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Humans can learn to recognize new objects just from
observing example views. However, it is unknown
what structural information enables this learning. To
address this question, we manipulated the amount of
structural information given to subjects during
unsupervised learning by varying the format of the
trained views. We then tested how format affected
participants’ ability to discriminate similar objects
across views that were rotated 908 apart. We found
that, after training, participants’ performance
increased and generalized to new views in the same
format. Surprisingly, the improvement was similar
across line drawings, shape from shading, and shape
from shading þ stereo even though the latter two
formats provide richer depth information compared to
line drawings. In contrast, participants’ improvement
was significantly lower when training used silhouettes,
suggesting that silhouettes do not have enough
information to generate a robust 3-D structure. To test
whether the learned object representations were
format-specific or format-invariant, we examined if
learning novel objects from example views transfers
across formats. We found that learning objects from
example line drawings transferred to shape from
shading and vice versa. These results have important
implications for theories of object recognition because
they suggest that (a) learning the 3-D structure of
objects does not require rich structural cues during
training as long as shape information of internal and
external features is provided and (b) learning
generates shape-based object representations
independent of the training format.

Introduction

Humans are able to recognize 3-D objects from the
2-D retinal input across changes in their appearance.
The ability to recognize objects across views, referred to
as viewpoint-invariant recognition, is particularly
challenging because the shape and features of the object
change drastically across different 2-D retinal views of
the same object. A large body of research shows that
viewpoint-invariant recognition is learned by viewing 2-
D examples of an object (Bülthoff, Edelman, & Tarr,
1995; Hayward & Tarr, 1997; Tarr, Williams, Hay-
ward, & Gauthier, 1998). It is thought that during
learning people use structural information in the 2-D
training images to infer the 3-D structure of the object
(Nakayama, Shimojo, & Silverman, 1989). Under-
standing the 3-D object structure, in turn, enables
participants to recognize an object across views.
However, it is unknown what structural information in
the visual input enables this learning.

During learning, subjects may use many sources of
information about the 3-D structure of objects from
both monocular cues and binocular cues. The 3-D
shape of the object can be readily perceived monocu-
larly from information provided by the external
contour, internal contours, and shading. Although
Marr (1982) suggested that shading information is
particularly important for building an accurate 3-D
representation of an object that includes surface
information, empirical research shows the opposite. A
large body of research indicates that the shape of the
object available from both the external contour and
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internal features is the key source of information that
humans use for visual recognition. For example, people
can recognize objects, and particularly living things,
from their external contour or their silhouettes (see
examples in Figure 1a, b; Lloyd-Jones & Luckhurst,
2002; Mitsumatsu & Yokosawa, 2002). Nevertheless,
recognition from silhouettes declines when objects
appear at unusual views or when key internal parts are
obscured by the external silhouette (Hayward, 1998;
Lawson, 1999; Newell & Findlay, 1997). Line drawings
provide more concrete information about the 3-D
shape of objects compared to silhouettes even though
they are not as realistic as photographs or objects
depicted with 3-D shape-from-shading information
(shaded objects). Indeed, people are as good at basic-
level recognition of objects (e.g., discriminating a house
from an apple; Rosch, 1999) from line drawings as
from realistic photographs (Biederman & Ju, 1988;
Rossion & Pourtois, 2004). Biederman argued that line
drawings may be a privileged source of information
because they provide observers with a distilled version
of the critical nonaccidental properties of the object
that are necessary for the basic-level recognition
(Biederman, 1987; Biederman & Ju, 1988). Not only
basic-level recognition, but also subordinate recogni-
tion among objects that share parts and configuration
(Rosch, 1999), such as face recognition, can be
performed from line drawings even when hand-drawn
lines do not faithfully match any real picture of the
person (e.g., Figure 1c). However, prior studies that
examined learning effects from line drawings have only
tested basic-level recognition, which is easier than
subordinate recognition. Thus, it is possible that
shading information may be critical for learning the 3-

D structure of novel objects to enable subordinate
recognition across views.

Another source of information about the 3-D
structure of objects is available from binocular
disparity in stereoscopic images. Stereovision provides
explicit 3-D depth information. Although stereo
information does not always improve object recogni-
tion ability (Liu, Ward, & Young, 2006; Pasqualotto &
Hayward, 2009), several studies indicate that stereo
information can be advantageous for object recogni-
tion, particularly when precise depth information needs
to be recovered to perceive the 3-D structure (Bülthoff
& Mallot, 1988; Burke, 2005; Edelman & Bülthoff,
1992; Humphrey & Khan, 1992; Y. L. Lee & Saunders,
2011). For example, stereo information can resolve
ambiguities in the 3-D structure when objects share an
external contour (Bennett & Vuong, 2006; Y. L. Lee &
Saunders, 2011), lack symmetry or self-occlusion
(Bennett & Vuong, 2006; Burke, 2005; Edelman &
Bülthoff, 1992; Humphrey & Khan, 1992), or when
their surface material has non-Lambertian properties
(Nefs, 2008; Nefs & Harris, 2007). However, to date no
study has systematically examined the effect of different
sources of depth information—external contours,
internal contours, shading, and binocular depth—on
learning viewpoint-invariant recognition.

Another theoretically interesting question is whether
recognition of objects from different formats, e.g., line
drawings and shape from shading, is based on a
common representation or this recognition is derived
from different kinds of internal representations. Neu-
roscience studies report that neural representations in
object-selective regions in the ventral occipitotemporal
cortex are cue-invariant (Grill-Spector, Kushnir, Edel-
man, Itzchak, & Malach, 1998; Kastner, De Weerd, &
Ungerleider, 2000; Kourtzi & Kanwisher, 2000; Men-
dola, Dale, Fischl, Liu, & Tootell, 1999; Sary, Vogels,
& Orban, 1993; Vinberg & Grill-Spector, 2008). Results
of these studies suggest that there is common repre-
sentation of object shape across cues, such as line
drawings, shading, and stereo, in the ventral visual
pathway. However, two questions remain: (a) How
were these object representations generated? (b) Is
complete and explicit 3-D information about the object
necessary during learning?

To address these gaps in knowledge, we ran
psychophysical experiments varying the amount of
structural information given to subjects during learning
and tested how this information affected subjects’
ability to recognize novel 3-D objects across views. We
manipulated the amount of structural information by
showing objects in four formats that contain increasing
amounts of structural information (Figure 2b, c): (a)
silhouettes, (b) line drawings, (c) shape from shading,
and (d) shape from shading þ stereo. The most
impoverished format, silhouettes, provides information

Figure 1. Example drawings demonstrating that impoverished

images using silhouettes and lines can be recognized. (a)

Lascaux cave paintings depicting a deer and a person with a

bow. (b) Picasso’s drawing of silhouettes of a musician, a dancer,

a goat, and a bird. (c) A line drawing of Albert Einstein’s face

(copyright: imgkid.com).
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only about the external contour of the object. Line
drawings provide additional information about the
internal features as well as some perspective informa-
tion. Shape from shading provides additional monoc-
ular depth information, and finally, stereo provides
concrete 3-D depth from disparity. To give the reader
an intuition why these formats convey increasing levels
of structural information, consider the following:
shading information can be extracted from the
stereoscopically presented objects, but disparity infor-
mation cannot be extracted from the monocular,
shaded objects. Similarly, line drawings can be ex-
tracted from the shaded objects, and silhouettes can be
extracted from line drawings, but the opposite infor-
mation extraction is not possible.

In Studies 1 and 2, we examined whether more
structural information during unsupervised learning of
novel 3-D objects leads to better performance. We
hypothesized that if learning depends on complete and
rich structural information, then post-learning perfor-
mance will steadily increase as more structural infor-
mation is available to subjects during training. This
hypothesis predicts that the improvement due to
learning will gradually increase from silhouettes to line
drawings to shaded objects to stereo objects. Alterna-
tively, we predicted that if a certain amount of
structural information is sufficient for learning the 3-D
shape of objects, improvement due to learning will be
equivalent across formats that contain that informa-
tion. For example, if internal and external features
present in line drawings are sufficient for learning the 3-
D structure of objects, performance after learning from
either line drawings, shaded objects, or stereo objects
would be similar as all of these formats contain
information about internal and external features.

In Study 3, we examined whether learning objects
from different formats generates object representations
that are format-specific or format-invariant. We tested
these hypotheses by comparing learning within and
across formats. Finding that learning transfers across
formats would indicate that, even though different
information was given to subjects during training, the
internal representation of an object that was generated
due to training was common across formats. On the
other hand, finding better performance within than
across formats would suggest that different formats
generated different internal object representations that
are format-specific.

Methods

Participants

The experimental protocol was approved by Stan-
ford University’s Human Subjects Institutional Review
Board. Participants provided written informed consent
before participating in the experiment. Participants
received monetary compensation or course credit for
their participation. Twenty-eight to fifty-two partici-
pants participated in each of the studies. These are
typical sample sizes used in perceptual learning studies.
Participants had normal or corrected-to-normal vision.

Stimuli

To examine the effects of different sources of
structural information on unsupervised learning, we

Figure 2. Examples of the stimuli used in the study. (a) Examples of the four object sets used in the study. Top row: Front view of the

first object in each set. Bottom row: Front view of the second object in each set. (b) Examples of the four structural formats used in

the study for an example object. Stereo used red–cyan anaglyphs. (c) Table illustrating the type of structural information available in

each of the four formats. Structural information progressively increases across formats.
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generated sequences of novel 3-D object views that are
rendered in different structural formats. We generated
four sets of novel 3-D objects using 3ds Max (http://
usa.autodesk.com/3ds-max/). Each set contained two
objects that had the same parts and configuration but
differed in the shape of features and their aspect ratio
(Figure 2a). Objects were grayscale and symmetric
around a vertical plane passing through their centers.
All objects were rendered in the same lighting
conditions with four achromatic lights, lighting the
object from top right, top left, bottom right, and
bottom left. Stimuli were presented on a uniform dark
gray background.

Prior to these experiments, stimuli were calibrated in a
pilot study. The calibration used a different group of
participants and the 3-D shape-from-shading objects.
Here, we modified the object sets to reach pretraining
discrimination performance thatwas similar across object
sets when presented in the shape-from-shading formats.

Images of the same 3-D object models were
generated in four formats in 3ds Max (Figure 2b).
These four formats contain different types of depth
information summarized in Figure 2c. For each format,
we generated object views by rotating the object around
the vertical axis and taking a snapshot of the object.
The same objects, views, and camera positions were
used in all formats.

� Stereoscopic images were generated by placing two
virtual cameras in 3ds Max at slightly different
horizontal locations relative to the object: one from
the left of the targeted view and one from the right.
Images from each camera were generated in a single
color (red or cyan, depending on the camera). Then,
we superimposed the right (cyan) and left (red)
images to generate a single image. This stereoscopic
image is presented in the same view as in other
formats. Subjects wore red–cyan anaglyph glasses to
be able to perceive depth from the stereoscopic cues.
These images contain both stereo and shading cues.
� 3-D shape-from-shading images were generated in 3ds
Max by taking photos of the same views of these
objects using a single camera. Images were grayscale
and contained shading information as well as
contours.
� Line drawings of the same objects and views were
generated by extracting outlines of most features in
each object image using 3ds Max. Using 3ds Max, the
object’s material was set to the ‘‘Ink N paint’’ material,
which renders objects with flat shading (the paint
component) with ‘‘inked’’ borders (the ink compo-
nent). The ink and paint are two separate components
with customizable settings. We adjusted the settings
such that just the inked border is rendered, effectively
creating line drawings. We manually edited some
images to ensure that lines related to a particular
feature are consistent across views.

� Silhouettes were generated by taking the outlines of
each object image, using the ‘‘outline’’ function in 3ds
Max.

Testing the information in the images across
formats

We next sought to ensure that, in our stimulus sets,
the amount of visual information is sufficient such that
given enough training data the visual system could do
the discrimination task. We chose a state-of-the-art
hierarchical convolutional neural network (CNN)
model (Yamins et al., 2014) to quantify the discrimi-
native information in each format. The rationale is that
if a high-performance model is able to perform the
discrimination task equally well across formats after
training with these images, it would indicate that
images from different formats contain sufficient infor-
mation from which human participants can learn.
Conversely, if the CNN performs worse on one format
compared to the others, it would indicate that there is
insufficient information in that format from which the
subjects can learn the 3-D structure of objects. In other
words, the CNN serves as an ideal observer model.

CNNs are multilayer artificial neural networks that
take input images and compute outputs hierarchically
withunits in each subsequent stageoperatingonresponses
fromunits in the prior stage. CNNs are characterized by a
variety of parameters, including (a) discrete-valued
architectural parameters, such as the number of layers in
the network, the number of filter templates at each layer,
the sizes of filter and pooling kernels at each layer, and the
pooling exponents used at each layer and (b) continuous-
valued filter weights in each layer.

The specific CNN we used in this work is similar to
the network described in Yamins et al. (2014), which
has been shown to approximate the neural response
patterns in the primate ventral visual stream. In the
present study, we used this pretrained CNN and
trained an additional decision layer using as features of
the responses of the CNN’s top layer (the layer most
similar to IT cortex). The purpose of the decision layer
is to implement our behavioral testing. Thus, it
determines if two images are of the same or different
objects. We conducted training and testing of the CNN
decision layer using images from the three monocular
formats: silhouettes, line drawings, and shading.
Testing and training used images from the same
format.

Training

Training the decision layer used the same images as
in the human behavioral training. We ran two training
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regimens: one with 24 views as in Study 1 and one with
seven views as in Study 2. In each training trial, the
CNN received two images of random views of the novel
objects shown in one format. We then computed the
absolute value of the difference in the responses of the
CNN’s top layer to these two images. Linear classifier
weights were then trained on this absolute difference
feature vector, using the set of training image pairs,
using a standard L2-regularized linear support vector
machine from the Scikit-Learn package (Pedregosa et
al., 2011). Positive labels corresponded to trials in
which the two images were of the same object, and
negative labels corresponded to trials in which the
images showed different objects.

Testing

After training, we tested the model’s ability to
determine whether two images of objects rotated 908
apart were of the same object or not. Testing used new
views of the objects not shown during training, taken
from the human testing phase. Testing used the same
object set and format as training. The model’s
performance was averaged across the four object sets
for each format. Error bars were calculated using a
bootstrap method during testing. Because results did
not significantly differ across training regimens, we
report the results of the model when trained with seven
object views per format.

Apparatus

All experiments were run on 27-in. iMac computers
using the Mac OS Mountain Lion operating system.
Stimuli presentation was coded with Matlab (Math-
works.com) and Psychophysics toolbox 3 (http://
psychtoolbox.org). Subjects wore red–cyan anaglyph 3-
D stereo glasses (Ted Pella, Inc., Redding, CA) when
stereoscopic images were presented.

Experimental protocol

Participants went through a testing phase, training
phase, and a second testing phase (Figure 3a). This
procedure is similar to that used in our previous study
(Tian & Grill-Spector, 2015). Each participant under-
went four such sequences, one for each set of novel
objects (Figure 2a). Each object set was trained and
tested on a single format. Each subject participated in
training in each of the four structural formats. The
ordering of object sets and formats was counterbal-
anced across subjects. All learning effects we report are
within subject.

Object discrimination testing

Subjects participated in a discrimination task before
and after learning. In each trial, two object images were
presented sequentially, each for 500 ms, separated by a
500-ms blank screen (Figure 3b). The two images were
always of objects of a single set and were shown in two
views rotated 908 apart from each other (rotation
around the vertical axis; images drawn from the entire
range of 08–1808 views). In all studies, we tested
discrimination performance on new views that are in
between the trained views. In other words, we tested
how learning generalizes to untrained views. In half of
the trials, the two views were of the same object (Figure
3b, left), and in the other half of the trials the two views
were of different objects from the same set (Figure 3b,
right). The positions of the two objects in a trial were
jittered randomly around fixation in a range of up to
1.38. Object size varied randomly from 10.48 3 10.58 to
12.48 3 12.48. For the task, participants were instructed
to indicate via key press on a keyboard if the images
were two views of the same object or two views of
different objects.

Figure 3. Experimental Procedure. (a) General procedure for

each object set consisted of pretraining testing, training, and

another post-training testing. (b) Illustration of discrimination

testing paradigm: Subjects indicated whether two consecutive

images were of the same object or of different objects. In each

trial, different views of an object rotated 908 apart were shown.

All experiments used rotation around the vertical axis. (c)

Illustration of training paradigm: Subjects watched images of

object views presented in a sequential order. The two objects in

each set were shown in the same format for a given subject and

appeared in different formats across subjects.
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Participants participated in 40 trials per object set in
each testing block. In all experiments, subjects’
accuracy in the discrimination test was measured using
d0 (Green & Swets, 1974), which is the discriminability
between the two objects in a set calculated by
subtracting the z score of the false-alarm rate from the z
score of the hit rate.

Unsupervised training

Between testing blocks, participants participated in
unsupervised training. During training, subjects ob-
served sequences of views (spanning a 1808 rotation) of
each of the two objects from a given set. Consecutive
views of an object were presented in sequential order
(Figure 3c) and were followed by consecutive views of
the second object in the set. Each view was presented
for 250 ms, and there was no temporal gap between
successive views. Participants received four blocks of
training with two blocks for each object from a given
set. During each training block, the size of the object
randomly decreased to 97% of its original size, three to
four times. For the task, participants were instructed to
watch the images and indicate when the size of the
object slightly changed. This task required subjects to
maintain their attention on the object. Subjects’
performance on this task was not different across
formats (p . 0.05). The format in which each object set
was presented as well as the ordering of formats was
counterbalanced across subjects.

Study 1

Twenty-eight participants participated in Study 1,
which compared learning of novel objects across four
formats: silhouettes, line drawings, shading, and stereo.
Training and testing used the same format. Subjects
saw each object set in one format. The assignment of
format across stimulus sets was counterbalanced across
subjects. Learning was done in blocks. In each block,
24 views of an object were shown. Views spanned a 1808
rotation around the vertical axis, and consecutive views
were 7.58 apart. During discrimination testing, subjects
saw views that were 3.758 apart from the adjacent
learned views (Figure 3b). During training, views were
shown in succession; thus, the object appeared to rotate
back and forth three times. After a training block with
one object, the subject was trained in an identical
manner with the second object of the set. The whole
process was repeated twice. Thus, during unsupervised
training, participants were shown 24 views 3 8 times 3
2 blocks3 2 objects¼ 768 trials lasting a total of about
200 s. Two objects in a given set were always learned
and tested on the same structural format. We
counterbalanced across subjects which object set was

viewed in which condition as well as the order of
conditions. All objects sets appeared in each experi-
mental condition an equal amount of time across
subjects.

Study 2

Thirty-six participants participated in Study 2, which
used a paradigm similar to Study 1 in which subjects
participated in learning and testing of novel object
discrimination in each of the same four formats.
Training and testing were done on the same format for
each object set. We implemented three main changes in
Study 2 relative to Study 1. First, we reduced the
number of training views to seven views, spaced 308
apart. Views covered the same 1808 rotation range
around the vertical axis. Second, discrimination testing
was done on new views that were either 7.58 or 158
away from the trained views. This enabled us to test
generalization performance across a larger view range
and allowed higher sensitivity to detect differences in
performance across formats (Tian & Grill-Spector,
2015). Third, subjects were trained twice with the same
object views across two consecutive days in the
following sequence: Day 1: testing, training, and
testing; Day 2: testing, training, and testing. We
increased the amount of training to test whether
performance on silhouettes could reach performance
on other formats if more training is given. During each
day’s unsupervised training, participants were shown 7
views 3 8 times 3 2 blocks 3 2 objects¼ 164 trials per
object which is about 2 min per object.

Study 2: Control experiment

Twenty participants participated in the control
experiment in Study 2. The general procedure for the
control experiment is similar to Study 2. The goal of the
control experiment was to test if object training
produces a larger improvement in performance than
that obtained just from doing the discrimination task
twice. Here, we replaced the object-learning task with a
baseline task in which no object training was given.
Each participant was tested twice in the discrimination
task for each object set, but instead of an object-
training phase between the tests, the participants
performed a dot task. In the dot task, participants were
asked to look at a centrally presented dot and press a
key when its color changed. The dot was about 38 in
visual angle, and its color changed randomly in 2- to 4-s
intervals. The duration of the dot task was identical to
the duration of object training. No object images were
presented during the dot task. Similar to Study 2, the
four object sets were presented in each of four different

Journal of Vision (2016) 16(7):7, 1–17 Tian, Yamins, & Grill-Spector 6



formats. Format presentation order and object set
associated with each format were counterbalanced
across subjects.

Study 3

Fifty-two subjects participated in Study 3 in which
we compared learning novel objects within a format to
learning across formats. Here, we examined learning
objects from two formats: 3-D shape from shading and
line drawings. We changed the line drawings in this
study such that the foreground and background were
the same gray level. The experimental paradigm is
similar to Study 2. Subjects were shown seven views per
object during training. Testing was done on new views
that were 7.58 or 158 away from the trained views.
Subjects participated in two blocks of training, which
were done within the same session. Thus, the experi-
mental sequence for each object set was as follows:
discrimination testing, training, discrimination testing,
training, and discrimination testing. We implemented a
23 2 design in which object sets were trained on either
3-D shape from shading or line drawings and tested on
either 3-D shape from shading or line drawings. Thus,
the effect of learning was tested both within format and
across formats. For a given object set, the training
format and testing format was held constant per
subject. We counterbalanced across subjects which
object set was viewed in which condition as well as the
order of conditions. All object sets appeared in each
experimental condition an equal amount of time across
subjects.

Statistical significance and effect size

We assessed the statistical significance of learning
and format for each experiment using a two-way
repeated-measures analysis of variance (rmANOVA)
with subjects as the repeated measure. Effect size was
estimated with partial g2, which is a measure of effect
size used for ANOVA (Cohen, 1988).

Results

Study 1: Learning to discriminate novel 3-D
objects across views is similar across line
drawings, shape from shading, and stereo

In Study 1, we tested from which structural cues
subjects can learn to recognize novel 3-D objects across
views. We manipulated in different experimental

conditions the amount of structural information given
about the object by varying the format in which the
object was presented during unsupervised training
(Figure 2b, c). Specifically, during training subjects
watched in an unsupervised way 24 views of objects
spanning 1808 presented in either silhouette, line
drawings, shape-from-shading, or stereo formats.
Testing was done on novel views rotated 3.758 away
from the trained views. During the experiment, the
order of formats and the assignment of object sets to a
particular format were counterbalanced across subjects
(see Methods). Because the four formats contain
progressively more depth information, by comparing
the effects of training across formats we can determine
which structural cues are useful for learning to
recognize novel 3-D objects.

Prior to training, participants were poor at discrim-
inating whether two views of objects rotated 908 apart
were of the same or different objects with an accuracy
of 56.6% 6 1.1%, mean 6 SEM (d0: 0.39 6 0.07, mean
6 SEM; Figure 4a). After training, participants’ overall
accuracy in discrimination increased to 75.0% 6 1.5%
(d0: 1.68 6 0.12; Figure 4a). There was a significant
overall learning effect as revealed by a main effect of
learning in a two-way rmANOVA of d0 values with
factors of training (pre-/post-training) and format
(silhouette/line/shading/stereo), F(1, 27)¼ 99.07, p ,
0.001, partial g2¼ 0.31 (Figure 4a). The learning effect
(d0 post� d0 pre) was significant for each of the formats
(all ts . 3.3, ps , 0.05; Figure 4b, diamonds). Notably,
the amount of learning varied significantly across the
different learning formats: learning by object format
interaction, F(3, 81)¼ 3.37, p¼ 0.02, partial g2¼ 0.05.
Post hoc t tests revealed that the learning effect for
silhouettes was significantly lower than other formats
(paired t tests, all ts . 3.27, ps , 0.01). However, there
was no significant difference in the learning effect
across line, shading, and stereo formats (all ts , 0.73,
ps . 0.05).

To test if the lower learning in the silhouettes was a
consequence of less information, we use a CNN to
evaluate if there is sufficient information in each of the
formats to enable successful performance in the
discrimination testing (see Methods). After training,
the CNN had high discriminability across formats:
shaded objects, d0 ¼ 4.17 6 0.13; line drawings, d0 ¼
4.12 6 0.13; and silhouettes, d0 ¼ 3.96 6 0.02.
Importantly, a one-way ANOVA found no significant
differences across formats (p . 0.05). These analyses
indicate that there is sufficient information available to
the human visual system to do the task across shading,
line drawing, and silhouette formats and that the lower
human performance for silhouettes is not due to
insufficient visual information.

Results of Study 1 reveal a smaller improvement
after unsupervised learning from silhouettes compared
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to the other three formats. Surprisingly, learning to
recognize novel 3-D objects from line drawings is as
good as from 3-D shape-from-shading and stereoscopic
cues. This suggests that, even though line drawings do
not have as rich monocular or binocular depth
information as shading or stereo objects, they are as
effective for inferring the 3-D structure of an object.

Study 2: Training with fewer views replicates
results of Study 1

One possible reason for the similarity in performance
across line drawings, shading, and stereo formats is
that training used a multitude of views (24 training
views), and testing was done on views that were similar
(3.758 away) to the trained views. Because training

employed a large number of object views, it was
perhaps more than sufficient for generating a robust
representation of the object ‘‘view space,’’ irrespective
of the training format. In a prior study, we found that
decreasing the number of training views increased our
sensitivity to detect differences among training para-
digms because less information was given during
learning, and testing required generalization over
bigger rotations (Tian & Grill-Spector, 2015). Thus, in
Study 2, we compared the effects of training across
formats when training used only seven views spaced 308
apart, spanning a 1808 rotation. Testing was performed
on novel views 7.58 or 158 away from the trained views.
This design allowed us to better assess the generaliza-
tion of learning to new views. The potential downside is
that training with fewer views may reduce the overall
learning effect. Thus, subjects participated in two
training sessions on consecutive days to enhance
learning. Each object set was shown in a single format
across all testing and training sessions. Different object
sets were shown in different formats.

As expected, prior to training, participants were
poor at discriminating whether two views of objects
rotated 908 apart were of the same or different objects
with an accuracy of 56.7% 6 1.1% (d0: 0.4 6 0.06;
Figure 5a). After the first training, participants’ average
accuracy in discrimination increased to 68.9% 6 1.7%
(d0: 1.29 6 0.13; Figure 5a). There was a significant
overall learning effect as shown by the main effect of
learning in a two-way rmANOVA of d0 during Day 1
with factors of training (pre-/post-training) and format
(silhouette/line/shading/stereo), F(1, 35)¼ 55.07, p ,
0.001, partial g2¼ 0.16 (Figure 5a). However, training
with the four formats did not improve performance
equally as shown by a significant interaction between
training and format, F(3, 105)¼ 3.98, p , 0.01, partial
g2¼0.04. There were significant learning effects for line
drawings, shape-from-shading, and stereo formats (all
ts . 4.11, ps , 0.05 as indicated by diamonds in Figure
5b), but there was no significant learning effect for
silhouettes (t ¼ 1.61, p . 0.05; Figure 5b). Post hoc t
tests revealed that differences in learning across formats
are driven by lower performance for silhouettes
compared to the other three formats (all ts . 2.67, ps ,
0.01). In contrast, there was no significant difference
between the learning effect for stereo, shading, and
lines (all ts , 1.34, ps . 0.05).

On Day 2, the average accuracy began at 68.0% 6
1.9% (d0: 1.19 6 0.14; Figure 5a), which is comparable
to the performance after training on Day 1. After the
second training, the average performance further
increased to 75.8% 6 2.1% (d0: 1.88 6 0.17; Figure 5a).
Again, there was a significant learning effect on Day 2
as shown by two-way rmANOVA of d0 with factors of
training and format (Figure 5a), main effect of
learning: F(1, 35)¼ 18.12, p , 0.001, partial g2¼ 0.06.

Figure 4. Study 1: Learning to discriminate novel objects from

stereoscopic cues, shape from shading, and line drawings is

better than learning from silhouettes. (a) Discriminability (d0)

performance on novel views before (prelearning, light gray) and

after (postlearning, dark gray) training with 24 views using

silhouettes, line drawings (line), 3-D shape from shading

(shading), and stereoscopically presented objects (stereo).

Results are averaged across 28 subjects. Error bars indicate

standard error of the mean (SEM). (b) Learning-related

improvement in discriminability (d0) for the four object formats.

*Improvement for silhouettes is significantly lower than each of

the other formats, ts . 3.27, ps , 0.01. ^Significantly greater

than zero improvement, ts . 3.30, ps , 0.05.
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This learning was significant for all formats (all ts .
2.21, ps , 0.05). On Day 2, the improvement was
similar across formats as there was no significant
interaction between learning and format, F(3, 105) ¼
0.44, p . 0.05 (Figure 5a).

To test the overall learning effect, we measured the
overall improvement in performance across the 2 days
(Day 2 post � Day 1 pre). There was a substantial
learning effect across the 2 days: A two-way rmANO-
VA of d0 values postlearning on Day 2 and d0

prelearning test on Day 1 with factors of training and
format revealed a significant effect of training, F(1, 35)
¼ 125.03, p , 0.001, partial g2 ¼ 0.31 (Figure 5a). We
also observed a differential learning effect across
formats, revealed by a significant interaction between
training and format, F(3, 105)¼ 6.23, p , 0.001, partial
g2¼ 0.06. Consistent with the results for Days 1 and 2,
the overall improvement across the 2 days differed

across formats, F(3, 105)¼ 7.39, p , 0.001, partial g2¼
0.07 (Figure 5b). The difference was driven by lower
improvement for silhouettes compared to the other
three formats (post hoc paired t tests: all ts . 2.57, ps ,
0.05). However, there was no significant difference in
the improvement between line, shading, and stereo
formats (all ts , 1.46, ps . 0.05) even though
numerically there is a larger improvement for shading
objects and stereo objects than line drawings. These
results illustrate that learning to recognize objects
across views from silhouettes is lower than from line
drawings, shape-from-shading, and stereo formats.

Results of Study 2 reveal three findings. First, we
found that even when we increased the difficulty of the
task by reducing the number of training views
compared to Study 1, learning from stereoscopic
information did not significantly enhance learning
compared to either shading or line drawings. Second,
training with a reduced number of views replicated the
result of Study 1, in which we did not find a difference
between learning from shape from shading and line
drawings. Third, learning from silhouettes was consis-
tently the lowest. Extensive training over 2 days did not
bring performance based on training with silhouettes
even to the level of performance after just one session
of training for the line, shading, or stereo formats (p ,
0.05).

Control experiment with no training

Are the improvements in Study 2 due to the fact that
participants performed the discrimination test twice on
the same stimuli? To answer this question, we
introduced a control experiment in which no object
training was given. Participants were tested twice on
the object discrimination test for each of the four object
formats. In between the two tests for each object set,
participants performed a dot color detection task
during which no object images were shown (see
Methods).

In the first test, participants were poor at discrim-
inating whether two views of objects rotated 908 apart
were of the same or different objects with an accuracy
of 52.7% 6 1.2%, mean 6 SEM (d0: 0.27 6 0.06, mean
6 SEM; Figure 6a). In the second test, participants’
overall accuracy in discrimination increased to 58.6%
6 6.3% (d0: 0.57 6 0.08; Figure 6a). There was a small
but significant improvement as revealed by a main
effect of test repetition in a two-way rmANOVA of d0

values with factors of test repetition (first/second) and
format (silhouette/line/shading/stereo), F(1, 19)¼ 7.84,
p , 0.05 (Figure 6a). The test repetition effect (d0 post
� d0 pre) was significant for stereo and line drawings
(all ts . 2.70, ps , 0.05, Figure 6b, diamonds) but was
only marginally significant for shading objects (t¼1.81,

Figure 5. Study 2: Learning to discriminate novel objects from

line drawings, shape from shading, and stereo is better than

learning from silhouettes. (a) Discriminability (d0) performance

on novel views before and after training using seven object

views. Light gray: Pretraining performance on each day. Dark

gray: Post-training performance. Results are averaged across 36

subjects. Error bars: SEM. (b) Learning-related improvement in

discriminability (d0). Day 1 improvement: Day 1 postlearning �
Day 1 prelearning. Overall improvement: Day 2 postlearning �
Day 1 prelearning. *Improvement for silhouettes is significantly

lower than any of the other formats, ts . 2.57, ps , 0.05.

^Significantly greater than zero improvement, ts . 1.61, ps ,

0.05.
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p . 0.05) and not significant for silhouettes (t¼�0.38,
p . 0.05). However, the amount of improvement across
tests did not differ significantly across learning formats:
learning by object format interaction, F(3, 57)¼ 0.77, p
. 0.05. Post hoc t tests revealed that the improvement
for silhouettes was significantly lower than stereo
objects (paired t tests, t ¼ 2.27, p , 0.05) but was not
significantly different between silhouettes and shading
objects or silhouettes and line drawings (paired t tests,
ts , 1.88, ps . 0.05). There was no significant
difference in the improvement across line, shading, and
stereo formats (all ts , 0.73, ps . 0.05).

The small, 6% improvement obtained with training
was significantly lower compared to the 12%–20%
improvement obtained with object training (Study 2,
main experiment and Study 1). We performed a two-
way between-subjects ANOVA with factors of exper-
iment (Study 2 with training in the first day/control
experiment without training) and format (silhouette/
line/shading/stereo) on the improvement. We found a
main effect of experiment, F(1, 223)¼ 6.26, p , 0.001,
g2 ¼ 0.03, suggesting that learning from object images

facilitates performance more than just performing the
testing twice. Additionally, we found a main effect of
format, F(3, 221)¼ 15.65, p , 0.001, g2¼ 0.05, and no
interaction between format and experiment, F(3, 221)¼
0.56, p . 0.05.

Results of this control study show that without
training with object views there is only a slight
improvement during the second test. Critically, this
improvement is significantly lower than that obtained
with object training. We also find a slight but not
significant difference among the four formats, with
which there is no improvement for silhouettes and some
improvement for the other formats.

Study 3: Learning novel 3-D objects transfers
across shape-from-shading and line drawings

Both Studies 1 and 2 show similar learning of novel
3-D objects when presented in shading and line
drawing formats. However, it is unknown whether the
learning from these two formats uses a common
format-invariant representation or a format-specific
representation. Therefore, in Study 3, we tested
whether learning is format-specific or transfers across
line drawing and shading formats by comparing
learning within format to learning across formats. For
the former, subjects were trained and tested on objects
presented in the same format. For the latter, subjects
were trained with objects presented using one format
(shading or line drawing) and tested on objects
presented in the other format. Here we employed a
sequence of two trainings blocks, each using seven
views of each object, interleaved with testing blocks
with untrained views (see Methods). All training and
testing were done on the same day. We considered two
possible outcomes: If learning novel objects from shape
from shading and line drawings generated a common
object representation, then the learning effect across
formats would be comparable to the learning effect
within format. However, if learning novel objects
depended on format-specific information, the learning
effect within format would be larger than across
formats.

As expected, prior to training participants were poor
at discriminating whether two views of objects rotated
908 apart were of the same object or different objects as
accuracy was 57.4% 6 0.8% (d0: 0.4 6 0.05; Figure 7a).
After the first training block, participants’ mean
accuracy in discrimination increased to 67.9% 6 1.1%
(d0: 1.22 6 0.10; Figure 7a), and after the second
training block, participants’ accuracy further increased
to 73.3% 6 1.6% (d0: 1.80 6 0.15).

To examine whether learning format and testing
format generate different levels of performance across
the two training blocks, we performed a three-way

Figure 6. Study 2, control experiment: small or no improvement

without object training. (a) Discriminability (d0) performance on

novel views before and after a dot task conducted for the same

duration of object training as in Study 2. Light gray: First testing

performance. Dark gray: Second testing performance. Results

are averaged across 20 subjects. Error bars: SEM. (b) Change in

discriminability (d0) across the two tests. ^Significantly greater

than zero improvement, ts . 2.70, ps , 0.05.
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rmANOVA with factors of testing block (pre–/post–
first training/post–second training), learning format
(shading/line), and testing format (shading/line). First,
we replicated the learning effect found in the first two
studies as shown by a significant main effect of
learning, F(2, 102)¼ 84.27, p , 0.001, g2¼ 0.03 (Figure
7a). Second, we found that learning shading or line
formats generated a similar amount of learning across
two learning blocks because there was no significant
interaction between testing block and learning format,
F(2, 102)¼ 1.13, p . 0.05. Third, the learning-related
improvement also did not depend on which format the
testing used as there was no interaction between testing
block and testing format, F(2, 102) ¼ 1.13, p . 0.05.
There was also no significant interaction between
learning format and testing format, F(1, 51)¼ 0, p .

0.05, as well as no significant interaction among all

three factors, F(2, 102)¼ 0.51, p . 0.05. We observed a
main effect of learning format, F(1, 51)¼ 4.81, p ,
0.05, g2 ¼ 0.0001, as performance was higher when
learning with shading compared to learning with line
drawings. There was no main effect for testing format,
F(1, 51) ¼ 0.43, p . 0.05.

We further tested whether the learning effect is
different across learning formats and testing formats
after one learning block (Figure 7b, left panel) and after
two learning blocks (Figure 7b, right panel). We again
found that learning objects from shading and line
drawings generated the same amount of learning after
both one and two learning blocks: A two-way
rmANOVA with the factors of learning format
(shading/line) and testing format (shading/line) for the
improvement found no main effect of learning format:
after one learning block, F(1, 51)¼ 0.61, p . 0.05; after
two learning blocks, F(1, 51)¼ 1.84, p . 0.05.
Additionally, there was no main effect of testing
format: after one learning block, F(1, 51)¼ 0.01, p .
0.05; after two learning blocks, F(1, 51)¼ 0.39, p .
0.05. Finally, there was no interaction between learning
format and testing format: after one learning block,
F(1, 51)¼ 1.31, p . 0.05; after two learning blocks, F(1,
51)¼ 0, p . 0.05. These analyses indicate there was
similar amount of learning irrespective of which format
was learned and which format was tested across both
one and two learning blocks. In other words, the
learning completely transferred across formats.

In Study 3, we found that learning objects from
shading and line drawings generated similar improve-
ment both within and across formats. This suggests
that learning the 3-D structure of novel objects from
either line drawings or shading generates a common
representation of novel objects that can be used for
recognition.

Discussion

We examined which structural information people
use during unsupervised learning to obtain viewpoint-
invariant recognition of novel objects. Our experiments
used a difficult discrimination task among objects with
similar parts and configuration, large rotations that
affected the visible features of the object across views,
and testing on new views not shown during training.
Surprisingly, we found that unsupervised learning from
example views of objects presented in line drawings,
shading, or stereo formats generated a similar learning
effect. Moreover, this learning generalized to new views
that were not seen during training, suggesting that
subjects learned the 3-D structure of objects. In
contrast, learning with silhouettes generated a signifi-
cantly lower performance across experiments, indicat-

Figure 7. Study 3: Learning to discriminate novel objects

transfers across shape-from-shading and line drawing formats.

(a) Discriminability (d0) performance for objects presented using

3-D shape from shading (shading) or line drawings (line) before

and after one and two sessions of training. Red: Training with 3-

D shape from shading. Blue: Training with line drawing. Results

are averaged across 52 subjects. Error bars: SEM. (b) Learning-

related improvement in d0 for shaded objects is not different if

training used shading or line drawings. Likewise, improvement

in d0 for line drawings is not different when training with line

drawings or shading. ^Significantly greater than zero im-

provement, ts . 4.13, ps , 0.05.
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ing that information just from the external contour is
insufficient for robust learning of objects’ 3-D struc-
ture. These findings suggest that formats that contain
both internal and external shape information enable
learning the 3-D structure of objects and, furthermore,
that learning viewpoint-invariant recognition does not
require complete and rich structural information
during training. Strikingly, in Study 3 we found that
learning was not only similar across line drawings and
shading formats, but learning from one format
transferred to the other format and vice versa. This
suggests that the learned object representations are cue-
invariant at least across monocular line and shading
cues.

Three aspects of our findings are particularly
notable. First, learning the 3-D structure of novel
objects is possible from viewing in an unsupervised way
a handful of line drawings showing the objects in
different views. Second, this learning is as effective as
learning from a more realistic depiction of the object
containing shading cues. Third, learning completely
transfers across line drawings and shading cues. In the
following sections, we elaborate on these finding by (a)
discussing the implications of our findings on the
sources of information that are needed to learn the 3-D
structure of objects and (b) considering the implications
of our findings of transfer of learning across cues on the
nature of object representations that are generated
during training.

Which sources of information are needed to
learn the 3-D structure of objects?

Shape information is sufficient for building
representations of 3-D novel objects

Marr (1982) originally proposed that surface infor-
mation, such as that obtained from shading or
stereopsis, is key to building a complete 3-D represen-
tation of an object. However, later research (Bieder-
man, 1987; Biederman & Ju, 1988; Rossion & Pourtois,
2004) showed that basic-level recognition from line
drawings is particularly efficient and not worse than
recognition from color photographs of objects. Our
findings not only support prior research that demon-
strated shape information rather than surface infor-
mation is the key source of information for object
recognition (Biederman, 1987; Marr & Nishihara, 1978;
Rossion & Pourtois, 2004), but extend these finding by
showing that shape information is also key for
subordinate recognition of objects that have similar
parts and configuration. Furthermore, we show here
for the first time that learning the 3-D object structure
is as efficient from impoverished examples of object
views, such as line drawings, as from more realistic
examples of object views that contain explicit 3-D

structure from shading and stereo cues. Our data
indicate that it is not necessary to have veridical
examples of an object to learn its 3-D structure.
Instead, an abstracted version of the object that
maintains the key shape information, for example,
from both external and internal contours, is sufficient.

Why is learning from silhouettes lower than from the
other formats?

In contrast to the efficient learning of object
structure from line drawings, our data show that
learning from silhouettes is insufficient to produce a
robust representation of the 3-D structure of objects.
This finding is not entirely surprising because the
silhouettes lack important information about the
structure of objects, including most depth cues and
internal features. Thus, that people can recognize
objects just from silhouettes at all is amazing because in
theory a single silhouette could correspond to an
infinite number of possible 3-D objects. Indeed, artists
have appreciated this amazing ability by depicting
complex objects in silhouette format from the dawn of
mankind (e.g., Lachaux cave paintings; Figure 1a) to
modern abstract art (e.g., Picasso’s painting; Figure
1b).

Our behavioral data is consistent with prior studies
that showed reduced recognition of objects from
silhouettes compared to line drawings. Previous re-
search showed that whether objects can be recognized
from their silhouettes depends on two factors: The first
factor is prior knowledge. Silhouettes of familiar
objects, animate objects, and canonical views are better
recognized than other silhouettes (Lawson, 1999;
Lloyd-Jones & Luckhurst, 2002; Mitsumatsu & Yo-
kosawa, 2002; Newell & Findlay, 1997). The second
factor is the number of features available in the
silhouette. Silhouettes can be recognized if they contain
a sufficient number of features that are not obscured by
the external contour and those features enable an
unambiguous interpretation of the silhouette (Hay-
ward, 1998; Hayward, Wong, & Spehar, 2005). The
available features and the complexity of features also
depend on specific stimuli and specific views. For
example, there are views in which a silhouette of a
cylinder can be identical to that of a rectangular prism
cube. In this case, the two objects will be indistin-
guishable based on their silhouettes. However, curva-
ture information from other cues, such as stereo, shape
from shading, or line drawings that depict luminance
edges, will give information about the curvature of the
surface and can resolve this ambiguity.

Given that in our experiments objects were nonliving
and novel, familiarity did not play a role in recognition
performance. To evaluate if there was sufficient feature
information in our silhouettes to enable learning, we
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tested the ability of a CNN that was optimized to the
primate visual object recognition (Rajalingham,
Schmidt, & DiCarlo, 2015; Yamins et al., 2014) to
perform the same object discrimination task as our
human participants across views for silhouettes, line
drawings, and shading formats (see Methods). We
found that the CNN performed equally well across the
silhouette, line, and shading formats. Thus, in the
current experiment, we generated silhouettes that had,
in principle, sufficient information to enable general-
ization across views. However, subjects’ performance
after learning from silhouettes was lower than for line
drawings and shape from shading. This suggests that
human observers do not use this information during
learning as efficiently as a computer algorithm, perhaps
because they may not be naturally attuned to this
source of information. It is still possible that after
additional and more intensive training with silhouettes,
subjects might be able to use the external contour
information to recognize objects. Nevertheless, despite
the lower object recognition from silhouettes in the
current experiment, learning from silhouettes still
improved participants’ performance, which indicates
that some information from the external contour
contributed to learning.

Why did stereo information not improve learning of the
3-D object structure?

Theories of object perception suggest that people
rely on the most informative cues to reach the
optimal performance (Kersten, Mamassian, & Yuille,
2004). Intuitively, stereo seems to be a particularly
useful source of information to learn the 3-D
structure of a novel object because it contains explicit
depth information. Indeed, several studies report a
stereo benefit in object recognition (Bennett &
Vuong, 2006; Burke, 2005; Humphrey & Khan, 1992;
Y. L. Lee & Saunders, 2011; Norman, Todd, &
Orban, 2004). However, in our study stereopsis did
not improve learning the 3-D structure of objects
beyond monocular cues.

We suggest that stereo provides a behavioral
benefit only if it resolves ambiguity in the interpre-
tation of the 3-D structure of objects that cannot be
resolved from other sources of information. In our
study, there was likely enough structural information
in the shaded objects such that providing additional
depth information from stereo did not add critical
diagnostic information for the task. In contrast,
previous reports showed a stereo benefit in object
recognition in situations in which monocular infor-
mation did not provide an unambiguous interpreta-
tion of the 3-D structure of the objects. Stereo
benefits in object recognition have been reported for
recognition across views for (a) paper clip objects

that lack self-occlusion and have an ambiguous 3-D
structure (Bennett & Vuong, 2006; Burke, 2005;
Edelman & Bülthoff, 1992) and (b) objects with
identical silhouettes in which internal features are
determined from surface reflectance (Lee & Saunders,
2011; Norman et al., 2004). Thus, stereo information
seems to be beneficial for 3-D object recognition
when other depth cues are ambiguous or lacking.
Finally, stereo information may be beneficial for
other tasks that require absolute depth information,
such as grasping (Melmoth, Finlay, Morgan, &
Grant, 2009) or fast interactions with objects in
depth (e.g., playing ping-pong; Cottereau, McKee,
and Norcia, 2014).

What is the nature of representations that are
generated during learning?

Learning generates cue-invariant representations

Our finding that object recognition performance
after learning from line drawing completely trans-
ferred to shaded objects and vice versa suggests that
the internal representation generated due to learning is
cue-independent—at least across line and shading
cues. However, from our behavioral measurements,
we cannot infer where in the visual processing stream
this cue-invariance occurs. One possibility is that
learning generated object representations in the
ventral occipitotemporal cortex that are shape-based
and independent of the format of the visual input.
This hypothesis is supported by neuroscience findings
of cue-invariant representations of object shape in
object-selective regions in the human lateral occipital
complex (LOC; Appelbaum, Wade, Vildavski, Pettet,
& Norcia, 2006; Georgieva, Todd, Peeters, & Orban,
2008; Grill-Spector et al., 1998; Kourtzi, Erb, Grodd,
& Bülthoff, 2003; Kourtzi & Kanwisher, 2000, 2001;
Malach et al., 1995; Vinberg & Grill-Spector, 2008)
and the monkey inferotemporal cortex (Fujita, Tana-
ka, Ito, & Cheng, 1992; Sary et al., 1993). A second
possibility is that the information arriving to the LOC
is already edge-based. Because similar edges are
generated from line drawings and shaded objects by
processing earlier in the visual hierarchy, a common
representation may be generated in the LOC. This
account is supported by electrophysiological evidence
that neural processing in early visual areas extracts
edge information from the retinal input (Hubel &
Wiesel, 1965), and this information is propagated to
higher level regions in the ventral occipitotemporal
cortex whereas surface and depth information is
processed in parietal regions in the dorsal stream
(Backus, Fleet, Parker, & Heeger, 2001; Kravitz,
Saleem, Baker, Ungerleider, & Mishkin, 2012; Vin-

Journal of Vision (2016) 16(7):7, 1–17 Tian, Yamins, & Grill-Spector 13



berg & Grill-Spector, 2008; Welchman, Deubelius,
Conrad, Bülthoff, & Kourtzi, 2005).

Future experiments using electrophysiological mea-
surements in the ventral occipitotemporal cortex as well
as computational models, such as CNNs, can examine
the nature of representations generated by training. For
example, electrophysiological recordings of the same
neural population before and after training (McMa-
hon, Bondar, Afuwape, Ide, & Leopold, 2014) can test
whether the representations learned are cue-specific or
cue-invariant. Similarly, computational simulations
may examine not only the output of the system before
and after training, but also examine the representation
in intermediate layers of the network to test if they are
format-specific or format-independent. Finding that
intermediate layers show similar responses across cues
would suggest the cue-invariance is generated in
intermediate processing stages of the ventral stream. In
contrast, finding different responses to line drawings
and shaded objects in intermediate layers but cue-
invariant representations in output layers that are
associated with LOC or IT would indicate that cue-
invariant shape-based representations are built in high-
level ventral stream regions.

Are the learned representations 2-D or 3-D?

A remaining question is what kinds of internal
representations enable participants to discriminate
objects across large rotations and novel views? One
possibility is that learning generates a 3-D internal
representation of objects (Kellman, Garrigan, &
Shipley, 2005; Liu & Kersten, 1998; Liu, Knill, &
Kersten, 1995). In particular, Kellman et al. (2005)
proposed a theory of 3-D relatability that explains
how local and global 3-D structures can be repre-
sented from 2-D line drawings of objects. According
to this model, objects are represented by contours in
the 3-D space and the connections among them. This
model specifies the orientation and position of each
edge in 3-D as well as each edge’s connection to
other edges. According to this model, generalization
to new views is possible by interpolating among
contours in 3-D.

Another possibility supported by psychophysical
and neural investigations suggests that learning gener-
ated view-tuned units centered on the trained views
with some tuning width and partial overlap to nearby
views (Bülthoff & Edelman, 1992; Bülthoff et al., 1995;
Logothetis & Pauls, 1995; Tarr et al., 1998). When a
sufficient number of views is learned and linked via
temporal or spatiotemporal proximity and the tunings
of the view-tuned units overlap, the entire view space of
the object is represented (Földiák, 1991; Tian & Grill-
Spector, 2015; Wallis & Bülthoff, 2001). Recognition of
the 3-D object is based on distributed responses across

this population of view-tuned units (DiCarlo & Cox,
2007). As we found that learning transfers across line
and shading formats, we hypothesize that if learning
generated view-tuned units, these units will represent
shape information, independent of format rather than
containing a veridical ‘‘snapshot’’ of the trained views
(see also Ullman, 1989).

Future studies parametrically varying the number of
training views across formats may be useful in testing
these theoretical models of object representations as
view-based representations are likely to be more
sensitive to number of training views than 3-D
representations.

Conclusions

We investigated what structural information is used
during unsupervised learning from example views to
obtain a 3-D representation of an object. We found
that learning objects from line drawings, shading, and
stereo generated a similar improvement in object
recognition across views, suggesting that the combina-
tion of internal and external shape information is
sufficient for learning the 3-D structure of objects.
Strikingly, not only was performance similar across line
drawings and shading cues, but learning transferred
across line drawings and shading cues.

In sum, these findings have advanced our under-
standing regarding what type of structural information
is critical for learning the 3-D structure of an object
from 2-D information in retinal images and has
important implications for psychological and compu-
tational theories of object recognition.

Keywords: view-invariant recognition, unsupervised
learning, structural cues, cue invariance
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Földiák, P. (1991). Learning invariance from transfor-
mation sequences. Neural Computation, 3(2), 194–
200.

Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992, Nov
26). Columns for visual features of objects in
monkey inferotemporal cortex. Nature, 360(6402),
343–346, doi:10.1038/360343a0.

Georgieva, S. S., Todd, J. T., Peeters, R., & Orban, G.
A. (2008). The extraction of 3D shape from texture
and shading in the human brain. Cerebral Cortex,
18(10), 2416–2438, doi:10.1093/cercor/bhn002.

Green, D. M., & Swets, J. A. (1974). Signal detection
theory and psychophysics. Huntington, NY: R. E.
Krieger Pub. Co.

Grill-Spector, K., Kushnir, T., Edelman, S., Itzchak,
Y., & Malach, R. (1998). Cue-invariant activation
in object-related areas of the human occipital lobe.
Neuron, 21(1), 191–202, doi:10.1016/
S0896-6273(00)80526-7.

Hayward, W. G. (1998). Effects of outline shape in
object recognition. Journal of Experimental Psy-
chology: Human Perception and Performance, 24(2),
427–440, doi:10.1037/0096-1523.24.2.427.

Hayward, W. G., & Tarr, M. J. (1997). Testing
conditions for viewpoint invariance in object
recognition. Journal of Experimental Psychology:
Human Perception and Performance, 23(5), 1511–
1521, doi:10.1037/0096-1523.23.5.1511.

Hayward, W. G., Wong, A. C., & Spehar, B. (2005).
When are viewpoint costs greater for silhouettes
than for shaded images? Psychonomic Bulletin and
Review, 12(2), 321–327, doi:10.3758/BF03196379.

Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields
and functional architecture in two nonstriate visual
areas (18 and 19) of the cat. Journal of Neuro-
physiology, 28, 229–289.

Humphrey, G. K., & Khan, S. C. (1992). Recognizing
novel views of three-dimensional objects. Canadian
Journal of Psychology, 46(2), 170–190, doi:10.1037/
h0084320.

Kastner, S., De Weerd, P., & Ungerleider, L. G. (2000).
Texture segregation in the human visual cortex: A
functional MRI study. Journal of Neurophysiology,
83(4), 2453–2457.

Kellman, P. J., Garrigan, P., & Shipley, T. F. (2005).

Journal of Vision (2016) 16(7):7, 1–17 Tian, Yamins, & Grill-Spector 15



Object interpolation in three dimensions. Psycho-
logical Review, 112(3), 586–609, doi:10.1037/
0033-295X.112.3.586.

Kersten, D., Mamassian, P., & Yuille, A. (2004).
Object perception as Bayesian inference. Annual
Review of Psychology, 55, 271–304, doi:10.1146/
annurev.psych.55.090902.142005.

Kourtzi, Z., Erb, M., Grodd, W., & Bülthoff, H. H.
(2003). Representation of the perceived 3-D object
shape in the human lateral occipital complex.
Cerebral Cortex, 13(9), 911–920, doi:10.1093/
cercor/13.9.911.

Kourtzi, Z., & Kanwisher, N. (2000). Cortical regions
involved in perceiving object shape. Journal of
Neuroscience, 20(9), 3310–3318.

Kourtzi, Z., & Kanwisher, N. (2001, Aug 24).
Representation of perceived object shape by the
human lateral occipital complex. Science,
293(5534), 1506–1509, doi:10.1126/science.1061133.

Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider,
L. G., & Mishkin, M. (2012). The ventral visual
pathway: An expanded neural framework for the
processing of object quality. Trends in Cognitive
Sciences, 17(1), 26–49, doi:10.1016/j.tics.2012.10.
011.

Lawson, R. (1999). The effects of view in depth on the
identification of line drawings and silhouettes of
familiar objects: Normality and pathology. Visual
Cognition, 6(2), 165–195.

Lee, Y. L., & Saunders, J. A. (2011). Stereo improves
3D shape discrimination even when rich monocular
shape cues are available. Journal of Vision, 11(9):6,
1–12, doi:10.1167/11.9.6. [PubMed] [Article]

Liu, C. H., Ward, J., & Young, A. W. (2006). Transfer
between two-and three-dimensional representations
of faces. Visual Cognition, 13(1), 51–64, doi:10.
1080/13506280500143391.

Liu, Z., & Kersten, D. (1998). 2D observers for human
3D object recognition? Vision Research, 38(15–16),
2507–2519, doi:10.1016/S0042-6989(98)00063-7.

Liu, Z., Knill, D. C., & Kersten, D. (1995). Object
classification for human and ideal observers. Vision
Research, 35(4), 549–568, doi:10.1016/
0042-6989(94)00150-K.

Lloyd-Jones, T. J., & Luckhurst, L. (2002). Outline
shape is a mediator of object recognition that is
particularly important for living things. Memory &
Cognition, 30(4), 489–498, doi:10.3758/
BF03194950.

Logothetis, N. K., & Pauls, J. (1995). Psychophysical
and physiological evidence for viewer-centered

object representations in the primate. Cerebral
Cortex, 5(3), 270–288, doi:10.1093/cercor/5.3.270.

Malach, R., Reppas, J. B., Benson, R. R., Kwong, K.
K., Jiang, H., Kennedy, W. A., & Tootell, R. B.
(1995). Object-related activity revealed by func-
tional magnetic resonance imaging in human
occipital cortex. Proceedings of the National Acad-
emy of Sciences, USA, 92(18), 8135–8139.

Marr, D. (1982). Vision: A computational investigation
into the human representation and processing of
visual information. New York: Henry Holt and Co.,
Inc.

Marr, D., & Nishihara, H. K. (1978). Representation
and recognition of the spatial organization of three-
dimensional shapes. Proceedings of the Royal
Society B: Biological Sciences, 200(1140), 269–294.

McMahon, D. B., Bondar, I. V., Afuwape, O. A., Ide,
D. C., & Leopold, D. A. (2014). One month in the
life of a neuron: Longitudinal single-unit electro-
physiology in the monkey visual system. Journal of
Neurophysiology, 112(7), 1748–1762, doi:10.1152/
jn.00052.2014.

Melmoth, D. R., Finlay, A. L., Morgan, M. J., &
Grant, S. (2009). Grasping deficits and adaptations
in adults with stereo vision losses. Investigative
Visual Science & Opthalmology, 50(8), 3711–3720.
[PubMed] [Article]

Mendola, J. D., Dale, A. M., Fischl, B., Liu, A. K., &
Tootell, R. B. H. (1999). The representation of
illusory and real contours in human cortical visual
areas revealed by functional magnetic resonance
imaging. Journal of Neuroscience, 19(19), 8560–
8572.

Mitsumatsu, H., & Yokosawa, K. (2002). How do the
internal details of the object contribute to recogni-
tion? Perception, 31(11), 1289–1298, doi:10.1068/
p3421.

Nakayama, K., Shimojo, S., & Silverman, G. H.
(1989). Stereoscopic depth: Its relation to image
segmentation, grouping, and the recognition of
occluded objects. Perception, 18(1), 55–68, doi:10.
1068/p180055.

Nefs, H. T. (2008). Three-dimensional object shape
from shading and contour disparities. Journal of
Vision, 8(11):11, 1–16, doi:10.1167/8.11.11.
[PubMed] [Article]

Nefs, H. T., & Harris, J. M. (2007). Vergence effects on
the perception of motion-in-depth. Experimental
Brain Research, 183(3), 313–322, doi:10.1007/
s00221-007-1046-5

Newell, F. N., & Findlay, J. M. (1997). The effect of
depth rotation on object identification. Perception,
26(10), 1231–1257, doi:10.1068/p261231.

Journal of Vision (2016) 16(7):7, 1–17 Tian, Yamins, & Grill-Spector 16

http://www.ncbi.nlm.nih.gov/pubmed/21849629
http://jov.arvojournals.org/article.aspx?articleid=2121292
http://www.ncbi.nlm.nih.gov/pubmed/19339741
http://iovs.arvojournals.org/article.aspx?articleid=2186143
http://www.ncbi.nlm.nih.gov/pubmed/18831605
http://jov.arvojournals.org/article.aspx?articleid=2121955


Norman, J. F., Todd, J. T., & Orban, G. A. (2004).
Perception of three-dimensional shape from spec-
ular highlights, deformations of shading, and other
types of visual information. Psychological Science,
15(8), 565–570, doi:10.1111/j.0956-7976.2004.
00720.x.

Pasqualotto, A., & Hayward, W. G. (2009). A stereo
disadvantage for recognizing rotated familiar ob-
jects. Psychonomic Bulletin and Review, 16(5), 832–
838, doi:10.3758/PBR.16.5.832.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., & Dubourg, V. (2011).
Scikit-learn: Machine learning in Python. The
Journal of Machine Learning Research, 12, 2825–
2830.

Rajalingham, R., Schmidt, K., & DiCarlo, J. J. (2015).
Comparison of object recognition behavior in
human and monkey. Journal of Neuroscience,
35(35), 12127–12136, doi:10.1523/JNEUROSCI.
0573-15.2015.

Rosch, E. (1999). Principles of categorization. In E.
Margolis & S. Laurence (Eds.), Concepts: Core
readings (pp. 189–206). Cambridge, MA: MIT
Press.

Rossion, B., & Pourtois, G. (2004). Revisiting Snod-
grass and Vanderwart’s object pictorial set: The
role of surface detail in basic-level object recogni-
tion. Perception, 33(2), 217–236, doi:10.1068/p5117.

Sary, G., Vogels, R., & Orban, G. A. (1993, May 14).
Cue-invariant shape selectivity of macaque inferior
temporal neurons. Science, 260(5110), 995–997,
doi:10.1126/science.8493538.

Tarr, M. J., Williams, P., Hayward, W. G., & Gauthier,

I. (1998). Three-dimensional object recognition is
viewpoint dependent. Nature Neuroscience, 1(4),
275–277, doi:10.1038/1089.

Tian, M., & Grill-Spector, K. (2015). Spatiotemporal
information during unsupervised learning enhances
viewpoint invariant object recognition. Journal of
Vision, 15(6):7, 1–13, doi:10.1167/15.6.7. [PubMed]
[Article]

Ullman, S. (1989). Aligning pictorial descriptions: An
approach to object recognition. Cognition, 32(3),
193–254, doi:10.1093/cercor/5.3.270.

Vinberg, J., & Grill-Spector, K. (2008). Representation
of shapes, edges, and surfaces across multiple cues
in the human visual cortex. Journal of Neurophys-
iology, 99(3), 1380–1393, doi:10.1152/jn.01223.
2007.

Wallis, G., & Bülthoff, H. H. (2001). Effects of
temporal association on recognition memory.
Proceedings of the National Academy of Sciences,
USA, 98(8), 4800–4804, doi:10.1073/pnas.
071028598.

Welchman, A. E., Deubelius, A., Conrad, V., Bülthoff,
H. H., & Kourtzi, Z. (2005). 3D shape perception
from combined depth cues in human visual cortex.
Nature Neuroscience, 8(6), 820–827, doi:10.1038/
nn1461.

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E.
A., Seibert, D., & DiCarlo, J. J. (2014). Perfor-
mance-optimized hierarchical models predict neural
responses in higher visual cortex. Proceedings of the
National Academy of Sciences, USA, 111(23), 8619–
8624, doi:10.1073/pnas.1403112111.

Journal of Vision (2016) 16(7):7, 1–17 Tian, Yamins, & Grill-Spector 17

http://www.ncbi.nlm.nih.gov/pubmed/26024454
http://jov.arvojournals.org/article.aspx?articleid=2293316

	Introduction
	f01
	Methods
	f02
	f03
	Results
	f04
	f05
	f06
	Discussion
	f07
	Conclusions
	Appelbaum1
	Backus1
	Bennett1
	Biederman1
	Biederman2
	Bulthoff1
	Bulthoff2
	Bulthoff3
	Burke1
	Cohen1
	Cottereau1
	DiCarlo1
	Edelman1
	Foldiak1
	Fujita1
	Georgieva1
	Green1
	GrillSpector1
	Hayward1
	Hayward2
	Hayward3
	Hubel1
	Humphrey1
	Kastner1
	Kellman1
	Kersten1
	Kourtzi1
	Kourtzi2
	Kourtzi3
	Kravitz1
	Lawson1
	Lee2
	Liu3
	Liu1
	Liu2
	LloydJones1
	Logothetis1
	Malach1
	Marr1
	Marr2
	McMahon1
	Melmoth1
	Mendola1
	Mitsumatsu1
	Nakayama1
	Nefs1
	Nefs2
	Newell1
	Norman1
	Pasqualotto1
	Pedregosa1
	Rajalingham1
	Rosch1
	Rossion1
	Sary1
	Tarr1
	Tian1
	Ullman1
	Vinberg1
	Wallis1
	Welchman1
	Yamins1

