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Based on the recent mathematical findings on solving the linear inverse problems with sparsity constraints by Daubechiesx et
al., here we adapt a simultaneous algebraic reconstruction technique (SART) for image reconstruction from a limited number of
projections subject to a sparsity constraint in terms of an invertible compression transform. The algorithm is implemented with
an exemplary Haar wavelet transform and tested with a modified Shepp-Logan phantom. Our preliminary results demonstrate
that the sparsity constraint helps effectively improve the quality of reconstructed images and reduce the number of necessary
projections.

1. Introduction

Worldwide there are growing concerns on radiation induced
genetic, cancerous, and other diseases [1–3]. Computed
tomography (CT) is considered as a radiation-intensive
procedure, yet it becomes more and more common. In
the mid-1990s, CT scans only accounted for 4% of the
total X-ray procedures but they contributed 40% of the
collective dose [4]. The introduction of helical, multislice,
and cone-beam technologies has increased and continues the
increasing usage of CT [5, 6]. In US, the number of CT
examinations has been estimated as high as nearly 60 million
in 2002, which account for 15% of imaging procedures and
75% of the radiation exposure [4]. In June 2007, the New York
Times reported that “the per-capita dose of ionizing radiation
from clinical imaging exams in the U.S. increased almost 600%
from 1980 to 2006.” More recently, in a high-profile article
on the rapid growth in CT use and its associated radiation
risks [3], Brenner and Hall estimated that “on the basis of
such risk estimates and data on CT use from 1991 through
1996, it was estimated that about 0.4% of all cancers in the
United States may be attributable to the radiation from CT
studies. By adjusting this estimate for current CT use, this
estimate might now be in the range of 1.5 to 2.0%.” Facing

the increasing radiation risk, the well-known As Low As
Reasonably Achievable (ALARA) principle is widely accepted
in the medical community. One of the practical strategies is
to reduce the number of necessary projection.

Very interestingly, an elegant theory of compressive
sampling or compressive sensing (CS) has recently emerged
which shows that high-quality signals and images can
be reconstructed from far fewer measurements than what
is usually considered necessary according to the Nyquist
sampling theorem [7, 8]. The main idea of CS is that most
signals are sparse in an appropriate orthonormal system; that
is, a majority of their coefficients are close or equal to zero,
when represented in the proper domain. Typically, CS starts
with taking a limited amount of samples in a much less
correlated basis, and then the signal is exactly recovered with
an overwhelming probability from the limited amount of
data via the �1 norm minimization. For example, the discrete
gradient sparsifying transform has been widely utilized in
CS-inspired CT reconstruction [9, 10], which was also
referred to as the total variation minimization [11]. However,
because the discrete gradient transform does not satisfy
the restricted isometry property (RIP) required by the CS
theory and is not invertible in general, such a reconstruction
does not always convey the medically precise information.
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Figure 1: Projection model of a discrete image in fan-beam
geometry.

In particular, when a small number of projections are
collected by a CT scanner, data noise may hide tumor-
like structures in the TV-minimization-based reconstruction
[12].

The above problem can be overcome using an invertible
sparsifying transform such as a wavelet transform for image
compression. For an object of interest such as a medical
image, we can find an orthonormal basis (in a more general
setting, a frame) to make the object sparse in terms of sig-
nificant transform coefficients. Then, we can perform image
reconstruction from a limited number of projections by
minimizing the corresponding �1 norm. Based on the recent
mathematical findings made by Daubechies et al. [13, 14],
here we will adapt a simultaneous algebraic reconstruction
technique (SART) [15] for image reconstruction from a
limited number of projections subject to a sparsity constraint
in terms of an invertible sparsifying transform.

This paper is organized as follows. In the next section,
the mathematical principles will be summarized. In the
third section, a SART-type reconstruction algorithm will be
developed with a sparsity constraint. In the fourth section,
preliminary numerical simulation results will be presented.
In the last section, the related issues will be discussed.

2. Mathematical Principles

Daubechies and her collaborators proposed a general itera-
tive thresholding algorithm to solve linear inverse problems
regularized by a sparsity constraint and proved its conver-
gence [13, 14]. Their approach can be directly applied for
the CT reconstruction from a limited number of projections.
Their major results can be summarized as follows.

Let f = [ f1, f2, . . . , fN ]T ∈ RN be an object function and g
= [g1, g2, . . . , gM]T ∈ RM a set of measurements. Usually, they
are linked by

g = Af + e, (1)

where A = (amn) ∈ RM × RN is the linear measurement
matrix, and e ∈ RM the measurement noise. Let us define

the �p norm of the vector g as

∥
∥g
∥
∥
p =

⎛

⎝

M
∑

m=1

g
p
m

⎞

⎠

1/p

. (2)

In practical applications, we usually omit the subscript p
when p = 2. To estimate f from g, one can minimize the
discrepancy Δ(f)

Δ(f) = ∥∥g− Af
∥
∥2
. (3)

When system (1) is ill posed, the solution to (3) is
not satisfactory, and additional constraints are required to
regularize the solution. Particularly, given a complete basis
(ϕγ)γ∈Γ of the space RN satisfying f = ∑

γ∈Γ〈f ,ϕγ〉ϕγ, and a
sequence of strictly positive weights w = (wγ)γ∈Γ, we define
the functional Φw,p(f) by

Φw,p(f) = Δ(f) +
∑

γ∈Γ
2wγ

∣
∣
∣

〈

f ,ϕγ
〉∣
∣
∣

p
, (4)

where 〈·, ·〉 represents the inner product and 1 ≤ p ≤ 2.
Using the �p norm definition (2), let us define the �p norm of
a matrix operator A as

‖A‖p = max
f /= 0

(‖Af‖p
‖f‖p

)

. (5)

Let AT be the transpose matrix of A, the operator A in (1) is
bounded, and ‖ATA‖ < C. In the following, we will assume
C = 1 because A can always be renormalized. To find an
estimate of f from g under the �pnorm regularization term
∑

γ∈Γ 2wγ|〈f ,ϕγ〉|p, we can minimize Φw,p(f) defined in (4).
The minimizer of Φw,p(f) can be recursively determined by
the soft-thresholding algorithm:

fk = Sw,p

(

fk−1 + AT
(

g− Afk−1
))

, (6)

where k = 1, 2, . . . is the iteration number, f0 the initial value
in RN , and

Sw,p(f) =
∑

γ∈Γ
Swγ ,p

(〈

f ,ϕγ
〉)

ϕγ (7)

with Sw,p = (Fw,p)−1 being a one-to-one map from R to its
self for p > 1 with

Fw,p(x) = x +wp sgn(x)|x|p−1. (8)

Particularly,

Sw,3/2(x) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x −
3w
(√

9w2 + 16|x| − 3w
)

8
if x ≥ 0,

x +
3w
(√

9w2 + 16|x| − 3w
)

8
if x < 0.

(9)



International Journal of Biomedical Imaging 3

0

5

10

15

E
k

0 0.5 1 1.5 2

k ×104

(a) 55 views

0

5

10

15

E
k

0 0.5 1 1.5 2

k
×104

(b) 45 views

4

6

8

10

12

14

16

18

E
k

0 0.5 1 1.5 2

k

Scheme-A
Scheme-AD
Scheme-B

Scheme-BD
Scheme-C
Scheme-CD

×104

(c) 35 views

10

15

20

25

E
k

0 0.5 1 1.5 2

k

Scheme-A
Scheme-AD
Scheme-B

Scheme-BD
Scheme-C
Scheme-CD

×104

(d) 25 views

Figure 2: Relative error curves for various reconstructions from noise-free projections. The numbers of projections were set to (a) 55, (b)
45, (c) 35, and (d) 25, respectively, where the horizontal and vertical axes represent the iteration index k and the corresponding log error Ek ,
respectively.

When p = 1, we can set [13]

Sw,1(x) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x −w if x ≥ w,

0 if |x| < w,

x +w if x ≤ −w.
(10)

The main result of Daubechies et al. in [13] is that the
solution of (6) is convergent.

Unfortunately, the convergence speed of (6) is very slow.
To facilitate practical applications, an accelerated projected
gradient method was then developed [14]. When wγ = τ for
all γ ∈ Γ, Φw,p(f) can be rewritten as

Φw,p(f) = Φτ,p(f) = Δ(f) +
∑

γ∈Γ
2τ
∣
∣
∣

〈

f ,ϕγ
〉∣
∣
∣

p
. (11)

Denote the minimizer of (11) as f∗ and define

R
(

f∗, p
) =

⎛

⎝
∑

γ∈Γ

∣
∣
∣

〈

f∗,ϕγ
〉∣
∣
∣

p

⎞

⎠

1/p

, (12)

which is the �p norm radius of f∗ in the sparse space, we have
the accelerated projected gradient algorithm

fk = PR(f∗,p)

(

fk−1 + βkrk
)

, (13)

where

rk = AT
(

g− Afk−1
)

, βk =
∥
∥
∥rk

∥
∥
∥

2
/
∥
∥
∥Ark

∥
∥
∥

2
,

PR(f∗,p)(f) = Sμ,p(f) =
∑

γ∈Γ
Sμ,p

(〈

f ,ϕγ
〉)

ϕγ,
(14)
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Figure 3: Reconstructed 128× 128 images from noise-free projection datasets. The 1st, 2nd, and 3rd rows are reconstructed using Scheme-
A, Scheme-B, and Scheme-C, respectively, and the 1st, 2nd, 3rd, and 4th columns are from 55, 45, 35, and 25 views respectively (the display
window: [0 0.5]).

with an adapted soft-threshold μ = μ(R(f∗, p), f) depending
on R(f∗, p) and f . When R(f , p) ≤ R(f∗, p), μ(R(f∗, p), f) =
0 and PR(f∗ ,p)(f) = f . When R(f , p) > R(f∗, p), the adapted
threshold μ should be chosen to satisfy

R
(

PR(f∗,p)(f), p
)

= R
(

Sμ,p(f), p
)

= R
(

f∗, p
)

. (15)

Regarding algorithm (13), we have several comments in
order. First, although Daubechies et al. only proved the
convergence for the case p = 1 [14], we believe that it should
stand for 1 ≤ p ≤ 2. Second, while we have previously
assumed that ‖ATA‖ < C andC = 1, it can be proved that the
algorithm (13) holds for any positive C. Third, it is generally
impossible to know the exact value of R(f∗, p) but we can
have an approximate estimate.

3. Algorithm Development

In the context of image reconstruction, each component
of the function f in (1) is interpreted as an image pixel
with N being the total pixel number. Each component of
the function g is a measured datum with M being the
product of the number of projections and the number of
detector elements. In fan-beam geometry with a discrete
image grid, the nth pixel can be viewed as a rectangular

region with a constant value fn, the mth measured datum
gm as an integral of areas of pixels partially covered by a
narrow beam from an X-ray source to a detector element
and respectively weighted by the corresponding X-ray linear
attenuation coefficients. Thus, the component amn in (1)
can be understood as the interaction area between the nth
pixel and themth fan-beam path (Figure 1). While the whole
matrix A represents the forward projection, AT implements
the back projection. The SART-type solution to (1) can be
written as [15]

f kn = f k−1
n + λk

1
a+n

M
∑

m=1

amn
am+

(

gm − Amfk−1
)

, (16)

where a+n =
∑M

m=1 amn > 0, am+ = ∑N
n=1 amn > 0, Am is

the mth row of A, k the iteration index, and 0 < λk < 2 a
free relaxation parameter. Let Λ+N ∈ RN ×RN be a diagonal
matrix with Λ+N

nn = 1/a+n and let ΛM+ ∈ RM × RMbe
a diagonal matrix with ΛM+

mm = 1/am+, then (16) can be
rewritten as

fk = fk−1 + λk r̃k, (17)

with

r̃k = Λ+NATΛM+
(

g− Afk−1
)

. (18)
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Figure 4: Relative error curves for various reconstructions from noisy projection. The numbers of projections were set to (a) 55, (b) 45,
(c) 35, and (d) 25, respectively, where the horizontal and vertical axes represent the iteration index k and the corresponding log error Ek ,
respectively.

Due to the introduction of Λ+N and ΛM+, (18) cannot be
directly applied to solve (13). However, we can modify (18)
to obtain a new rk defined as

rk =
∥
∥AT

∥
∥

∥
∥
∥Λ+NATΛM+

∥
∥
∥

r̃k = αr̃k. (19)

Substituting (19) into (13), we have a SART-type algorithm

fk = PR(f∗ ,p)

(

fk−1 + αβk r̃k
)

, (20)

with βk = ‖r̃k‖2
/‖Ar̃k‖2

. The heuristic rationale for the above
modification is to incorporate the SART-type weighting

scheme for a more uniform convergence behavior. Now, our
task is to estimate α. Since ‖AT‖ = ‖A‖, we have

α2 =
∥
∥AT

∥
∥2

∥
∥
∥Λ+NATΛM+

∥
∥
∥

2 =
∥
∥AT

∥
∥ · ‖A‖

∥
∥
∥Λ+NATΛM+

∥
∥
∥ ·

∥
∥
∥ΛM+AΛ+N

∥
∥
∥

.

(21)

Let I ∈ RN be the vector with all whose components being
“1”. We have ‖ATA‖1 = ‖ATA‖∞ = max1≤n≤N (ATAI)
because ATA is a symmetric matrix. Hence, we have

∥
∥
∥ATA

∥
∥
∥ ≤

√

‖ATA‖1‖ATA‖∞ = max
1≤n≤N

(

ATAI
)

. (22)
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Figure 5: Counterpart of Figure 3 in the case of noisy projection datasets.

Similarly, we have
∥
∥
∥Λ+NATΛM+ΛM+AΛ+N

∥
∥
∥

≤
√
∥
∥
∥Λ+NATΛM+ΛM+AΛ+N

∥
∥
∥

1

∥
∥
∥Λ+NATΛM+ΛM+AΛ+N

∥
∥
∥∞

= max
1≤n≤N

(

Λ+NATΛM+ΛM+AΛ+N I
)

.

(23)

That is,

α2 = max1≤n≤N
(

ATAI
)

max
(∥
∥
∥Λ+NATΛM+ΛM+AΛ+N I

∥
∥
∥

)α2
0, (24)

with

α2
0=

max1≤n≤N
(

Λ+NATΛM+ΛM+AΛ+N I
)

∥
∥
∥Λ+NATΛM+

∥
∥
∥ ·

∥
∥
∥ΛM+AΛ+N

∥
∥
∥

∥
∥AT

∥
∥ · ‖A‖

max1≤n≤N (ATAI)
.

(25)

In practical applications, we can set α0 to a reasonably large
constant such as 2.0 in our simulation in the next section. If
the algorithm does not converge, we can reduce α0 until the
algorithm converges.

For a basis (ϕγ)γ∈Γ of the space RN , in which f has
a sparse representation. Our SART-type CT algorithm reg-
ularized by sparsity can be summarized in the following
pseudocode:

S1 Initialize α0, f(0) and k;

S2 Estimate R(f∗, p);

S3 Precompute α, a+n and am+;

S4 Update the current estimation iteratively:

S4.1 k := k + 1;

S4.2 r̃k := Λ+NATΛM+(g− Afk−1);

S4.3 βk := ‖r̃k‖2
/‖Ar̃k‖2

;

S4.4 f̃k := fk−1 + αβk r̃k;

S4.5 Compute the sparse transform φγ := 〈f̃k ,ϕγ〉
for γ ∈ Γ;

S4.6 Estimate the adapted threshold μ;

S4.7 Perform the soft-thresholding φ̃γ := Sμ,p(φγ);

S4.8 Perform the inverse sparse transform fk :=
∑

γ∈Γ φ̃γϕγ;

S5 Go to S.4 until certain convergence criteria are
satisfied.

In the above pseudocode, S.4.5 represents a sparse
transform in a basis (ϕγ)γ∈Γ. It can be either orthonormal

(e.g., Fourier transform) or nonorthonormal, and φγ is
the corresponding coefficient in the sparse space. In S.4.6,
the adapted threshold μ can be estimated by a dichotomy
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searching method. S.4.7 performs the inverse sparse trans-
form. Finally, the stopping criteria for S.5 can be either the
maximum iteration number is reached or the relative recon-
struction error (RRE) comes under a predefined threshold
[14]:

Ek =
∥
∥
∥fk − f∗

∥
∥
∥

‖f∗‖ × 100. (26)

4. Numerical Simulation

The above-proposed algorithm was implemented in MatLab.
To demonstrate its validity, we performed several numerical
tests assuming a circular scanning locus of radius 57.0 cm
in fan-beam geometry. The object was a 128× 128 modified
Shepp-Logan phantom in a compact support with a radius
of 10.0 cm. We used an equispatial virtual detector array of
length 20.0 cm. The detector was centered at the system ori-
gin and made perpendicular to the direction from the system
origin to the X-ray source. The detector array consisted of
128 elements. The well-known “Haar” wavelet transform was
selected to derive a sparse representation. While the pixel
number of the original phantom image was 16384, there were
only 1708 nonzero wavelet coefficients. In our preliminary
study, the �1-norm was focused as suggested by the CS theory.
For each of our selected numbers of projections over a full-
scan range, we equiangularly acquired the corresponding
projection dataset based on the discrete projection model as
shown in Figure 1. The stopping criterion in S.5 was defined
as either the maximum iteration number 20,000 was reached
or the RRE became less than 0.1%.

From each acquired dataset, we first reconstructed the
image using the algorithm developed in Section 3, which
is called “Scheme-A.” For comparison, we also run our
codes without S.4.6–S.4.8. This strategy is an adapted SART-
type reconstruction without regularization with the sparsity
constraint, which is called “Scheme-B.” In reality, the real
solution f∗ is usually unknown, Daubechies et al. suggested
an interior algorithm that could slowly increase the radius
of the solution in each iteration step [14]. Thus, we also
modified our algorithm described in Section 3 by replacing
R(f∗, p) as Rk = (0.4 + 0.6(k/20000)0.05)R(f∗, p) in each
iteration step k to implement the corresponding version of
interior algorithm, which is called “Scheme-C.”

In the numerical simulation, after the stopping criteria
were met, the iteration numbers and relative errors were
listed in Table 1 with respect to different numbers of
projections. The corresponding relative error convergence
curves were plotted in Figure 2. The reconstructed images
were shown in Figure 3. From the results in Table 1, Figures
2 and 3, we have several observations. When the number
of projections was 55, Scheme-A reached a 0.1% RRE
after 19040 iterations. Because 0.1% was really small, the
corresponding reconstructed image would serve as a gold
standard for all other reconstructed images. First of all, in
any tested cases either Scheme-A or Scheme-C performed
far better than Scheme-B, which confirmed that the sparse
regularization did help improve the reconstructed image
quality. Initially, the convergence speed of Scheme-A was

Table 1: Maximum iteration numbers and relative errors associated
with each of three representative reconstruction schemes for
different numbers of noise-free projections.

View
number

Scheme-A Scheme-B Scheme-C

55 19040 (0.1000) 20000 (9.2080) 20000 (0.2734)

45 20000 (0.7689) 20000 (10.3855) 20000 (0.8261)

35 20000 (4.2200) 20000 (13.2479) 20000 (2.9895)

25 20000 (11.0556) 20000 (15.9855) 20000 (10.2940)

Table 2: Same as Table 1 but for the direct implementation
counterparts of the proposed algorithms.

View
number

Scheme-AD Scheme-BD Scheme-CD

55 15805 (0.1000) 20000 (9.3391) 20000 (0.2477)

45 20000 (0.6837) 20000 (10.4658) 20000 (0.8357)

35 20000 (4.2946) 20000 (13.3163) 20000 (3.1190)

25 20000 (11.1846) 20000 (16.1218) 20000 (10.5271)

faster than Scheme-C. However, after a number of iterations,
the convergence speed of Scheme-A became slower than
Scheme-C. If the ill posedness of the problem was not too
bad, such as the cases of 55 and 45 projections, both Scheme-
A and Scheme-C could perform well. When the problem was
rather ill posed, such as the cases of 35 and 25 projections,
Scheme-C would perform better than Scheme-A.

Compared to the original algorithm proposed by
Daubechies et al., one unique feature of the proposed SART-
type algorithm is the weighting functions ΛM+, Λ+N and the
associated constant α for a more uniform converging behav-
ior. To demonstrate this advantage, we modified our codes
into a direct implementation of the algorithm described
in [14] by forcing α = 1.0 and setting ΛM+ and Λ+N to
unit diagonal matrices. The aforementioned reconstruction
strategies were named as “Scheme-AD,” “Scheme-BD,” and
“Scheme-CD” and tested, respectively. The corresponding
stopping conditions were listed in Table 2 with respect to
the number of projections. The relative error curves were
plotted in Figure 2. It can be observed in Figure 2 that when
the problem was not too under-determined, such as in the
cases of 55 and 45 projections, the proposed methods did not
perform significantly better, and might do even worse (e.g.,
Scheme-AD was actually better than Scheme-A in the case
of 55 projections). When the problem was seriously under-
determined, such as in the cases of 35 and 25 projections,
the proposed algorithms performed better than their direct
implementation counterparts.

In practical applications, measurement noise is unavoid-
able. It is always important to use a stable algorithm for
noisy data. To test the noise characteristic and stability
of the proposed algorithms, we repeated the aforemen-
tioned reconstruction tests using “Scheme-A,” “Scheme-B,”
and “Scheme-C” with projections bearing 0.1% Gaussian
noise, which are denoted as “Scheme-AN,” “Scheme-BN,”
and “Scheme-CN”, respectively. The corresponding stopping
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Table 3: Same as Table 1 but for projection data bearing 0.1%
Gaussian noise.

View
number

Scheme-AD Scheme-BD Scheme-CD

55 20000 (1.5386) 20000 (9.7042) 20000 (1.5496)

45 20000 (3.2240) 20000 (11.4394) 20000 (2.0746)

35 20000 (5.2298) 20000 (14.2091) 20000 (3.7667)

25 20000 (11.0959) 20000 (16.0837) 20000 (10.5335)

conditions were listed in Table 3 with respect to the number
of projections. The converging curves were plotted in
Figure 4. The reconstructed images were in Figure 5. It can
be seen from the above results that the proposed algorithms
produced similar relative error curves for noisy datasets
compared to the noise-free counterparts. Due to noise in
the projections, all the reconstructed images from noisy
datasets generally had larger RREs than those from noise-
free datasets given an iteration number. Note that Scheme-
AN had a better performance than “Scheme-A” in the
initial iterations in the case of 55 views. Our interpretation
to this phenomenon is that in the initial iterations the
discrepancy Δ(f) may be relatively large, which implies that
Δ(f) may dominate the total cost functional Φw,p(f), and the
regularization effect of the �1-norm would be small.

5. Discussions and Conclusion

Although the above CS-based reconstruction algorithms
have been accelerated relative to the previous benchmark
[14], the convergence speed is still slow for large-scale
images and/or very ill-posed conditions. In the future,
we could use the state-of-the-art computing techniques to
speedup the convergence, such as ordered-subset [15] and
multiscale computing [16] techniques. At the same time, we
should optimize the reconstruction parameters and imaging
protocols as well.

For the modified Shepp-Logan phantom, the �1-norm
seems giving the best performance than any other �p norm
with 1 < p ≤ 2 in a Haar space. However, it does not imply
that the �1-norm is the best option for any application. In
fact, our algorithm was implemented for any 1 ≤ p ≤ 2. For
a specific application, the optimal p may be studied.

Furthermore, this orthonormality of the wavelet trans-
form used in this study is not necessary. If an image can be
sparsely expanded in a certain basis or frame, the �p-norm
minimization can be in principle performed to regularize
the reconstruction process. Since there exist many com-
pression methods for medical images, we should evaluate
representative bases and frames for sparse representations
and CS-based reconstruction methods. The heuristic rule is
to achieve a minimal compression ratio.

In conclusion, we have developed a SART-type recon-
struction algorithm based on the recent mathematical find-
ings by Daubechies et al. Our preliminary simulation results
have confirmed its merits and suggested research directions.
Because the approach accommodates any 1 ≤ p ≤ 2 and any

sparse expansion, there should be a large room for further
improvements of the algorithm performance.
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