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SUMMARY

Face recognition is widely used for security and access control. Its performance is
limited when working with highly pigmented skin tones due to training bias
caused by the under-representation of darker-skinned individuals in existing da-
tasets and the fact that darker skin absorbs more light and therefore reflects
less discernible detail in the visible spectrum. To improve performance, this
work incorporated the infrared (IR) spectrum, which is perceived by electronic
sensors. We augmented existing datasets with images of highly pigmented indi-
viduals captured using the visible, IR, and full spectra and fine-tuned existing face
recognition systems to compare the performance of these three. We found a
marked improvement in accuracy and AUC values of the receiver operating char-
acteristic (ROC) curves when including the IR spectrum, increasing performance
from 97.5% to 99.0% for highly pigmented faces. Different facial orientations
and narrow cropping also improved performance, and the nose region was the
most important feature for recognition.

INTRODUCTION

Face recognition technology has become widespread, especially in the fields of security and access con-

trol. Although this is not a novel technology per se, the advent of deep convolutional neural networks

(CNNs) has improved its performance and effectiveness and led to its adoption in a wide variety of com-

mercial applications. However, despite substantial advances in recent years, it still faces some challenges.

One problem that has been under increased scrutiny recently is a degraded performance for certain skin

tones.1–5 Individuals with highly pigmented skin are often adversely affected by this poor performance as

opposed to their counterparts with lightly pigmented skin. Buolamwini and Gebru,1 who analyzed gender

classification software, showed that commercially available face recognition software performs worse for

individuals with highly pigmented skin (African American) than for those with lightly pigmented skin (Euro-

peans [We use the term ‘‘European’’ to represent groups termed ‘‘Caucasian’’ in the literature reviewed]):

they found a 12.9% error rate for the former but only 0.7% for the latter. Various reasons can be found for

this, such as the choice of algorithm, training dataset, and spectrum of light used for the image capture.

The former two have been the subject of plenty of research.2,6–12 The latter, regarding the light spectra has,

however, not seenmuch attention since the adoption of CNNs. Therefore, in this paper, we will briefly over-

view the current efforts to alleviate demographic effects and training data bias, but themain focus will be to

evaluate the effect of various light spectra on the performance of CNN-based face recognition techniques

on individuals with highly pigmented skin.

Impact of data: Demographic effects and training data bias

Algorithms that predate CNN technology were evaluated in the Face Recognition Vendor Test3,13 and

showed better performance for the demographic from which the developers of the algorithm hail. They

found, for example, that algorithms developed in European countries and the USA performed better on

European individuals, while those developed in Asian countries performed better on Asian individuals.

Klare et al.10 explored the role of demographics on pre-CNN face recognition algorithms. They found

that performance on race/ethnicity and age groups generally improved when training exclusively on the

same group.

Although CNNs brought about a marked increase in general accuracy, studies by Buolamwini and Ge-

bru1 and Cook et al.4 showed that some level of bias still existed. Krishnapriya et al.5 found higher false
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Table 1. Popular face image datasets

Dataset Illumination

Spec-

trum

No. of images

(individuals)

HPS individuals

(%) Reference

ColorFERET Artificial VIS 2,413 (856) 8 Terhörst et al.16

LFW Mixed VIS 13,233 (5,749) 14 Wang et al.2

MS-Celeb-1M Mixed VIS 5.8 mil. (100,000+) 14 Wang et al.2

VGGFace2 Mixed VIS 3.31 mil. (9,131) 16 Cao et al.,24 Parkhi

et al.26

IJB-A Mixed VIS 5,712 (500) 21 Buolamwini and

Gebru1

RFW Mixed VIS No 25 Wang et al.2

PPB Artificial VIS 1,270 (1270) 46 Buolamwini and

Gebru1

Academic

MORPH

Artificial VIS 55,134 (13,618) 80 Krishnapriya et al.5

CASIA-Face-

Africa

Artificial (Night also

included)

VIS, NIR 38,546 (1,183) 100 Muhammad et al.22

Notes:

Illumination: type of illumination used in the images captured (natural/artificial/mixed).

Spectrum: light spectrum in which images are captured (VIS - visible spectrum, NIR - near-infrared spectrum).

No. of images (and subjects): the number of images in the database. The number of individuals captured is given in

parentheses.

%HPS individuals: portion or percentage of the dataset consisting of images of individuals with highly pigmented skin.
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match errors for African-Americans than for Europeans. Furthermore, they found that to achieve an oper-

ational false match rate (1 in 10,000), different similarity thresholds would be required for each

demographic.

Neural networks, in general, require large amounts of data to produce accurate recognition results.

This has the downside of requiring an intensive data collection process when creating or improving sys-

tems. Moreover, the nature of the data used also affects the performance of the system, resulting in sub-

stantial performance differences between tests done in a lab and those done using real-world data. Thus,

the over-representation of individuals with lightly pigmented skin in popular face datasets, such as

Labeled Faces in the Wild (LFW)14 and MORPH,15 has an impact on the performance of algorithms

when used to recognize individuals with highly pigmented skin. For this reason, recent studies have

ensured that individuals with different skin tones are represented evenly in new datasets. These studies

serve to both reveal the performance impact caused by unbalanced datasets1,5,11 and bolster the perfor-

mance of subsequent algorithms.2,16 A summary of some of the popular, publicly available datasets that

are used in research is given in Table 1 (For convenience we use the terms ‘‘HPS individual’’ and ‘‘LPS

individual’’ to refer to individuals with highly pigmented skin and those with lightly pigmented skin,

respectively).

Meissner and Brigham17 reviewed research on the well-known phenomenon of ‘‘own-race bias’’ present

when people recognize faces: people are better at recognizing the faces of their own race than of other

races. This bias was found to be a result of humans using a small set of features to identify people. Since

the set of features varies by race, limited exposure to people of other races makes it difficult to identify

them accurately. Phillips et al.18 found a similar bias in their research into pre-CNN face recognition algo-

rithms. Algorithms performed better on the demographic group they originated from (and subsequently

were trained on).

Nagpal et al.9 attempted to show if and where such bias is encoded for face recognition when using CNNs.

Specifically, they aimed to understand what neural networks encode and whether they learn features similar

to the human brain. They found that neural networks do indeed exhibit the same ‘‘own-race bias’’ when

exposed to limited demographic groups (in this case, race).
2 iScience 26, 107039, July 21, 2023



Figure 1. Spectral sensitivity for a typical CMOS sensor37
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Their analysis used two groups: group A as European individuals and group B as non-European individuals.

CNNs trained on group A exhibited an accuracy of 79.2% on group A and 28.9% on group B. Vice versa,

training on group B gave an accuracy of 34.3% on group A and 84.4% on group B. Additionally, they noted

that CNNs encoded different regions of interest depending on the demographic used to train. Activation

maps from group A exhibited greater activation values around the eyes, while those from group B ex-

hibited higher activation values around the tip of the nose and the top of the mouth.

Networks pre-trained on large datasets with varying demographic distribution had high generalization abilities.

In particular, a pre-trained ResNet50 model obtained an accuracy of 98.7% on group A and 96.3% on group B.

Additionally, they showed that such networks had featuremapswith equalized activation over the entire face, as

opposed tospecific regions,whichmay leadtohighergeneralization.However, fine-tuningsuchnetworkshadan

interesting sideeffect.Doing sousinga limiteddemographic dataset resulted in the reversionof the featuremap

to focus on only specific regions of the face depending on the demographic used.

Impact of light: Dynamic range

The bias in training datasets alone does not explain the poor performance of existing methods when de-

tecting faces of HPS individuals. Physics is also at play: darker surfaces reflect less light than lighter surfaces.

The amount of light from the full spectrum of a light source, typically the sun or artificial light, is therefore

reflected differently according to the level of skin pigmentation. Specifically, less light energy is reflected,

and thus captured by sensors, from faces of HPS individuals than from those of LPS individuals under the

same conditions.

One consequence is that the dynamic range (a measure of the difference between the lightest pixel and the

darkest pixel in an image) of an HPS individual’s face is smaller than that of an LPS individual’s face under

similar lighting conditions. This in turn limits the ability of algorithms to discern the edges of HPS individ-

uals’ facial features while also reducing the amount of information conveyed by the natural shadows on the

face. In addition, only part of the reflected light spectrum, the part in the visible spectrum (450–700nm), is

perceived by the human eye and by cameras that capture the visible spectrum. Outside this band, though,

exists a wider electromagnetic spectrum that can be captured by various sensors. Figure 1 shows that a

typical complementary metal oxide semiconductor (CMOS) sensor found in a digital camera has significant

sensitivity beyond the 750nm cutoff placed by infrared (IR) cutoff filters.

The IR spectrum, lying just outside the visible light band at 700nm–2000nm, has been of particular interest

in the face recognition field. Li et al.19 showed that effects of lighting such as direction, intensity, and

shadows can change the appearance of a face. Unlike traditional visible-light images, IR images exhibit

improved illumination invariance, reducing such effects. Zhang et al.20 also noted that IR images provide

better contrast and may contain rich texture details that are absent from visible-light images. Fortunately,

some cameras can sense beyond the visible spectrum into the IR, thermal, and ultraviolet ranges. In fact,

most CCD (charge-coupled device) and CMOS sensors found in digital cameras can detect rays at the

NIR (near-IR) spectrum range (700nm–1000nm).19 Typically, an IR cutoff filter is used to block these compo-

nents in standard cameras.
iScience 26, 107039, July 21, 2023 3
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Researchers have posited that exploiting this extended spectrum could improve face recognition of HPS

individuals. One such approach was presented by Boutarfass and Besserer.21 By removing the IR cutoff fil-

ter from a digital camera, they obtained a ‘‘full spectrum’’ image, containing both visible and NIR light, and

found that this improved face recognition, achieving 78% accuracy compared to 56% for visible light alone.

They also found that the blue channel visualization of the visible-light image was less clear than that of the

full-spectrum image. From the figure shown before, we can infer that this is due to the increased spectral

response in the blue channel. This hints at the conveyance of less information in visible-light images.

Recognition of highly pigmented faces

Four recent papers have considered the problem of how to improve face recognition of HPS individ-

uals.2,16,22,23 Their novel methods have had varying degrees of success.

Wang et al.2 took a two-pronged approach. They created a balanced testing dataset, called RFW (Racial

Faces in the Wild), based on the pre-existing LFW dataset. With equal proportions of African, Asian,

Indian, and European individuals, RFW provides a benchmark to test for variations in performance based

on skin pigmentation. A second contribution is the use of a deep information maximization adaptation

network (IMAN) in their face recognition algorithm. This aims to alleviate the poor performance of HPS

recognition by learning facial features that are invariant between HPS and LPS individuals. In this way,

representations at group level can be more similarly matched to the global or source distribution.

Wang et al.2 found an improvement in the difference between accuracy of recognition of LPS and

HPS individuals from 8% to 3%.

Terhörst et al.16 introduced a penalization term in their classifier’s loss function. This forces the perfor-

mance distributions of different ethnicities (and to some extent, the distributions of skin pigmentation)

to be similar and thus ensures equivalent performance for individuals from different groups. They

measured the mean absolute deviation (MAD) between the true positive rate for each subgroup and the

mean true positive rate for all subgroups. They reduced this MAD value by up to 52.7% on the LFW dataset.

Yang et al.23 proposed a racial bias loss function that derives different optimal margins for different races

during training. They found a drop in the standard deviation between face recognition performance for

different races, as well as an overall improvement in performance. State-of-the-art models (ArcFace in

this case) achieved a performance of 96.36% G 0.78% on the RFW dataset, while their RamFace model

achieved 96.43% G 0.68%.

A dataset consisting entirely of images of HPS individuals, called CASIA-Face-Africa, was created by

Muhammad et al.22 This was done with the aim of providing a benchmark dataset for the performance of

face recognition systems on HPS individuals. It could also act as an augmentative dataset, to increase the num-

ber of images of HPS individuals available to researchers and developers of face recognition systems. The

dataset also includes IR images which makes it possible to analyze the effect of different light spectra on

face recognition of HPS individuals. However, the paper does not include the effect of training models on their

dataset; rather, it is used solely for testing based on the pre-defined weights on existing models. Further, the

dataset does not include the full-spectrum images considered here, and the paper does not mention the effect

of the light spectrum used to capture the images.

Contribution

The above review shows that two problems remain to be solved in the field of face recognition of HPS in-

dividuals: the data bias in many of the training sets and the resulting algorithms trained with them and the

reduced dynamic range in images of HPS individuals due to light absorption. In this paper we use our own

database of 542 HPS individuals, comprising more than 3,000 images, taken in the Cape Town region of

South Africa. We note that this is in a similar range as some previous studies as shown in Table 1. These

images were captured in three different light spectra (visible, IR, and a combination of the two) and contain

a variety of poses or orientations (front-facing, looking right, looking left, looking up, and looking down).

We use an existing face recognition algorithm (VGGFace) to evaluate the effect of including IR, either on its

own or in combination with the visible spectrum.

Using pre-trained networks and our own dataset, we investigated the effect of including IR. We further as-

sessed the effect of narrow cropping, various face orientations, and full sun and shaded lighting conditions.
4 iScience 26, 107039, July 21, 2023



Table 2. Accuracy for a model with non-tuned weights

Optimizer

Visible IR Full Spectrum

Accuracy AUC Accuracy AUC Accuracy AUC

VGG16

Adam 99.4 1.000 100.0 1.000 99.7 1.000

SGD 98.5 0.992 99.3 0.993 99.7 1.000

AdaGrad 96.0 0.938 98.7 0.976 99.4 0.993

ResNet50

Adam 98.8 1.000 100.0 1.000 99.4 1.000

SGD 98.2 0.990 99.7 0.983 99.4 1.000

AdaGrad 95.1 0.944 97.7 0.989 99.1 0.987
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We recommend best practices to follow to help improve the performance and robustness of face recog-

nition systems. Additionally, we evaluate the activation maps produced from our CNNs to determine

the facial regions of interest as well as the effects of fine-tuning our models.

RESULTS

Spectral comparison

The first comparison considered, is across the three spectra. Tables 2 and 3 and Figure 2 compare the

face recognition performance of the three light spectra under consideration. The tables show the posi-

tive match accuracy, which is the percentage of test photos that were correctly classified. The figure

shows the ROC curves for each spectrum. The test set used in this section contains 289 images. It is clear

that the visible-spectrum images produce the poorest performance. As an example, the VGG16 SGD ac-

curacy for the non-tuned case is 98.5% for the visible-spectrum images, compared to 99.3% and 99.7%

for the IR and full-spectrum images. Similarly in the fine-tuned case there is an increase in accuracy from

97.6% for visible-spectrum images to 99.7% and 99.1% for IR and full-spectrum images.

This trend of slightly lower accuracies and smaller area under the curve (AUC) values for the visible spec-

trum images is consistent across all optimizers and tunable modes. The receiver operating characteristic

(ROC) curves for these images are also less sharp, corresponding with the smaller AUC values, and thus

poorer classification accuracy when we minimize the number of incorrect matches. The difference in the

performance of the IR and full-spectrum images is much harder to discern. Their accuracies are quite

similar, though a comparison of the ROC curves in Figures 2C and 2B shows slightly larger AUC values

for the full-spectrum images. These results strongly suggest that IR and full-spectrum images perform bet-

ter for HPS individuals than visible-spectrum images.

However, one issue that is noted is that the fine-tuned models do not necessarily perform better than the

non-tunedmodels. This is most apparent in the visible-spectrum case with accuracy decreasing from 98.5%
Table 3. Accuracy for a model with fine-tuned weights

Optimizer

Visible IR Full Spectrum

Accuracy AUC Accuracy AUC Accuracy AUC

VGG16

Adam 97.3 0.986 99.7 0.993 99.1 1.000

SGD 97.6 0.985 99.7 0.986 99.4 1.000

AdaGrad 97.3 0.986 99.7 1.000 99.1 1.000

ResNet50

Adam 0.0 – 0.3 – 0.0 –

SGD 97.9 0.991 99.7 0.998 99.1 1.000

AdaGrad 97.9 0.994 98.4 0.988 99.1 0.990

iScience 26, 107039, July 21, 2023 5



Figure 2. Comparison of model ROC curves for different light spectra
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to 97.6%. The IR and full-spectra case show less variation, with accuracy increasing from 99.3% to 99.7% for

the IR case and decreasing from 99.7% to 99.4% for the full-spectrum case. Thus, it appears that the fine-

tuned models benefit most when the input images are from different spectra. This is in line with our

reasoning for fine-tuning as the model needs to adjust its weights a lot more to properly work with the

different images. However, the poor performance in the visible-spectrum case hints at our training scheme

not being as robust as that of Cao et al.24

Additionally, Figure 3 illustrates the genuine distribution curves for models trained using images from

each spectrum. It is noted that the fully trainable models exhibit higher prediction scores which may

allow higher threshold values to be used. In the case of the non-trainable models, the choice of optimizer

was more key with prediction scores and potential thresholds varying greatly. Note that due to the high

degree of accuracy, there were very few impostors, and as a result the impostor distributions are not

shown.

Other parameters that can lead to better performance of face recognition models are now considered.

These parameters are the orientation of faces in the training database, the extent of cropping in training

images, and the presence of shaded and unshaded lighting conditions in captured images.
6 iScience 26, 107039, July 21, 2023



Figure 3. Comparison of genuine density distribution curves for different light spectra
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Face orientation

Figures 4A and 4B compare the performance of models trained with various poses and those trained with

only the front-facing pose. These figures display the top 10 optimal models for each case. From visual in-

spection, we find that training using images with all five orientations seems to perform marginally better

than training using only front-facing images. Models trained with the five orientations maintain AUC values

approximately equal to 1.000 (with only two models missing this mark), while those trained with only the

front-facing orientation have AUC values varying from 1.000 down to 0.992. This is despite only testing

on front-facing images in both cases. Since all images for a single individual were taken at the same

time (a period of 5 min at most), the images are likely to be very similar if only a single pose is used. We

suspect that this led to a less robust model during training, which would explain the performance drop.

Using several orientations enables the face recognition models to gain more generalized interpretations

of faces and thus provides greater robustness. This can be seen further in the performance of the sub-

optimal models (outside the top 10 ranked list) shown in face orientation comparison. The ROC curves

for these models show much better performance when trained with several orientations. The genuine den-

sity distribution curves for all orientations and only front-facing orientation are shown in Figure 5.

Wide vs. narrow cropping

Figure 6 shows the performance obtained using the wide, tight narrow, and square narrow cropping pictured in

Figure 7. Narrow cropping, both tight and square, produces the best results. Illustrations of the genuine
iScience 26, 107039, July 21, 2023 7



Figure 4. Comparison of model ROC curves when training using with different orientations

(A) ROC curve when training for all face orientations.

(B) ROC curve when training for only front-facing images.
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distribution in Figure 8 exhibit the same behavior. Models trained with narrow-cropped images have higher

probability densities and tighter bandwidths at high prediction scores. This implies that the neural network ar-

chitectures are able to draw enough information from the facial features in the narrow-cropped faces. The exclu-

sion or inclusion of the ears has no discernible detrimental effect on the overall performance.

The wide cropping includes the missing facial features but also the background elements. Again, since

most images were captured at the same location and over a short period of time, most of the background

elements (trees, vehicles, benches, etc.) are the same, which may have increased the similarity between im-

ages of different individuals, to the point of possibly misclassifying them. The narrow square cropping in an

attempt to include the ears also includes some background elements, though to a lesser extent. However,

this type of cropping seems not to introduce enough elements to distract from the face, as in the wide crop-

ping case, which explains the lack of a performance drop.
Figure 5. Comparison of genuine density distribution curves when training using all face orientations vs. only

front-facing images

8 iScience 26, 107039, July 21, 2023



Figure 6. Comparison of model ROC curves when using wide cropping or narrow cropping during training
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Shaded vs. unshaded

In outdoor conditions the sun provides most of the illumination in the image. Images taken in the shade mostly

use indirect sunlight and thus tend tobe less saturated or darker, especially in the IR and full-spectrumcases.We

therefore split the test set according to the presence or absence of shade. This gave 70 images of each kind,

because of the 3:1 disparity in the original test set (220 images were unshaded and 70 shaded). Testing on

each of the two sets, having trained on all possible images, produced indistinguishable results between the

two cases. This shows that even indirect sunlight is still strong enough to provide enough illumination, and spe-

cifically IR light intensity, in the captured images, and thatdirect sunlightdoesnot saturate the sensor to thepoint

of distorting the image, even in the absenceof an IR cutoff filter.However, furtherwork needs tobedone inmore

controlled lighting situations to give conclusive results.

Best-performing models

Taking into account both the accuracy and the AUC values of the ROC curves that were obtained, we were

able to identify a set of the best-performing models, given all possible combinations of the hyperpara-

meters that were considered. These models were trained using narrow-cropped images and using all

five orientations of the face. We did not take shading into account as the performance difference was indis-

tinguishable. Each of these models exhibited both an accuracy and an AUC value greater than 99.3%.
iScience 26, 107039, July 21, 2023 9
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Figure 7. Different ways of cropping face images in our dataset
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� Model 1 (FS_resnet50_NT_adam): Full spectrum, ResNet50 architecture, non-tuned weights, Adam

optimizer.

� Model 2 (FS_vgg16_FT_sgd): Full spectrum, VGG16 architecture, fine-tuned weights, SGD opti-

mizer.
ure 8. Comparison of genuine density distribution curves when using wide or narrow cropping during training

iScience 26, 107039, July 21, 2023



Table 4. Prediction scores for most accurate models

Metric Model 1 Model 2 Model 3 Model 4 Model 5

Accuracy 99.7 99.7 99.7 99.3 99.4

AUC Value 1.000 1.000 0.997 1.000 0.998

Average prediction score 98.3 99.5 98.7 98.3 98.8

True prediction score 98.5 99.6 98.8 98.8 99.2

False prediction score 21.2 51.6 37.6 24.4 43.7

2nd highest prediction score 0.52 0.16 0.37 0.43 0.61

Accuracy (0–100%): Positive match accuracy obtained by selecting class with the highest prediction score

AUC Value (0–1): Area under the model’s ROC curve. Has a maximum value of 1, and gives an indication of the true

positive rate at low false positive rates

Average prediction score (0–100%): The average prediction score produced by the model when classifying test images

(includes both true and false matches

True prediction score (0–100%): Average prediction score produced when the model correctly classifies a test image

False prediction score (0–100%): Average prediction score produced when the model incorrectly classifies a test image

2nd highest prediction score (0–100%):Average prediction score of the second highest class when themodel classifies a

test image (includes both true and false matches)
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� Model 3 (FS_vgg16_NT_adam): Full spectrum, VGG16 architecture, non-tuned weights, Adam opti-

mizer.

� Model 4 (IR_resnet50_NT_adam): IR spectrum, ResNet50 architecture, non-tuned weights, Adam

optimizer.

� Model 5 (FS_resnet50_FT_sgd): Full spectrum, ResNet50 architecture, fine-tuned weights, SGD opti-

mizer.

On top of the accuracy and the AUC values of the ROC curves, the actual prediction scores obtained are an

even better measure of the network’s ability to differentiate between individuals. Table 4 shows the predic-

tion scores produced by the five top-performing models listed above.

The true prediction score is the average prediction score produced when the model correctly classifies a

test image, while the false prediction score is the average prediction score produced when the model

incorrectly classifies a test image. In an ideal case, a model would produce 100% true prediction scores

and 0% false prediction scores. However, as this is not the case, we aim for models that come as close

to this as possible. In practice, this can lead to improved performance as any faces that produce low pre-

diction scores can be re-evaluated or considered to be outside the database which is key in open-set iden-

tification (which is not evaluated in this paper).

A mapping of the prediction scores for the best-performing models is provided in Figure 9. The closer a

model is to the bottom right of the plot, the more ideal it is. It is interesting to note that there is a clear

trade-off between high true prediction scores and low false prediction scores, with false prediction scores

rising as true prediction scores rise as well. More interesting, however, is that the models with the highest

true and false prediction scores (2 and 5) are fine-tunedmodels while those with the lower prediction scores

(1 and 4) are non-tuned models. A possible explanation for this is found when analyzing the models’ acti-

vation maps.

Activation map analysis results

Non-tuned models

For the sake of brevity, only models trained using the Adam optimizer are presented here as

the behavior was consistent with those trained with SGD and AdaGrad. Further, while only the author’s

image is used here, the trend was consistent across several other sampled individuals as will be

illustrated in the analysis. The viridis color scale is employed to represent the activation intensity

values, with blue indicating low activation intensity values and yellow indicating high activation intensity

values.
iScience 26, 107039, July 21, 2023 11



Figure 9. True vs. False prediction scores for top-performing models
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The activation maps produced from the non-tuned models are given in Figure 10. When considering the

patterns in these activation maps, there were no discernible differences in any of the models across

both spectrum and architecture. It is noted that the models strongly focus on the nose region and part

of the upper lip, with the rest of the face producing minimal activation.

Fine-tuned models

We then consider the activation maps produced from fine-tuned models, which are shown in Figure 11. It is

noted that the full-spectrum case is similar for both architectures. However, the visible and IR spectra cases

show some variation. This variation appears quite random, with different features being activated to vary-

ing degrees depending on the choice of optimizer.

As observed in the comparisons above, the fine-tuned models exhibit some differences from the non-

tuned models. This is to be expected as fine-tuning should adjust the activation maps to suit both the

collected database and the spectra of the images used during training.

Generally, non-tuned models restrict the majority of activations to the nose and to the upper lip/mouth

region. Fine-tuned models, on the other hand, focus on more regions of the face. This could be an advan-

tage as all features which should contribute some form of usefulness to the recognition task are considered.

But it could also be a disadvantage in that perhaps the CNN only requires a small set of activations, and

thus, activations over a more general region may hinder performance.
A B

Figure 10. VGG16 vs. ResNet50 feature map comparison for non-tuned models
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Figure 11. VGG16 vs. ResNet50 feature map comparison for fine-tuned models
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As was shown in Table 4, fine-tuned models seem to have higher true prediction scores but higher false

prediction scores as well. This more spread out activation map could be a possible cause as the fine-tuned

models activate over more features, but at a lower intensity, as will be shown in the next section.

Facial features analysis

From the previous section, the biggest variation occurred between the fine-tuned and non-tuned models.

Thus, we compare the activation intensities across the key regions for both these cases and plot the

average values across the test set in Figure 12.

In both cases, the nose region (both bridge and tip) exhibited the highest activation intensity across all the

spectra and architectures. The eyebrow and eye regions also produced significant activation intensities

while the rest of the regions exhibited minimal activation intensities.

The plots exhibit the same pattern noted in the activation map results. Non-tuned models exhibit much

higher activation intensities over the nose regions than the fine-tuned models. Similar to before as well,

fine-tuned models show higher activation intensities over the chin and cheek regions.

However, some differences are noted in the rest of the regions. The nose and eye regions have

higher activation intensity values in the non-tuned models than in the fine-tuned models. This

differs from what was visibly discernible in the activation map images. Second, the forehead and mouth

regions show no significant variation between the fine-tuned and non-tuned models. We show the

average activation intensity values over different face regions in Figure 13 to see the above result in

more detail.

Observations

The evaluation protocols and the list of top-performing models show that IR and full-spectrum images

perform best for HPS individuals, with the visible-spectrum images consistently performing the worst
iScience 26, 107039, July 21, 2023 13
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of the three. We hypothesized that IR and full-spectrum images could contain more information

and details than the visible-spectrum images. This result shows this to be true, and further, shows

that this provides a discernible improvement in the face recognition performance of models that incor-

porate it.

In addition, the Adam and SGD optimizers outperform AdaGrad. However, the architecture that is used

(i.e., ResNet50 or VGG16) seems to have no discernible effect on the performance. This is a somewhat

surprising result since ResNet50 has previously been shown to perform better than VGGG16 for classifi-

cation tasks by Mascarenhas and Agarwal.25 Our results may, therefore, suggest that even simpler

network architectures, such as VGG16, could be adequate for many face recognition tasks. An interesting

point to note is that all the models with non-tuned weights in this list used the Adam optimizer. Thus, it

was hypothesized that using fine-tuned weights could possibly outperform the top models shown here.

However, the initial pre-trained weights obtained by Cao et al.24 involved training using the SGD opti-

mizer. This seems to have influenced the performance for these cases where the feature-extracting

weights were fine-tuned.

A second point to note is that the models with fine-tuned weights produced higher prediction scores for

incorrectly classified images. From the activation map images and activation intensity values, this is found

to be a result of the fine-tuned models activating over more regions of the face as opposed to focusing

on a few distinct ones (specifically, the nose region). While this is an undesirable trait as it may suggest a

lower open-set identification accuracy, these models also exhibit slightly higher prediction scores for

correctly classified images which is desirable. Ultimately, the extent of fine-tuning to achieve a balance is

beyond the scope of this paper.

In terms of regions of importance, the nose bridge and tip regions exhibit the highest activation

intensities, regardless of parameters, and can thus be taken to be the most important. The general

eye region also carries some weight but has slightly less impact. This is in line with what was found by

Nagpal et al.9 when training with a database consisting of mostly HPS individuals. Additionally, it is in

line with findings that a narrow cropping of the face is recommended, as only the least useful face fea-

tures are discarded, while there is the huge benefit of removing the background. One aspect not inves-

tigated in this study is the effect of different image cropping resolutions on classification accuracy.
14 iScience 26, 107039, July 21, 2023



Figure 13. Comparison of average activation intensity values over facial regions
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Notably, more recent architectures such as ArcFace use 112 3 112 resolution images, while achieving

state-of-the-art performance. A future study can therefore specifically focus on how classification accu-

racy is affected by cropping resolution to determine the optimal compromise between the two for

different applications.

The difference between the effects of shaded and unshaded conditions could not be discerned in

our study. However, a previous study, Li et al.,19 showed that the type of illumination used could

affect the face recognition system’s performance. We found that in outdoor lighting even indirect

sunlight is too bright to make a significant difference. Future work should use different and more

controlled lighting conditions, specifically indoor settings, to evaluate the effects thereof on the classi-

fication accuracy when using IR light. This will help to determine the need for additional IR illumination

sources.
DISCUSSION

This study evaluated the effect of using the IR spectrum, either on its own or in combination with the visible

spectrum (full spectrum), on the performance of face recognition for individuals with highly pigmented skin.

The study also evaluated the effects of face orientation, cropping the image, and lighting conditions. We

used a fine-tuned state-of-the-art network, VGGFace, to perform face recognition. For our test set, we only

used front-facing images, not in our training set, of 289 individuals.

We found that using IR light improved performance, both in terms of identification accuracy and reduc-

tion of false positives, as exhibited in the ROC curves. Further, using a variety of face orientations pro-

duced marginally better performance than using only a single orientation (front-facing), even when the

test set contained only the front-facing orientation. Finally, a narrow cropping of the image during

face detection showed improved performance. The inclusion of the ears in a narrow square crop is

left as an option to researchers. This might reap benefits where similarities in the background are not

an issue.

By analyzing the activation maps of the CNNs, we show that the nose region is the most activated region

across all models. The eye region also showed significant activation especially in the fine-tuned models.

Hence, we can take these to be the most significant features for classification as confirmed by a tight crop-

ping performing best. We also find that fine-tuned models focus more generally over all regions of the face

while the non-tunedmodels, with the pre-trained weights, focus on fewer features but produce higher acti-

vation intensity values over those regions. This leads to higher prediction scores for both correctly and

incorrectly classified images.
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Based on our investigations, we recommend the use of IR and full-spectrum images for face recognition, as

these exhibited a marked improvement in performance.

In addition, as best practices, we recommend using several face orientations or poses as well as a narrow

cropping of the face, while still including the ears. Although those variations produced minimal differences

in the optimal cases, the performance we observed over all the parameters we considered suggests that

following this recommendation will provide more robustness.

The degraded performance of face recognition for certain skin tones has been a problem for as long

as the technology has existed. Reducing and eventually overcoming this defect will probably depend

on the various current and ongoing research efforts. Incremental gains such as that we found by using

IR light, and best practices such as those recommended here, are small steps toward making all more

visible.
Limitations of the study

The results clearly show that the performance of face recognition systems improve with the addition

of IR. However, since the dataset is relatively small, it is not possible to extrapolate from the

results what the performance improvement will be if a complete dataset was to be used that includes

IR images.
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sponding Author, Dr R.P. Theart (rptheart@sun.ac.za).

Materials availability

This study did not generate new materials. Due to ethical restrictions, the database collected and used in

this study cannot be made available for public use.

Data and code availability

d Data: This paper used our own database consisting of face images captured in the visible spectrum, IR

spectrum and full spectrum (which incorporates the visible and IR spectrum).

d Code: This paper mostly uses the VGGFace Parkhi et al.26 neural network models. Malli27 provides a

TensorFlow implementation, along with the pre-trained weights obtained.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study participants were drawn from the Cape Town region of South Africa. This provided a large proportion

of individuals with highly pigmented skin.

An application for ethical approval was made to the Stellenbosch University Research Ethics Committee:

Social, Behavioural and Educational Research (REC: SBER). Clearance was granted on 2nd June, 2021, al-

lowing for data to be captured over the following one year period. All participants were informed of the

nature and purpose of the study before consenting to their inclusion.

Method

Creation of database

All the images of highly pigmented faces captured in our dataset were taken in the Cape Town region of

South Africa. This provided a large proportion of HPS individuals. We captured three light spectrummodes

for each image: visible light, infrared and full spectrum. To capture all three spectra, we used a Raspberry Pi

NoIR camera module, containing a Sony IMX219 8-megapixel sensor, which does not have a built-in IR cut-

off filter. We captured visible light images and infrared images using optical filters that can block specific

wavelengths of light. We used a SCHOTT BOROFLOAT 33 with a cut-off wavelength of 710nm to

capture visible spectrum images and a SCHOTT RG715 filter with a cut-on wavelength of 715nm to capture

near-infrared images.

The full spectrum images captured in the database offer an alternative to the traditional image fusion tech-

niques used in other research.28,29 In the absence of an optical filter, the camera sensor can capture light

from both the visible and infrared spectra. Thus, no fusion techniques need to be applied to the visible and

infrared images.
iScience 26, 107039, July 21, 2023 19

mailto:rptheart@sun.ac.za
https://github.com/rcmalli/keras-vggface
https://github.com/rcmalli/keras-vggface


ll
OPEN ACCESS

iScience
Article
The images were captured outdoors during the day with the sun as the primary light source. Since sunlight

contains high intensities of light in the three spectra we needed, we did not need to use external illumina-

tion. For each individual in the database, we captured 5 to 7 images in each spectrum mode. We used five

different orientations: front-facing, looking left, looking right, looking up and looking down. Additional

front-facing images were captured for some individuals, to provide a test set and to evaluate the effect

of varying face orientation. An example of the images for a single individual is shown in figure below.
A

B

C

Sample database images in all three spectra
Face detection is an important preprocessing step for face recognition. CNNs by nature operate on every

pixel in an image. Therefore, it is usually ideal to limit the number of irrelevant pixels not containing part of

the face. For our dataset we used Amazon’s AWS Rekognition software to detect the bounding boxes of

faces in the captured images. The images were downscaled to a resolution of 224 x 224 pixels, to conform

to the structure of VGGFace, the basis of our trained models.

We noted that the default bounding box obtained tended to cut out some facial features, especially the top

of the head and the chin. We therefore created two duplicates of the original set of images. In the first

duplicate we increased the face bounding box by 15% so as to include these features. In the second, we

made the bounding box square so as to include the ears (since faces are longer than wide, this tends to

be the result). To ensure that the face size was the same in all the images we padded the narrow images

with zeros, rather than scaling them up, as is generally done. Figure 7 shows these sets of images.

Training, validation, test dataset split

As part of the above process, any images for which no face could be detected were discarded. A further

check was done using a Dlib shape predictor30 to find the landmarks on the face in an image. Again, any

images for which landmarks could not be detected were discarded.

Once all the images had been captured and compiled as detailed above, a test set was created. To avoid

overlap between the training and the test set, we considered only individuals with more than one front-fac-

ing image. For every individual in this group, we selected a single random front-facing image to include in

the test set. This produced 329, 305 and 336 test images in the visible, infrared and full spectrum images
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respectively. The common images (captured from the same individual) from these three sets were then

drawn out to ensure an even test set size for all scenarios, leaving with 289 images. The training set

comprised the remaining images not selected for the test set. The final database is shown in table below.
Database statistics

Visible Infrared Full Spectrum

Images 3,050 2,753 3,130

Individuals 546 542 548

Test images 289 289 289
The validation split used during training of the model is 15%. This is drawn from the training set at random,

and we made no special considerations. All three sets (training, validation and test) were shuffled before

each training run for each model.
CNN architecture and model

Parkhi et al. performed various face recognition analyses on both the VGGFace26 and VGGFace224 data-

sets. As part of this study, they developed a set of what they called ‘‘VGG Face Descriptors’’, which are

publicly available. The set consists of a set of CNN models that achieved over 97% accuracy on

the Labeled Faces in the Wild dataset. The models are publicly available and have the option of

loading a complete set of weights, obtained by Cao et al.24 when training on the VGGFace2 dataset.

This makes it possible to evaluate other datasets easily through transfer learning and fine-tuning –

described below.

A CNN model can be viewed as consisting of two parts: a feature extractor and a classifier. The first is an

initial series of convolutional layers that act as feature extractors, meaning their function is to produce a

multi-dimensional vector that uniquely represents the image that is provided as input. The second consists

of a few layers that convert themulti-dimensional vector into a single output corresponding to one of a pre-

specified number of classes that the overall model is set to recognise. Transfer learning is the process by

which a model is initialised with pre-trained weights and parameters, followed by freezing the feature-ex-

tracting layers such that their weights do not change during training. Thus, only the classification layers are

updated to convert these weights into varying sets of classes in different datasets. This makes it possible to

use facial feature extractors in their optimised state to identify images as the specified individuals in our

database. This can save time and computing power as we can skip the process of training the model to

extract features when sample weights are already available.

Fine-tuning follows the same process, but does not freeze the feature-extracting layers, which means all

the model weights can be updated. Since there are still initialised weights, the extent of the updating is

limited by the degree of difference between the recognition task and the database used to obtain the

initial weights. In the field of face recognition, this usually means there is little updating unless the new

dataset includes variations such as different poses or, in our study, images captured with different light

spectra.

By performing transfer learning and freezing the initial feature-extracting layers, we can evaluate the per-

formance of current state-of-the-art systems using different light spectra. Fine-tuning the model weights,

and thus retraining the feature-extracting layers, makes it possible to evaluate any improvement gained

by tuning the model for different light spectra. Since the different light spectra carry different amounts

of information, we hypothesised that retraining the feature-extracting layers could further improve

performance.

Malli27 provides a TensorFlow implementation of the descriptors from Parkhi et al.,26 along with the pre-

trained weights obtained. This provided the basis for our implementation, which we describe below.

The current state-of-the-art face recognition involves ArcFace,31 CosFace,32 SphereFace33 among others

which introduce angular margins to the traditional softmax loss to enable models extract more discrimina-

tive features. MagFace34 is a more recent model that introduces losses that pull good samples toward class
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centres and push noisy and ambiguous samples away so as to improve real-world face recognition perfor-

mance. Such efforts have provided improved performance over the VGGFace models described above.

The focus of this paper, though, is the effect of the infrared spectrum and not necessarily state-of-the-

art performance.
Protocol evaluation

We considered various evaluation protocols to investigate the effect of not only infrared light but also other

factors important for the general face recognition field. We first considered a spectral comparison. We

trained and tested models using our three light spectra, visible, infrared and full spectrum, and recorded

their performance. We also evaluated the effects of wide and narrow cropping.

The orientation of the face is important for the extraction of features as it alters the appearance of the fea-

tures. Ideally we would capture all the possible poses that could be expected during real world evaluation

or testing. However, the front-facing pose tends to provide the most useful and identifiable features.

Although our dataset contained five orientations, during training we evaluated the effect of using only

front-facing images. Further, although the training set contains multiple orientations, the test set in this

database contains only front-facing images. Therefore, we evaluate the effect on performance both

when limiting the training set to only front-facing images, as well as when training on all available

orientations.

The illumination of the faces is important for the recognition performance. The lack of an IR cut-off filter can

saturate the camera sensor when capturing full spectrum images under direct sunlight. Similarly, indirect

sunlight can make the infrared and visible light images darker and they will therefore have a smaller dy-

namic range. To take these differences into account we evaluated images taken in the shade under indirect

lighting and in unshaded, directly sunlit conditions.

For each evaluation protocol we obtained several models. This was as a result of iterating the following

parameters:

� Light spectra: Three light spectrum images are considered - visible (VIS), infrared (IR) and full spec-

trum (FS).

� Architectures: The VGG Face descriptors provide two architectures for face feature extraction -

VGG16 and ResNet50.

� Tunable modes: The pre-defined weights from VGGFace are either non-tunable (NT) or fine-tunable

(FT) during training.

� Optimisers: Three optimisers are used - Adam, SGD and AdaGrad.
Training

The four hyperparameters we considered when training the models in this study were the optimiser, batch

size, learning rate and number of epochs. After performing initial tests on all available optimisers in the

TensorFlow framework, we selected the Adam, SGD and AdaGrad optimisers to train the neural networks.

These three were the only options to produce reasonably high accuracy in an initial sample dataset of

approximately 400 images.

We chose a batch size of 16. Again, during initial tests this produced the best performance when scaling by

powers of 2. An exception was the face orientation evaluation. Because limiting the dataset to front-facing

images reduces the number of images per class, we further reduced the batch size to 8 to avoid overgen-

eralisation (there are one to three front-facing images per individual). When we used the Adam optimiser

with fine-tunable weights, we encountered a saddle point that prevented the neural network from being

trained effectively. Increasing the batch size to 128 overcame this problem, but there was a resulting

drop in performance.

We used a learning rate of 1e-5. Since the weights were initialised with the pre-trained weights and only

slight tuning was required, there was no need to alter the learning rate or use a decaying function for it.
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Lastly, to determine the number of epochs, we trained each model up to the point at which the validation

loss began to increase while training accuracy stagnated to estimate the average number of epochs. In the

fine-tuning case, where weights and parameters are fully tunable, we chose 10 epochs. In the non-tunable

case, the Adam optimiser required 10 epochs while the SGD and AdaGrad optimisers required 100.
Performance metrics

We use two metrics to report the face recognition performance. The first is the positive identification ac-

curacy, i.e. the percentage of correctly identified test faces. The nature of the training and test datasets

means this result is a closed-set identification since all the faces in the test set are contained in the training

set as well.

The second metric is the receiver operating characteristic curves (ROC curves), which show the predictive

ability of each model at various prediction or classification thresholds. Specifically, it maps the true positive

rate and the false positive rate at certain distinct thresholds. This can be used to set a minimum cut-off on

the prediction threshold to avoid models producing false matches in cases where the test image produces

a low prediction score. An important metric that can be obtained from these ROC curves is the area-under-

curve (AUC) value. A larger AUC value tends to indicate higher true positive rates at low false positive rates,

which is ideal for face recognition systems.
Activation map analysis

Visualising the activation maps of the last CNN layers of the neural network can be a useful tool in under-

standing its behaviour. This gives an activation map, which allows us to assess the operation of the CNN

models by visualising the facial features that the model depends on most for classification of an input

face image. The activation maps we obtain are a weighted sum of the layers in the last convolutional block

in the VGGFace architecture for a sample input image Zhou et al.35

The resultant 2Dmap is up-scaled to a resolution of 224x224 and overlaid onto the original image as shown

in figure below. By inspecting and analysing these activationmaps, we expect to gain a deeper understand-

ing of the performance noted by the accuracy and AUC value metrics.
A B C

Example of activation map produced from a CNN model and how it can be overlaid on the original image
Face regions

The activation maps on their own can only provide a qualitative analysis based on visible differences

discernible by the naked eye. To produce a quantitative analysis, we can compare the average activation

intensity values that were mapped from the CNNs for all the test images in our database. Specifically, we

aim to focus on a few regions containing facial features.

To obtain these regions, we first need to determine the position of these features. This is done by using a

Dlib shape predictor King30 trained on the iBUG 300-W face landmark dataset Intelligent Behaviour Under-

standing Group (iBUG), Department of Computing, Imperial College London.36 This enables the positions

of 68 distinct landmarks on the face to be accurately determined as illustrated in figure below.
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We can then construct 11 key facial regions from these landmarks. A small note here is that ‘left’ and ‘right’

are taken from the perspective of the individual in the image.These are shown in figure above and

comprise: forehead, left and right eyebrow, left and right eye, nose bridge, nose tip, mouth, chin, left

and right cheek.

The use of face landmarks helps to obtain consistent facial regions fromwhich we can calculate and plot the

average activation intensity values represented in the activation maps. These values are normalised by the

area in pixels of the region in each photo to ensure a fair comparison. Unlike the previous analysis, looking

at the actual activation intensity values allows for all 289 individuals in the test set to be considered.
METHOD DETAILS

The method consisted of four steps. Firstly, we captured face images from individuals in the desired

spectra. Secondly, we fine-tuned VGGFace models obtained from Malli27 with several models being ob-

tained by taking into consideration different cropping styles, face orientations and light spectra. Finally,

we analysed the performance by considering the accuracy and ROC curve characteristics. Additionally,

analysis of the activation maps in the models was used to gain insight into the most key face regions.
Data capture

Images were captured in three light spectrum modes for each image: visible light, infrared and full spec-

trum (also referred to as VNIR). To capture all three spectra, we used a Raspberry Pi NoIR camera module,

containing a Sony IMX219 8-megapixel sensor, which does not have a built-in IR cut-off filter. In the absence

of an optical filter, the camera sensor can capture full spectrum images. Placing optical filters in front of the

camera lens allowed for capturing of visible spectrum images, when using a SCHOTT BOROFLOAT 33 with

a cut-off wavelength of 710nm, and capturing of infrared spectrum images, when using a SCHOTT RG715

filter with a cut-on wavelength of 715nm.

The images were captured outdoors during the day with the sun as the primary light source. Since sunlight

contains high intensities of light in the three spectra we needed, we did not need to use external illumina-

tion. For each individual in the database, we captured 5 to 7 images in each spectrum mode. We used five

different orientations: front-facing, looking left, looking right, looking up and looking down. Additional

front-facing images were captured for some individuals, to provide a test set and to evaluate the effect

of varying face orientations.

Face detection is an important preprocessing step for face recognition. For our dataset we used Amazon’s

AWS Rekognition software to detect the bounding boxes of faces in the captured images. The images were

downscaled to a resolution of 224 x 224 pixels, to conform to the structure of VGGFace, the basis of our

trained models. We noted that the default bounding box obtained tended to cut out some facial features,

especially the top of the head and the chin. We therefore created two duplicates of the original set of im-

ages. In the first duplicate we increased the face bounding box by 15% so as to include these features. In the

second, we made the bounding box square so as to include the ears (since faces are longer than wide, this
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tends to be the result). To ensure that the face size was the same in all the images we padded the narrow

images with zeros, rather than scaling them up, as is generally done.

As part of the above process, any images for which no face could be detected were discarded. A further

check was done using a Dlib shape predictor30 to find the landmarks on the face in an image. Again, any

images for which landmarks could not be detected were discarded.

Once all the images had been captured and compiled as detailed above, a test set was created. To avoid

overlap between the training and the test set, we considered only individuals with more than one front-fac-

ing image. For every individual in this group, we selected a single random front-facing image to include in

the test set. This produced 329, 305 and 336 test images in the visible, infrared and full spectrum images

respectively. The common images (captured from the same individual) from these three sets were then

drawn out to ensure an even test set size for all scenarios, leaving with 289 images. The training set

comprised the remaining images not selected for the test set.
CNN model training

VGGFace is a dataset of 2.6 million face images of 2,622 people. VGGFace2 is an expansion of this dataset

and contains 3.31 million images of 9131 subjects. The key aspect of VGGFace and VGGFace2, for the pur-

poses of this project, is not the dataset itself, but the pre-trained CNNmodels based on the ResNet-50 and

VGG-16 network architectures developed after the collection of the images. All these models are publicly

available and have the option of loading the complete set of weights obtained after training by the re-

searchers.Malli27 provides a Tensorflow implementation of the descriptors from Cao et al.24, along with

the pre-trained weights obtained. This provided the basis for the implementation in this project. Via trans-

fer learning and fine-tuning – described below, a robust model such as this can be used to evaluate

different datasets, such as that which we have collected here.

Transfer learning is the process by which a model is initialised with pre-trained weights and parameters,

followed by freezing the feature-extracting layers such that their weights do not change during training.

Thus, only the classification layers are updated to convert these weights into varying sets of classes

in different datasets. Fine-tuning follows the same process, but does not freeze the feature-extracting

layers, which means all the model weights can be updated. Since there are still initialised weights,

the extent of the updating is limited by the degree of difference between the recognition task and

the database used to obtain the initial weights. Since the different light spectra carry different amounts

of information, we hypothesised that retraining the feature-extracting layers could further improve

performance.

The four hyperparameters we considered when training the models in this study were the optimiser, batch

size and number of epochs. After performing initial tests on all available optimisers in the TensorFlow

framework, we selected the Adam, SGD and AdaGrad optimisers to train the neural networks. These three

were the only options to produce reasonably high accuracy in an initial sample dataset of approximately

400 images. Based off this same initial tests, a batch size of 16 was chosen. An exception was the face orien-

tation evaluation in which the batch size was reduced to 8 due to the fewer number of images per individual.

Lastly, to determine the number of epochs, we trained each model up to the point at which the validation

loss began to increase while training accuracy stagnated to estimate the average number of epochs. In the

fine-tuning case, we chose 10 epochs. In the non-tunable case, the Adam optimiser required 10 epochs

while the SGD and AdaGrad optimisers required 100.
Protocol evaluation

We considered various evaluation protocols to investigate the effect of not only infrared light but also other

factors important for the general face recognition field.

Spectral comparison is the key feature of this paper. Models were trained with images from our three light

spectra, visible, infrared and full spectrum to determine whether any improvements in performance could

be noted.
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Different scales of cropping were investigated. Three cropping types: tight narrow, square narrow and wide

were used to determine the benefits and drawbacks of including more face features.

Face orientation was also considered. Models were trained with images from all orientations as standard,

but a scenario in which only frant facing images were used in training and testing was evaluated to deter-

mine the impact caused.

For each evaluation protocol we obtained several models. This was as a result of iterating the following

parameters:

� Light spectra: Three light spectrum images are considered - visible (VIS), infrared (IR) and full spec-

trum (FS).

� Architectures: The VGG Face descriptors provide two architectures for face feature extraction -

VGG16 and ResNet50.

� Tunable modes: The pre-defined weights from VGGFace are either non-tunable (NT) or fine-tunable

(FT) during training.

� Optimisers: Three optimisers are used - Adam, SGD and AdaGrad.
QUANTIFICATION AND STATISTICAL ANALYSIS

Performance metrics

We use two metrics to report the face recognition performance. The first is the positive identification ac-

curacy, i.e. the percentage of correctly identified test faces. The nature of the training and test datasets

means this result is a closed-set identification since all the faces in the test set are contained in the training

set as well.

The secondmetric is the receiver operating characteristic curves (ROC curves), whichmaps the true positive

rate and the false positive rate at certain distinct thresholds. An important metric that can be obtained from

these ROC curves is the area-under-curve (AUC) value. A larger AUC value tends to indicate higher true

positive rates at low false positive rates, which is ideal for face recognition systems.
Activation map analysis

Visualising the activation maps of the last CNN layers of the neural network can be a useful tool in under-

standing its behaviour. This gives an activation map, which allows us to assess the operation of the CNN

models by visualising the facial features that the model depends on most for classification of an input

face image. The activation maps we obtain are a weighted sum of the layers in the last convolutional block

in the VGGFace architecture for a sample input image Zhou et al.35

The resultant 2D map is up-scaled to a resolution of 224x224 and overlaid onto the original image. By in-

specting and analysing these activation maps, we expect to gain a deeper understanding of the perfor-

mance noted by the accuracy and AUC value metrics.

The activation maps on their own can only provide a qualitative analysis based on visible differences

discernible by the naked eye. To produce a quantitative analysis, we can compare the average activation

intensity values that were mapped from the CNNs for all the test images in our database. Specifically, we

aim to focus on a few regions containing facial features. 11 key face regions were constructed from land-

mark features obtained using a Dlib shape predictor King30 trained on the iBUG 300-W face landmark data-

set Intelligent Behaviour Understanding Group (iBUG), Department of Computing, Imperial College Lon-

don.36 This enables the positions of 68 distinct landmarks on the face to be accurately determined as

illustrated in figure in face regions. These are shown in figure in face regions and comprise: forehead,

left and right eyebrow, left and right eye, nose bridge, nose tip, mouth, chin, left and right cheek.
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