nerve growth factor may not be an LPS target to induce
the astrocyte death.
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Conclusion
The facts of LPS suppression of genes encoding antioxi-
dant factors and growth factors, and H2O2 enhancement
of the LPS pretreated cell death suggest a possible crucial
mechanism causing blood-brain barrier damage in sepsis
and at least in part explains the previously described dis-
crepancy why LPS cause brain cell injury in vivo or in organ
culture, but not remarkable with culture astrocytes. When
LPS is systemically administered, monocytes and neu-
trophils may be recruited into the inflammatory niche.
These cells may subsequently, generate H2O2 to trigger cell
death. In brain slice organ culture, in addition to the pos-
sibly remaining monocytes and macrophages, microglial
cells could be the principal source to generate reactive oxy-
gen species in the presence of LPS [55]. These results may
shed light on the therapeutic strategies in septic shock
patients, though further studies including in vivo studies
are needed to define the detailed pathways as well as reg-
ulations at the translation and protein-function levels in
mediation of astrocyte death.

Methods
Cell culture, and LPS and H2O2 treatments
T98G was purchased from American Type Culture Collec-
tion (Manassas, VA). The cell line was maintained in
Ham's F-10/DMEM (10:1) medium supplemented with
10% fetal bovine serum, 100 units/ml penicillin, and 100
μg/ml streptomycin at 37°C in a humidified atmosphere
containing 5% CO2/95% air. When 80% confluence was
achieved, LPS (Salmonella enteriditis, Sigma-Aldrich) was
added to the final concentrations of 1 and 5 μg/ml, respec-
tively. The controls received equal volumes of PBS
instead. After 24-hr treatment with LPS, cells were washed
with PBS for three times. Serum free media were added
into the cell cultures. Thirty percent of H2O2 was then
added into cell cultures to final concentrations of 1%, 2%
and 3%, respectively. Control groups received PBS with
no H2O2 instead. After one hour exposure, H2O2 was
washed away with PBS for three times. Cells were re-cul-
tured in regular media for extra 24 hrs. Cell viability was
measured with MTT assay as instructed by the vender
(Promega). Data were obtained from three independent
experiments.

Primer and probe design
Our recently developed highly sensitive and specific sys-
tem for high-throughput gene expression profiling was
employed [56-58] to study the gene expression profiles in
the T98G cells under different experimental conditions.
Compared with many conventional methods, the major
advantage of this technology is its ability to detect mRNA
and to amplify cDNA without using poly-A tails. This sys-
tem is especially advantageous for the present study since
missing Poly-A tails is a remarkable feature in brain
mRNA. Our system uses specially designed primer pairs

crossing introns for multiplex PCR to make the amplifica-
tion highly specific. The detection specificity is further
guaranteed by using an oligonucleotide probes consisting
of sequences in two neighboring exons for microarray
detection. With a special primer selection strategy, over
1,000 mRNA species can be detected by a single assay
[56,58].

A panel of 1,135 mRNA species relevant to inflammation,
cell growth, differentiation, apoptosis, gene expression,
antioxidant, etc. was amplified simultaneously using our
high-throughput system. For each dose of LPS treatment
and the PBS control, data were obtained from two sepa-
rate cell cultures of the same cell line, T98G. Each culture
was analyzed with duplicated microarrays. In each array,
all oligonucleotide probes were spotted twice. Therefore,
each treatment was totally repeated eight times. For each
array, 57 mismatch probes were selected from human
genome as hybridization controls, which showed no
interaction with the genes for testing.

The two conventional housekeeping gene controls, glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) and β-
actin were used as controls in the present study. Endothe-
lial nitric oxide synthase 3 (NOS3) was used as an addi-
tional control since both GAPDH and β-actin gene share
significant sequence identity with many pseudogenes.
NOS3 is constitutively expressed and may be inducible in
the brain. It has been known that it has no splicing alter-
native and pseudogene.

One-Step RT-PCR
For One-Step RT-PCR, 200 T98G cells were used after cell
lysis with a freezing and thawing procedure [56-58].
Briefly, cells in the lysis buffer (1.5 μl RNasin® Ribonucle-
ase inhibitor, 2 μl of 5× QIAGEN OneStep RT-PCR buffer,
5.5 μl H2O) were lysed with three repeating cycles of alter-
nating one-min incubation between an ethanol/dry ice
mix and a 37°C water bath. One-step RT-PCR was carried
out in a 50-μl reaction containing primers (20 nM each)
for all the 1,135 mRNA species, 2.5 mM MgCl2, the four
dNTPs (400 μM each), 5 units of RNasin® Ribonuclease
Inhibitor (Promega) and 2.0 μl QIAGEN OneStep RT-PCR
Enzyme Mix. The samples were first treated at 50°C for 40
min to synthesize the selected cDNAs, and then were
heated to 95°C for 15 min to inactivate the reverse tran-
scriptase and activate the Taq DNA polymerase followed
by 35 PCR cycles. Each PCR cycle consisted of 40 sec at
94°C for denaturation, and 1 min at 50°C for annealing
and 5 min of ramping from 50°C to 70°C for annealing
and extension. At the end of the PCR, a final extension
step was carried out at 72°C for 3 min. All PCRs were per-
formed with the PTC100 Programmable Thermal Con-
trollers (MJ Research). Single-stranded DNA (ssDNA) was
generated by using the same conditions in the multiplex
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PCR step except for the templates that were 2 μl of the
multiplex RT-PCR product. Only one primer for each
sequence was used, and 50 thermal cycles were carried
out.

Microarray hybridization and probe labeling
Hybridization was performed in 30 μl of 1× hybridization
solution (5× Denhart's solution, 0.5% SDS, 3 × SSC, 20 μl
of ssDNA at 56°C for 2 hrs. The slide was then washed
with 1 × SSC and 0.1% SDS at 56°C for 10 min, rinsed
twice with 0.5 × SSC for 30 sec and twice with 0.2 × SSC
for 30 sec. Microarrays were covered with 25 μl 1× labe-
ling solution containing 20 units of Sequenase, 1× Seque-
nase buffer (GE Healthcare Life Sciences), and 750 nM
Cy5-ddCTP (Applied Biosystems). The labeling reaction
was performed at 70°C for 10 min. The slide was washed
again under the same conditions used after hybridization.

Microarray scan
Microarrays were scanned with a GenePix 4000 scanner
(Axon Instruments, Foster City, CA). The resultant images
were digitized with the accompanying software GenePix
Pro (version 4.0). Cross-array normalization was per-
formed using the linear method described by Hansson et
al., [59].

Data analysis
Signal intensity of each spot was transformed into its nat-
ural logarithm. The two-sample t-test, Welch's t-test,
which was considered as an appropriate test for analyzing
microarray data [60] was used in the present study. Nor-
malized intensities of each gene were compared to the
intensities of the mismatch probes as described by Bon-
aventure et al. [61]. A gene is considered expressed if its
signal intensity is significantly greater than controls with
a p-value < 0.05 to reject the null hypothesis in all three
treatments including PBS, 1 μg/ml and 5 μg/ml LPS treat-
ments.

The One-way ANOVA followed by Bonferroni Correction
Test was used to determine the gene expression changes in
response to the LPS treatments. For each mRNA species
the above three treatments were compared. A gene was
considered as down regulated if the means of signal den-
sities of these three treatments were in an order of PBS > 1
μg/ml LPS > 5 μg/ml LBS, and at least one of the compar-
isons between the three treatments reached a significance
level of α < 0.05 in the One-Way ANOVA Test followed by
Bonferroni Correction Test. If the results were in a
reversed order, the gene was considered as up-regulated.
The effect of gene expression levels on cell viability was
also studied. For each gene, the gene expression levels of
the three treatments were compared with cell viabilities in
pair with corresponding groups, i.e. the gene expression
level of the group treated with 1 μg/ml LPS was paired

with the cell viability of the group received 1 μg/LPS treat-
ment and so on. The relationship between those two var-
iables, gene expression level and cell viability, were
examined by the Pearson's Correlation. Pearson product-
moment correlation coefficient r > 0.988 (α < 0.05) was
used as an index for determining whether gene expression
has effect on cell viability. In the gene expression down-
regulated group, decreased cell viability indicated a posi-
tive correlation. Vice versa, a negative correlation was
ascertained if decreased cell viability was observed in the
up-regulated group.
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