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Abstract: In this work, the diffraction of a Gaussian beam on a volume phase grating was researched
theoretically and numerically. The proposed method is based on rigorous coupled-wave analysis
(RCWA) and Fourier transform. The Gaussian beam is decomposed into plane waves using the
Fourier transform. The number of plane waves is determined using the sampling theorem. The
complex reflected and transmitted amplitudes are calculated for each RCWA plane wave. The
distribution of the fields along the grating for the reflected and transmitted waves is determined
using inverse Fourier transform. The powers of the reflected and transmitted waves are determined
based on these distributions. Our method shows that the energy conservation law is satisfied for the
phase grating. That is, the power of the incident Gaussian beam is equal to the sum of the powers of
the reflected and transmitted beams. It is demonstration of our approach correctness. The numerous
studies have shown that the spatial shapes of the reflected and transmitted beams differ from the
Gaussian beam under resonance. In additional, the waveguide mode appears also in the grating.
The spatial forms of the reflected and transmitted beams are Gaussian in the absence of resonance.
It was found that the width of the resonance curves is wider for the Gaussian beam than for the
plane wave. However, the spectral and angular sensitivities are the same as for the plane wave. The
resonant wavelengths are slightly different for the plane wave and the Gaussian beam. Numerical
calculations for four refractive index modulation coefficients of the grating medium were carried
out by the proposed method. The widths of the resonance curves decrease with the increasing in the
refractive index modulation. Moreover, the reflection coefficient also increases.

Keywords: dielectric grating; Gaussian beam; resonance; Fourier transform; sensor; sensitivity

1. Introduction

Recently, sensors for measuring the change in the refractive index, mainly of liq-
uids, have been intensively studied. Their operation principle is based on the excitation
of waveguide resonances in the grating [1–4] or in Otto–Kretschmann prismatic struc-
tures [5–8]. The resonance appears at the different wavelengths or at the different angles
when the refractive index of the tested medium changes. Grating-based sensors can be of
two types, namely, the dielectric grating on the dielectric substrate or metal or dielectric
grating on the metal substrate [9–12]. The description and analyses of various refractive
index sensors as well as providing extensive references on the corresponding sensors are
presented in the reviews references [9,11]. In work [13], sensitivity of the dielectric grating
on the dielectric substrate, the metal grating on the metal substrate, and the prismatic
structure have been analyzed for various types of sensors. Moreover, its relationship with
the waveguide properties of periodic structures has been researched. It has been shown
that the ratio of the sensitivity to the width of the resonant response at full width at half
maximum (FWHM) is in the range 508–522 at the resonance wavelength of 1.064 µm for
surface plasmon-polariton sensors [13]. The spectral sensitivity was 76 nm in case of the
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dielectric grating on the dielectric substrate and the angular one was 142 mrad [10,13].
However, the widths of the resonant responses at the FWHM are very narrow. Thus, that
the ratio of the sensitivity to the width of the resonant response at the FWHM is somewhat
higher than 17,000. It should be noted that the dielectric gratings are recorded by the
holographic method on photopolymer compositions [14,15]. The modulation amplitude of
the refractive index is approximately 0.017 [16]. A low width of the resonant response is
achieved due to the low modulation coefficient [17]. The highest value of the change in the
refractive index is 0.48 for photopolymer compositions [18]. It corresponds to the amplitude
of the change in the refractive index in a photosensitive medium of 0.24. Chalcogenide
glasses are also used for recording gratings by the holographic method and the change
in the refractive index can reach 0.1 in them [19]. If such dielectric grating is irradiated
by a plane wave and the resonance of the waveguide modes occurs, then the reflection
coefficient is equal to unity in zero diffraction order [1–3,17]. The calculation of the plane
wave diffraction by the grating is carried out by the asymptotic RCWA [20]. However,
the grating is irradiated with the limited beam over the cross section in experimental
studies. It led to a significant decrease in the reflection coefficient and an expansion of the
resonant response at the slight modulation of the grating medium refractive index [3,10].
The calculated RCWA resonance wavelength coincided with the experimentally measured
one, though. Therefore, it is necessary to calculate the diffraction of the beam with the
limited cross section. It is, for example, a Gaussian beam on such grating to predict the
properties of the sensor in practical application. A relatively small number of publications
are devoted to the problem of studying the diffraction of the finite diameter light beam.
The study of the diffraction on the metal gratings of the finite length beam was carried
out in [21]. It led to the limitation of the beam over the cross section at the excitation of
surface plasmon-polariton resonances. The theoretical modeling assumes an expansion
of resonances with the decrease in the grating size. This expansion is in good agreement
with experimental data. In [22], diffraction of the limited beam size from 3 to 20 periods
was studied using the finite-difference frequency-domain method. It was shown that with
increasing beam width, the diffraction efficiency slowly converges to the values provided
for by RCWA. Interesting results are presented in [23] for the reflecting gratings. Using
angular spectral representation, it is shown that the fields of the Gaussian beams that are
scattered by the reflecting grating differ markedly from those predicted by geometrical
considerations. In [24], the effect of cross-section limited beams was studied using the
rigorous boundary element method. In [25], the influence of the limited Gaussian beam
on the spectrum of anomalous reflection and on the energy, distribution in the reflected
beam from the waveguide with the grating was studied using an approximate theory.
Lalanne and co-workers [26,27] introduced using of absorbing boundary conditions and
perfect matching of layers at the ends of the unit cell to numerically analyze finite periodic
structures. Guizal et al. [28] developed the method called aperiodic RCWA (ARCWA) in
which the dielectric constant of the finite grating is represented as the Fourier integral. It
leads to the integro-differential equation that can be solved using discretization in Fourier
space. However, this method requires several hundred harmonics for convergence and
requires significant computer resources. In [29], an attempt was made to extend the RCWA
method for gratings with the finite number of periods using supercells, which resulted to a
significant increase in the calculation time.

A simple theory of the reflection of the beam with limited cross section on the grating
in which the resonance of waveguide modes is occurred, given in [30]. It provides using
of direct and inverted Fourier transforms. However, this theory uses a number of approx-
imations, which can lead to an error in the calculations. This theory does not imply a
search for the spatial distribution of the amplitude and, accordingly, the power of the wave
transmitted through the grating. Thus, it is impossible to verify that the law of conservation
of energy is fulfilled during diffraction by purely phase gratings, which is a criterion for
the correctness of the analysis.
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The approach of expanding of the cross section limited beam, for example, a Gaussian
beam, is effectively used in other applications. In particular, it is to study the reflection
and transmission from the Fizeau wedge [31–33]. Analysis of transmission of a finite-
diameter Gaussian beam by the Fizeau interferential wedge is presented in these works.
The fringe calculation is based on angular spectrum expansion of the complex amplitude
of the incident wave field. The developed approach is applicable to any beam diameter
and wedge thickness at any distance from the wedge and yields as a boundary case the
fringes at plane-wave illumination.

Therefore, the development of the method for analysis of the limited cross-section
beam diffraction by the grating, which would be based on the well-proven numerical
method, for example, RCWA, is quite important. It is especially for periodic structures
in which waveguide resonances occur at low modulation of the refractive index. After
all, the numerical RCWA is asymptotically accurate [34] and it quickly converges for
dielectric gratings even when the resonance of the waveguide modes occurs. The sum of
the diffraction efficiencies of all orders (reflected and transmitted) calculated by RCWA
corresponds to the energy conservation law for phase gratings [35]; that is, this sum should
be equal to unity. The equality of the sum of unity for phase gratings can be a certain
criterion for the correctness of the theory and the corresponding numerical calculations.
Thus, one can hope for the creation of the effective numerical method for analyzing the
diffraction of light beams with limited cross section by gratings in which waveguide
resonances are realized using the Fourier transform and RCWA. In addition, it is important
to determine the characteristics of sensors based on dielectric gratings for the certain range
of variation in the modulation amplitude of the grating refractive index.

2. Theoretical Background of Method

In our analysis, we consider a one-dimensional case when the wave amplitude changes
along the x coordinate and does not depend on the y coordinate (see Figure 1). The limited
cross-section beam is distributed in air at the angle of incidence θ to the plane of the infinite
grating. The beam will incident on the grating at the angle θ1 in medium with the refractive
index n1, accordingly. It can be calculated from the equation n1 sin θ1 = sin θ.
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Figure 1. Incident of Gauss beam on the grating. The reflection coefficient is equal to 1 if the plane
wave incidents on the grating and waveguide resonance occurs.

It should be noted that resonant wavelength of a limited beam, in particular a Gaussian
beam, coincides with the resonant wavelength of the plane wave.

Amplitude distribution along the x coordinate on the grating surface is described with
function a(x). It is practically equal to zero out of interval [−xmax/2, xmax/2]. Let us do
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Fourier transform of function a(x) exp(i2πu0x), where u0 = n1
λ sin θ1, λ is wavelength of

incident wave as follows:

A(u) =
∞∫
−∞

a(x) exp(i2πu0x) exp(−i2πux)dx (1)

If equation A0(u) =
∫ ∞
−∞ a(x) exp(−i2πux)dx is correct then it can be written:

A(u) = A0(u− u0) (2)

in correspondence to the sampling theorem [33], which is applied to Fourier transform.
Knowing A(u) it is possible to find a(x) exp(i2πu0x) using the inverse Fourier trans-

form as follows:
a(x) exp(i2πu0x) =

∫ ∞

−∞
A(u) exp(i2πux)du (3)

Function A(u) is practically equal to zero out of interval [u0 − umax/2, u0 + umax/2]
and it is satisfied for Gaussian beam. The intervals should be such that constraints in the
coordinate space and the frequency space do not lead to errors in the qualitative and quan-
titative results of the analysis. The spatial frequency interval [u0 − umax/2, u0 + umax/2] is
divided into M − 1 intervals, thus:

um = u0 −
M + 1

2
δu + mδu =

n1

λ
sin θm (4)

where δu = umax
M−1 , m is whole number which changes from 1 to M. Let selected that M

is odd whole number. There will be M discrete samples of frequency u in this interval.
According to the r sampling theorem [36], in order to pass from continuous coordinates
and frequencies to discrete ones, and in order to use the discrete Fourier transform, the
condition must be satisfied:

xmaxumax = M− 1� 1 (5)

Discrete coordinates can be expressed as follows:

xm = − xmax

2
+ (m− 1)

xmax

M− 1
= − xmax

2
+ (m− 1)δx (6)

The spatial frequency umax must satisfy the condition of Parseval equality [29]:

n1 cos θ1

u0+umax/2∫
u0−umax/2

|A(u)|2du ≈ n1cos θ1

∞∫
−∞

|a(x)|2dx (7)

Here, the “≈” sign, as is customary, means almost equal (asymptotically equal). It can
be found umax based on this expression. The right-hand and left-hand sides of Equation (7)
are proportional to the power of the incident beam on the grating. The following relation
can be a criterion for choosing δu and M, taking into account that δu = umax

M−1 :

n1 cos θ

M−1
2

∑
j=−M−1

2

|A(jδu)|2δu ≈ n1 cos θ
∞∫
−∞

|a(x)|2dx (8)

The value of the left-hand side of the ratio (8) follows to the value of the right-hand side
with a decrease in δu, that is, with an increase in M. In addition, the follow relation must
be satisfied [35]: 1

δx ≥ umax, 1
δu ≥ xmax. In our analysis, we will assume that 1

δx = umax,
1

δu = xmax.
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Therefore, the beam with spatial distribution of field a(x) exp(i2πu0x) can be repre-
sented by the sum of plane waves A(um) exp(i2πumx)δu as follows:

a(x) exp(i2πu0x) ≈
M

∑
m=1

A(um) exp(i2πumx)δu (9)

The result of diffraction of each plane wave A(um) exp(i2πumx)δu with number m
can be calculated by the RCWA method. The amplitudes of the reflected and transmitted
waves will be obtained and denoted by r0m and t0m, respectively, for the zero order. In
this case, for convenience, r0m and t0m are calculated at the unit amplitude of the incident
wave. Thus, the total amplitudes of the reflected r0(x) and transmitted waves t0(x) at
the homogeneous medium/grating interface can be obtained using the discrete inverse
Fourier transform:

r0(x) =
M

∑
m=1

A(um)r0m(um) exp(i2πumx)δu (10)

t0(x) =
M

∑
m=1

A(um)t0m(um) exp(i2πumx)δu (11)

Using Equations (10) and (11), it is possible to calculate values proportional to the
power distributions of the reflected wave along the grating and the wave passing through
the grating in accordance with the expressions:

R0(x) = |r0(x)|2n1 cos θ1 (12)

T0(x) = |t0(x)|2n3 cos θ3 (13)

If the grating medium and homogeneous media adjacent to the grating are not absorb-
ing, then with the correct choice of M, umax, xmax the follow condition must be satisfied:

n1 cos θ1

∞∫
−∞

|a(x)|2dx ≈
∫ xmax/2

−xmax/2
[R0(x) + T0(x)]dx ≈ n1 cos θ1

u0+umax/2∫
u0−umax/2

|A(u)|2du (14)

The less the integrals differ from each other, the more accurate the analysis is. We
express the relative powers of the grating transmission and the reflection from the grating
as follows:

Pr =

∫ xmax/2
−xmax/2 R0(x)dx

n1 cos θ1
∫ ∞
−∞|a(x)|2dx

, Pt =

∫ xmax/2
−xmax/2 T0(x)dx

n1 cos θ1
∫ ∞
−∞|a(x)|2dx

(15)

Obviously, the condition Pr + Pt ≈ 1 must be satisfied with such definition of Pr and
Pt in the absence of absorption in the structure. It corresponds to the energy conservation
law. Therefore, it can be concluded that results of the analysis by the proposed approach
correspond to the energy conservation law for phase gratings.

The integrals in the numeral Equation (15) can be replaced by summation to increase
the speed of numerical calculation as follows:

∫ xmax/2

−xmax/2
R0(x)dx ≈

M−1
2

∑
j=−M−1

2

R0(jδx)δx,
∫ xmax/2

−xmax/2
T0(x)dx ≈

M−1
2

∑
j=−M−1

2

T0(jδx)δx (16)

3. Numerical Analysis of the Gaussian Beam Diffraction by the Infinite Grating

Let consider the diffraction of the Gaussian beam by the infinite grating. The Gaussian
beam and grating are shown in Figure 1. The Gaussian beam can be described by the
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following equation in the coordinate system (x1, z1):

E(x1, z1) = exp
[
−π
( x1

L

)2
]

exp
(

i
2πn1

λ
z1

)
(17)

where the first factor is the amplitude of this beam a(x1) = exp
[
−π
( x1

L
)2
]
.

In the coordinate system (x, z) the corresponding distribution of the Gaussian beam
field will have the form:

E(x, z) = exp

[
−π
(

x cos θ1

L

)2
]

exp
[
i2π
(n1

λ
sin θ1 x +

n1

λ
cos θ1z

)]
. (18)

Thus, it can be written:

a(x) = exp

[
−π
(

x cos θ1

L

)2
]

exp
(

i2π
n1

λ
sin θ1x

)
= exp

[
−π
(

x cos θ1

L

)2
]

exp(i2πu0x). (19)

The following grating parameters n1 = 1.5 is the refractive index of the tested medium,
n20 = 1.525 is the average refractive index of the grating medium, n3 = 1.38 is the
refractive index of the substrate, and d = 1.86860 µm is the grating thickness have been
used in our numerical studies. The resonant wavelength at the plane wave incidence, at
which the reflection coefficient from the structure is equal to unity, was 1.064 µm. This
wavelength was selected in terms of increasing sensitivity with increasing wavelength [13].
The angle of incidence of the beam on the grating in air θ is 20 angular degrees under
resonance. Several amplitudes of modulation of the refractive index of the grating medium
nm = 0.017, 0.025, 0.035, 0.05 have been analyzed. The change in nm will lead to the change
in the grating period to achieve resonance since the resonant wavelength is 1.064 µm for all
four cases. Table 1 shows the grating resonance periods. The resonance parameters of the
grating at the different wavelength with constant refractive indices and the beam resonant
angle of incidence on the grating can be calculated based on the results of the analysis
at the wavelength of 1064 nm, grating period Λ and grating thickness d. The resonance
period and thickness are Λλ = λ

1064 Λ, dλ = λ
1064 d for the wavelength λ. The wavelength of

1064 nm was chosen from the point of view of the mastered production of cheap YAGˆNd3+

lasers pumped by the semiconductor laser.

Table 1. Resonant grating periods for 4 values of nm cited.

nm 0.017 0.025 0.035 0.05

Λ, nm 573.518 573.527 573.544 573.580

As follows from the Table 1, the grating period changes in the fifth significant digit
when the modulation amplitude changes from 0.017 to 0.05.

In computer analysis, umax was chosen from the condition:

L exp
[
−π
(

L
umax

2

)2
]
= 10−7 (20)

The grating period changes in the fifth significant digit when the modulation ampli-
tude changes from 0.017 to 0.05 as follows from the Table 1.

If L = 15, 000 µm, then umax = 0.00095 µm−1. It is possible to ensure high accuracy
of numerical calculations under this condition. Obviously, it first need to calculate the
dependences of the reflection and transmission coefficients on M for two values of L. The
corresponding dependences are shown in Figure 2a. The dependences of the reflection and
transmission coefficients on L for M = 501 are shown in Figure 2b. It should be noted that
Pr + Pt = 0.9999999903 when umax determined according to the Equation (20). That is, the
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calculations can be performed with high accuracy for the Gaussian beam with this choice
of umax.
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Analyzing Figure 2a, it can be seen that the most sensitive reflection coefficient (P)
in terms of power in M is for nm = 0.017 at L = 2 mm. Pr changes from 0.036094 to
0.03573 when M changes from 501 to 1001, that is, insignificantly. Therefore, all subsequent
calculations were carried out at M = 501. Figure 2b shows the dependences of Pr on the half-
width of the beam L. It can be seen that the reflection coefficients increase monotonically
with increasing L. Thus, it can be assumed that Pr tends to unity with increasing L. It
should be noted that the sum Pr + Pt = 1, since we used umax large enough according to
Equation (20).

The following figure shows the spectral dependences when the plane wave (Figure 3a)
and the Gaussian beam at L = 20 mm (Figure 3b) are incident on the grating The resonance
wavelengths for both cases coincide, but the half-widths of the resonance curves are large
for the Gaussian beam compared to the plane wave.
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The angular dependences of the reflection coefficient at the incidence of the plane
wave and the Gaussian beam on the grating are presented in Figure 4. There are indicated
the widths of the resonance curves δθ0.5 and δθ0.5G at the level of half of the corresponding
maximum values. In the same way, the widths of the spectral resonance curves presented
in Figure 3 were determined.
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Figure 4. Angular dependences of the reflection coefficient at the incidence of the plane wave and the
Gaussian beam on the grating. The green curve is the incidence of the plane wave on the grating. The
red curve is the incidence of the Gaussian beam at L = 20 mm, nm = 0.025. The resonant wavelength
is 1.064 µm.

The spectral and angular widths of the resonant response for the Gaussian beam
are wider in comparison to the width of the resonance responses for the plane wave.
Apparently, is true not only for the limited Gaussian beam. The reflection coefficient from
the grating is equal to unity at the resonant wavelength when the plane wave is incident.
However, the reflection coefficient for the limited beam is less than unity and is directed to
unity with increasing beam width and modulation amplitude of the refractive index nm.

High-information curves are dependencies |r0(x)|, |t0(x)| and especially ln[|r0(x)|]
and ln[|t0(x)|], which are shown in Figure 5. These curves were calculated under resonance
for the Gaussian beam (L = 20 mm, nm = 0.025). It can be seen that the reflected beam
(red) is much wider than the incident beam (blue) and expands to the left along the x
coordinate for a considerable distance (see Figure 5). The transmitted beam (green) is split
into two parts and also expands to the left over a considerable distance. The reflected and
transmitted beams are shifted to the left relative to the incident beam.
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and ln|t0(x)| along the x coordinate (b). Resonant wavelength is 1.064 µm and resonant angle is θ = 20o at the L = 20 mm.
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Analyzing Figure 5a, we can assume that the modules |r0(x)| and |t0(x)| decreases
exponentially as x decreases from −30 to −100 mm. This assumption is confirmed by
Figure 5b, where is linear dependence of ln|r0(x)| and ln|t0(x)|. It is possible to determine
the slope coefficient of these straight lines for different nm, which we denote by αrad on
these linear dependences. These αrad values are shown in Table 2 (fifth row) for four values
of nm (first row). It should be noted that αrad does not depend on the Gaussian beam width
but depends on nm. These figures show that waveguide mode is excited under resonance.
It propagates from right to left and it decays exponentially during propagation due to
interaction with the grating. The energy losses of the waveguide mode go to the reflections
and transmissions of the grating. Due to which there is a spatial expansion of the reflected
and transmitted beams.

The behavior of the spatial distribution of the amplitudes of the reflected and trans-
mitted beams in the absence of resonance will be quite different. The corresponding
dependences for the wavelength of 1000 nm are shown in Figure 6.
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Figure 6. Amplitudes modules distribution of |a(x)| (blue), |r0(x)| (red), and |t0(x)| (green) along
the x coordinate. The wavelength is 1000 nm, the width of the Gaussian beam incident on the grating
is L = 20 mm.

Therefore, the distributions of the field amplitude of the reflected and transmitted
beams differ significantly in shape from the distribution of the amplitude of the incident
beam on the grating under resonance. All three beams are similar in shape under the
absence of resonance.

It is quite far from the resonance wavelength of 1064 nm. It can be seen that there is no
expansion of the reflected and transmitted beams and no change in their shape. There is the
insignificant amplitude Pr = 0.0038 of the reflected beam. The same will be the reflection
coefficient when the plane wave is incident on the grating.

Rows 3 and 4 of the Table 2 show the reflection coefficients from the grating under
resonance at L = 2 mm and L = 20 mm for four values of nm, respectively. The sixth
row of the Table 2 shows the widths of the spectral resonances δλ0.5 when the plane wave
is incident on the grating. They are determined based on the curves shown in Figure
3a. The seventh row of the Table 2 contains δλ0.5α, calculated by the following analytical
expression [10,30]

δλ0.5α = αradλΛ/π (21)

There are a good agreement between the data given in rows 6 and 7. It confirms the
correctness of the proposed method for calculating the limited beam diffraction by the
diffraction grating. Row 8 shows the spectral widths of the resonance curves δλ0.5G when
the Gaussian beam is incident on the grating. Analyzing the data of lines 6 . . . 8, we can
conclude that the widths of the resonance curves grow with increasing nm.

Row 9 shows the widths of angular resonances at the plane wave the incidence on
the grating obtained based on the curves partially shown in Figure 4. The data in line 10 is
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determined by the following equation [10,30]:

δθ0.5α = αradλ/(π cos θ) (22)

It can be seen a good coincidence of data rows 9 and 10. Row 11 shows the widths of
the angular resonance curves for the Gaussian beam.

Therefore, the attenuation index of the waveguide mode during propagation deter-
mines the widths of the resonances of the spectral and angular responses when a plane
wave is incident on the grating (see Equations (21) and (22)).

Rows 12 and 13 show the spectral sensitivities Sλ and SλG to the change in the
refractive index n1 of the tested medium when the plane wave and the Gaussian beam are
incident on the grating, respectively. Spectral sensitivities were determined as follows:

Sλ =
λrez(n1 + ∆n1)− λrez(n1 − ∆n1)

2∆
. (23)

There is ∆n1 = 0.0001 in our numerical calculations. Similarly, the sensitivity was
determined for the Gaussian beam. The resonant wavelength is 1.064 µm t the resonance
angle θrez = 20

◦
for n1 = 1.5. The new resonance wavelengths λrez(n1 ± ∆n1) were

searched after changing n1 by n1 ± ∆n1. These data were substituted into Equation (23).
Comparing the data in rows 12 and 13 of Table 2, we see that the sensitivities for both cases
are the same and depend very little on nm.

Rows 14 and 15 show the angular sensitivity Sθ and SθG to the change in the refractive
index n1 of the tested medium when the plane wave and the Gaussian beam are incident
on the grating. The angular sensitivities were determined as follows:

Sθ =
θrez(n1 + ∆n1)− θrez(n1 − ∆n1)

2∆n1
(24)

The sensitivity of the Gaussian beam was determined in the similar way.
It was found that the spectral and angular sensitivity to the change in the refrac-

tive index n_1 are the same for the plane wave and the Gaussian beam and increase
slightly with increasing of nm. The fact that the sensitivities (angular and spectral) are
the same when the plane wave and the Gaussian beam are incident on the grating can
be explained by the fact that plane waves propagate in a very narrow range of angles in
the Gaussian beam expansion. They are determined by the interval of spatial frequencies
[u0 − umax/2, u0 + umax/2]. We also see that the sensitivity very little depends on the
modulation amplitude of the refractive index nm. It is much less than the average refractive
index of the grating medium n20.

Table 2. Calculation results of grating properties under waveguide resonance at 4 values of nm for plane wave and
Gaussian beam.

Parameter No Number Data of Parameters Calculation Conditions

Modulation nm 1 0.017 0.025 0.035 0.050 n2(x) = n20 + nm cos
(

2π
Λ x
)

Lambda Λ, nm 2 573.5418 573.5273 573.5441 573.5797 Grating period

Pr 3 0.0351 0.0710 0.1310 0.2429 L = 2 mm

Pr 4 0.2735 0.4804 0.6917 0.8703 L = 20 mm

αrad, mm−1 5 0.02286 0.04943 0.09686 0. 1976 L = 2 . . . 20 mm

δλ0.5, nm 6 4.43 × 10−3 9.58 × 10−3 18.75 × 10−3 38.26 × 10−3 Plane wave

δλ0.5α, nm 7 4.44 × 10−3 9.60 × 10−3 18.82 × 10−3 38.38 × 10−3 δλ0.5α = αradλΛ/π

δλ0.5G, nm 8 22.22 × 10−3 25.28 × 10−3 31.52 × 10−3 46.98 × 10−3 L = 20 mm
Gaussian beam

δθ0.5, mrad 9 0.00825 0.0179 0.0351 0.0715 Plane wave
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Table 2. Cont.

Parameter No Number Data of Parameters Calculation Conditions

δθ0.5α, mrad 10 0.00824 0.0179 0.0349 0.0712 δθ0.5α = αradλ/(π cos θ)

δθ0.5G, mrad 11 0.0413 0.0473 0.0590 0.0878 L = 20 mm
Gaussian beam

Sλ, nm 12 75.9 76.0 76.2 76.75 Plane wave

SλG, nm 13 75.9 76.0 76.2 76.75 L = 20 mm
Gaussian beam

Sθ, mrad 14 141.2 142.4 142.6 143.4 Plane wave

SθG, mrad 15 141.2 142.4 142.6 143.4 L = 20 mm
Gaussian beam

Sλ/δλ0.5 16 17,133 7933 4064 2006 Plane wave

Sθ/δθ0.5 17 17,115 7955 4063 2006 Plane wave

SλG/δλ0.5G 18 3416 3006 2418 1634 L = 20 mm
Gaussian beam

SθG/δθ0.5G 19 3419 3011 2417 1633 L = 20 mm
Gaussian beam

The structure under study is essentially a planar waveguide and the following condi-
tion must be satisfied under resonance [10,13,17]:

2π
λ

sin θ− 2π
Λ

+ β ≈ 0 (25)

where β is propagation constant of the planar waveguide. The resonance grating period
changes in the fifth significant digits (second row of Table 2) when nm changes from 0.017
to 0.05 (the first row of the table). Therefore, propagation constant will be insignificantly
changed at change of nm. As a result, there will be little change in spectral and sensitiveness
on the change of nm.

Rows 16 and 17 of Table 2 show the ratios Sλ/δλ0.5 and Sθ/δθ0.5 for the plane wave,
which are calculated based on data from rows 6, 9, 12, and 14. It can be seen that:

Sλ
δλ0.5

∼ Sθ
δθ0.5

(26)

The last equation was obtained in [10] based on Equation (25). Rows 18 and 19 of
Table 2 show similar equations for the incidence of the Gaussian beam on the grating using
data in rows 8, 11, 13 and 15. We also see a good coincidence of the results of rows 18 and
19 for all nm. Thus, it can be written:

SλG

δλ0.5G
∼ SθG

δθ0.5G
(27)

Thus, the advantage of proposed approach is in analysis of the cases that are closest
to practice. The diffraction of a Gaussian beam with a width of two mm or more have
been studied. Numerical simulation of the Gaussian beam diffraction by the grating using
the finite element method showed that analysis took a very long time (the beam width
was 1–2 mm) and the calculation results were not credible. Finite element methods, finite-
difference frequency-domain methods require computer mesh with a small step. Therefore,
it is convenient to use these methods for diffraction of a plane wave by the grating, where
the calculation is performed within one period. They can also be used to analyze the
diffraction of the beam with very small width (several periods). In [22], diffraction of the
limited beam size from 3 to 20 periods was studied using the finite-difference frequency-
domain method. In this work, the diffraction of limited beams was studied in width, that
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is, with a width of several periods. The number of grid points per wavelength was 20
(see [22]). Possibility to calculate diffraction of the beam by grating with the beam size of
1 mm or more is the main advantage of our method. It has a practical importance. Our
method, after some modification, can be used for very narrow beams. However, in this
case, perhaps tens of thousands of plane waves must have to use. It leads to a significant
increase in computer calculations. It can be argued that the proposed method and the
finite-difference frequency-domain method and other methods using a mesh complement
each other at the analysis of finite-width beams diffraction by the diffraction gratings.

4. Conclusions

The limited beam diffraction by the phase grating has been studied by proposed
method of analysis. It is found that waveguide mode is excited under resonance and
decays exponentially during propagation. The spatial distribution of the amplitude of
the limited beam is described with the Gaussian function. The analysis was carried out
near the resonant wavelength for four values of the modulation amplitude of the grating
medium refractive index. It was found that the resonant wavelength is equal to the resonant
wavelength when the plane wave is incident on the grating. In case when the Gaussian
beam is incident on the grating. The spectral and angular widths of the resonant response
for the Gaussian beam are wider in comparison with the width of the resonant responses
for the plane wave. It is apparently true not only for the limited Gaussian beam. The
reflection coefficient from the grating is equal to unity at the resonant wavelength in case of
plane wave incidence. However, the reflection coefficient for the limited beam is less than
unity and is directed towards unity with the increase in the beam width and modulation
amplitude of the refractive index nm.

The proposed method for analyzing diffraction of the limited Gaussian beam on the
phase grating corresponds to the energy conservation law. The sum of the powers of the
reflected and transmitted beams is equal to the power of the incident beam.

It was found that the amplitudes spatial distribution of the reflected and transmitted
beams in the zero diffraction order differs in shape from the distribution of the amplitude
of the incident beam under resonance. The widths of the reflected and transmitted beams
are higher than the width of the incident beam. If there is no resonance, then the spatial
distribution of the amplitudes of the incident, reflected and transmitted beams are similar
in the shape. It was shown that the waveguide mode is excited under resonance. The
amplitude of which decreases exponentially. The radiation loss index αrad determines
the width of the resonant spectral and angular losses at the FWHM for the plane wave
in accordance with Equations (21) and (22). The reflected and transmitted beams expand
spatially due to the interaction of the waveguide mode with the grating under resonance.

It was found that the spectral and angular sensitivity to the change in the refractive
index n3 are the same for the plane wave and the Gaussian beam and increase slightly with
increasing of nm. Numerical calculations show that Sλ

δλ0.5
∼ Sθ

δθ0.5
> SλG

δλ0.5G
∼ SθG

δθ0.5G
. It is

consistent with the results of [10,13].
Generally, it can be concluded that results of this work will be useful for the design of

refractive index sensors of biological solutions based on water or alcohol. The principle of
operation of sensors is based on waveguide resonance in dielectric gratings and sensitivity
of the resonance based sensors significantly exceeds the sensitivity of holographic sensors.
It should be noted that actual waveguide resonance based volume phase gratings can
be fabricated by the holographic recording using the symmetric two-beam setup for the
fabrication of transmission gratings. The detailed description of manufacturing process
is presented in [10]. The high uniformity in thickness and accurate reproduction of the
periodicity allow us to expect a good fitting between the results of numerical modeling
and experimental data.
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