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Soft tissue sarcomas (STSs) are an uncommon group of solid tumors that can arise

throughout the human lifespan. Despite their commonality as non-bony cancers that

develop from mesenchymal cell precursors, they are heterogeneous in their genetic

profiles, histology, and clinical features. This has made it difficult to identify a single

target or therapy specific to STSs. And while there is no one cell of origin ascribed

to all STSs, the cancer stem cell (CSC) principle—that a subpopulation of tumor cells

possesses stem cell-like properties underlying tumor initiation, therapeutic resistance,

disease recurrence, and metastasis—predicts that ultimately it should be possible to

identify a feature common to all STSs that could function as a therapeutic Achilles’ heel.

Here we review the published evidence for CSCs in each of the most common STSs,

then focus on the methods used to study CSCs, the developmental signaling pathways

usurped by CSCs, and the epigenetic alterations critical for CSC identity that may be

useful for further study of STS biology. We conclude with discussion of some challenges

to the field and future directions.

Keywords: stemness, cancer stem cells, sarcoma, epigenetic plasticity, developmental pathways, soft tissue

sarcoma

INTRODUCTION

Despite substantial therapeutic advances, cancer is still a significant cause of morbidity and
mortality world-wide (1, 2). Solid tumors in particular show a complex mix of genomic subclones
with different mutational signatures and cellular phenotypes. This “intratumoral heterogeneity”
is thought to be the primary cause of therapeutic failure, followed by disease progression and
relapse (3–6). To date, two opposingmodels have been offered to explain such tumor heterogeneity.
The “stochastic” model considers it as a result of cellular natural selection (7). As such, every
cell within a tumor has equivalent tumorigenic potential, and random mutations in individual
tumor cells promote the selection of the fittest clone. Over time, additional advantageous mutations
spawn genetically divergent subclones that independently maintain their malignant potential. By
contrast, the cancer stem cell (CSC) model ascribes tumor establishment to a single, transformed,
stem-like clone endowed with dysregulated and unlimited self-renewal that differentiates into less
tumorigenic subclones to create a cellular “hierarchy” similar to that of normal tissue (8, 9).

CSCs, also known as “tumor-initiating cells” (TICs), were first identified in cancers of
hematopoietic origin (10, 11), then in various solid tumors (12–17), where these cells show
the ability to re-derive the original tumor heterogeneity when serially xenotransplanted in
immunocompromised mice at very low number (8, 9). The importance of CSCs comes from
their ability to constitute a small reservoir of drug-resistant cells, which overcome conventional
chemotherapy due to their low rate of proliferation, thus driving tumor recurrence and metastasis
(18). CSCs share several properties with non-transformed adult stem cells (SCs): multipotency,
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resulting in the possibility to differentiate into lineages of the
embryonic layer of origin; self-renewal capacity; the ability
to transition between quiescence, slow-cycling and active
proliferation states; the expression of the embryonic stem cell
transcription factors (TFs) OCT4, NANOG, SOX2, KLF4,
and MYC; the expression of similar surface markers such
as CD44, CD133, or of the intracellular enzyme aldehyde
dehydrogenase (ALDH); enhanced protective mechanisms
against apoptosis, DNA repair, and oxidative stress; activation
of key developmental pathways; a preference for oxidative
metabolism for energy production, and the expression of ATP-
binding cassette (ABC) drug transporters (19). However, unlike
normal SCs, CSCs are characterized by the dysregulation of
those features and possess the ability to control stemness signals
(5, 20).

Although the source of CSCs has been the center of
investigation for many years, it remains a hotly debated topic.
Reflecting the ongoing discourse, it has been suggested that
the clonal evolution (stochastic) and the CSC (hierarchical)
models are not necessarily mutually exclusive, as CSCs can
originate not only from the malignant transformation of adult
SCs (21–23) but also from mutated tumor cells that undergo
a de-differentiation process in which they reacquire stem-
like features in order to evolve into CSCs (24, 25). Both
cell-autonomous (activation of stemness signaling pathways,
epigenetic alterations, DNA damage, replicative stress) and non-
cell-autonomous factors (immune system, tissue damage, signals
from the microenvironment niche, therapy-induced genotoxic
stress) seem to participate to the reprogramming [reviewed in
Poli et al. (26)].

Soft tissue sarcomas (STSs) are uncommon malignancies
of mesenchymal origin characterized by a high degree of
heterogeneity in their genetic profile, histology and clinical
features. They include several subtypes with onset in
childhood, adolescence and even in the adult life, such as
rhabdomyosarcoma (RMS), synovial sarcoma (SS), fibrosarcoma
(FS), malignant peripheral nerve sheet tumor (MPNST),
leiomyosarcoma (LMS), liposarcoma (LPS) and undifferentiated
pleomorphic sarcoma (UPS). The prevalence of STS subtypes
significantly changes from childhood (<20 years) through
adolescence into adulthood representing about 5–6% of all
childhood cancers and <1% of all adult malignancies (27).
Various studies suggest that STSs originate from the malignant
transformation of a primitive, multipotent mesenchymal stem
cell (MSC), i.e., the multipotent precursor of mesodermal tissues
including bone, skeletal muscle, adipose tissue, cartilage and
tendon (28). It has been suggested that the same transformed
MSC can give a particular subtype of STS depending on
the vulnerability to subsequent mutations involving specific
developmental pathways or, alternatively, in the genesis of an
undifferentiated sarcoma (29, 30). However, gene expression
studies showed that the signatures of several STSs were more
similar to that of differentiated MSCs than of undifferentiated
MSCs, suggesting that the development of STSs with distinct
phenotypes and histological grades may reflect different
differentiation stages of MSCs at the time of tumorigenesis
initiation (31–33).

Contemporary therapies for STSs are multi-modal and
include surgery, radiation and chemotherapy, although
significant limitations are provided by their toxicity and partial
responses. To date, the 5-year survival rate for patients with STS
is about 60%, reflecting age, tumor type, stage and histologic
grade, but it drops dramatically to 10–17% in high risk patients
(34). Recently, STS tumor cells with stem-like properties have
been identified, possibly explaining the heterogeneity that
characterizes these cancers and suggesting that these cells might
be responsible for relapse and metastasis.

CSC characteristics and their role in tumorigenesis has been
studied and summarized for various solid tumors, including bone
sarcomas (35–38). However, an overview on the role of CSCs in
STS is lacking. This review summarizes the evidence for CSCs
in STSs. The importance of CSC features for clinical anticancer
interventions is also discussed.

EVIDENCE FOR CSCS IN SOFT-TISSUE
SARCOMAS

According to the type of genomic alteration, STSs can be
classified into two main categories: (i) recurrent translocation-
driven STSs, where reciprocal chromosomal translocations result
in oncogenic fusion transcripts such as PAX3-FOXO1 in alveolar
RMS (ARMS), SS18-SSX in SS, FUS-CHOP in myxoid/round-
cell LPS, and (ii) non-translocation driven STSs characterized
by complex genetic changes such as amplifications/deletions
in various chromosomal regions as observed in embryonal
RMS (ERMS), FS, LMS, LPS and MPNSTs (39). Fusion-positive
STSs are characterized by cells that are morphologically and
molecularly similar with the fusion oncoprotein as the major
driver of the malignancy. Conversely, fusion-negative STSs show
a high degree of intra-tumor heterogeneity.

Rhabdomyosarcoma (RMS)
RMS is the most common soft tissue sarcoma in children
and young adults but can occur at any age (40, 41). RMS
is thought to derive from myogenic precursors that lose the
ability to differentiate into skeletal muscle despite the expression
of the master key genes of skeletal muscle lineage (42). The
two main histopathologic subtypes are ARMS and ERMS.
ARMS is associated with a poorly differentiated phenotype
and arises mostly in adolescents and young adults. Genetically,
approximately 80% of the cases are characterized by a t(2,
13) or t(1, 13) chromosomal translocation, which generates
the fusion oncoproteins PAX3-FOXO1 or PAX7-FOXO1 that
work as mutant transcription factors (43, 44). ERMS is more
common, usually affects children under the age of 10 years,
and is for the most part associated with a favorable prognosis.
Genomic landscape studies of RMS showed that ERMS has
a higher mutation rate when compared to ARMS, as well as
more frequent copy number variants and single nucleotide
variants (45–47). Mutations identified include (among others)
RAS isoforms, TP53, neurofibromin-1 (NF-1), PI3K catalytic
subunit α (PIK3CA), β-catenin (CTNNB1), fibroblast growth
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factor receptor 4 (FGFR4), and F-box and WD repeat domain-
containing 7 (FBXW7).

While the genomic homogeneity of ARMS would
predict that its molecular features could be harnessed for
therapeutic purposes, the PAX3-FOXO1 protein has remained
therapeutically intractable (48). On the other hand, the genomic
heterogeneity of ERMS highlights the challenge of finding
a single target for therapeutic purposes. Using a variety of
approaches, cell populations with CSC features have been
reported for ERMS (49–52); the identification of ARMS CSCs
has been more elusive and while a recent study showed that
ARMS cells could form holoclones and spheres (53), no studies
have reported in vivo functional assays for ARMS CSCs. Similar
to what is observed in SS [below (54)], there is some thought
that almost all PAX3-FOXO1+ ARMS tumor cells have stem cell
characteristics–suggesting that ARMS is a stemness-disease, but
this has yet to be demonstrated.

Synovial Sarcoma (SS)
SS is an aggressive neoplasm occurring in adolescents and young
adults (aged 10 to 35 years), accounting for about 10% of all
STSs (55). About 70% of cases develop metastases (56–58). SS
is characterized by t(X;18)(p11;q11) (59), which generates an in-
frame fusion of the synovial sarcoma translocation, chromosome
18 (SS18, also known as SYT) gene to the synovial sarcoma, X
breakpoint (SSX) genes 1, 2 and, rarely, 4 (60–62). Whereas, SYT
interacts with the SWI/SNF chromatin remodeling complex (63–
65) to activate a host of transcriptional programs that control
cell cycle, stem cell maintenance and differentiation signals
(66–68), its fusion partner SSX co-localizes with the Polycomb
repressor complex hampering its function (69). The resulting
SS18-SSX fusion oncoprotein acts as an epigenetic modifier
that is dependent upon cellular context (70), and drives SS
pathogenesis (71–73). In line with fusion-driven sarcomas, SSs
are genetically quiet, with no chromosomal abnormalities other
than t(X;18) in the majority of cases. However, copy number
gains are more common in adult patients and are typically
associated with a poor outcome (74).

Skeletal muscle lineage precursors (but not differentiated
myocytes) have been suggested as a cell of origin for SS, since
conditional expression of the human fusion gene SYT-SSX2 in
Myf5-expressing murine myoblasts results in tumors with 100%
penetrance (72). More recently, SYT-SSX2 forced expression in
MSCs disrupted normal mesodermal differentiation, triggering a
pro-neural gene signature via its recruitment to genes controlling
neural lineage features (75). The authors also showed that SYT-
SSX2 controlled the activation of key regulators of stem cell
and lineage specification (75). Consistently, silencing of SYT–
SSX induced terminal differentiation of SS cells into multiple
mesenchymal lineages (osteogenic, chondrogenic and adipogenic
types) (54). On the one hand, these data point to MSCs as a
cell of origin of SS and suggest that deregulation of normal
differentiation by SYT-SSX could constitute the basis for MSC
transformation. On the other hand, they seem to also suggest
that SS can develop in MSC precursors that are in a susceptible
developmental stage. In the samework, Naka et al. showed that SS
cell lines, similarly to SS clinical samples, contain a subpopulation

of cells characterized by high levels of the pluripotency factors
SOX2, OCT4, and NANOG and that exhibit in vitro self-
renewal ability and in vivo tumorigenicity following xenografting
(54).

Fibrosarcoma (FS)
Adult type fibrosarcoma (FS) is a malignant tumor thought
to arise from fibroblasts and is characterized histologically by
undifferentiated spindle cells (76). Only a few studies point
to the existence of CSCs within FSs. These studies identified
a subpopulation of cells characterized by increased levels
of OCT3/4, NANOG, SOX2, and SOX10, possessing stem-
like characteristics such as self-renewal ability, proliferation
and increased chemoresistance partly conferred by the
overexpression of the multidrug resistance transporter MDR1
(77, 78). There are no published studies of CSCs in infantile FS,
a pediatric malignancy associated with intermediate malignant
rarely metastasizing tumor characterized by the NTRK3–ETV6
translocation resulting from t(12, 15) (79).

Malignant Peripheral Nerve Sheet Tumor
(MPNST)
MPNSTs account for about 5-8% of all STSs and can
occur sporadically after radiotherapy or can arise in the
neurofibromatosis type 1 (NF1) syndrome (80). The NF1
gene, located on the long arm of chromosome 17 (17q11.2),
encodes for the 220kDa protein neurofibromin. NF1 syndrome
is characterized by mutation-induced inactivation or more
rarely complete germline loss of one NF1 allele that often
leads to either dermal or plexiform benign neurofibromas. The
latter neurofibroma subtype, arising in nerve plexuses or deep
large nerves, occurs following de novo somatic mutations or
inactivation of the other NF1 allele specifically in the Schwann
cell lineage and can undergo malignant transformation in
MPNSTs (81). Patients with NF1 can develop other types of
pediatric tumors such as pheochromocytomas, RMS, LMS, and
juvenile myelomonocytic leukemia (82). In addition, inactivating
mutations of NF1 have been reported in adult tumors including
brain, lung and ovarian cancers and in melanomas (83).
Neurofibromin inhibits RAS signaling through its RAS GTPase-
activating protein (GAP) domain, thus working as a tumor
suppressor (84). In agreement, the RAS pathway is constitutively
over-activated in MPSNTs (85). Although neurofibromin is
a member of the large RAS-GAP family proteins, it is the
only one linked to a tumor predisposition syndrome when
mutated. However, accumulating genomic abnormalities in
tumor suppressors or oncogenes have been suggested to
be responsible for the progression from benign plexiform
neurofibromas to MPNSTs. Loss of TP53 and CDKN2A are
common inMPNSTs (86, 87). CDKN2A encodes for both p19ARF

and p16INK4A and thus its inactivation can affect both p19ARF-
MDM2-p53 and p16INK4A-Cyclin D-RB pathways leading to
uncontrolled proliferation. Even RB1 loss can be seen in about
25% of MPNSTs (88).

Either precursors of or postnatal Schwann-derived cells, the
source of myelinating glial cells of the peripheral nervous system,
seem to be the cell of origin of MPNSTs (82, 89, 90). Gene
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expression studies showed that MPNSTs exhibit deregulation
of tumor-specific gene clusters belonging to Schwann cell
development regulators, including downregulation of SOX10,
which promotes the specification of Schwann progenitors and
their maturation and myelin production (91) and upregulation
of SOX9, which is involved in neural crest stem cell survival
(92, 93). Putative CSCs of MPNSTs expressing stemness genes
have been recently established under specific conditions from
human cell lines and primary tumors (94). These cells were
characterized by high levels of the neural lineage genes
NESTIN and NGFR, and the stemness markers OCT4, NOTCH4,
SOX2, and SOX9 as assessed by qPCR, but also by the
expression of stem surface markers by flow cytometry, and
were shown to give rise to tumors resembling human MPNSTs
when they were injected subcutaneously in immunodeficient
mice.

Leiomyosarcoma (LMS)
LMS accounts for about one quarter of all soft tissue tumors. It
is extremely rare during infancy and childhood, occurring most
commonly in middle-aged individuals. LMS has a complicated
histopathological classification and a different clinical behavior
depending on the location within the body (95). LMS is
characterized by a high degree of genomic instability, with
non-recurrent aberrations at the chromosomal level. The most
common regions of chromosomal loss have been identified in 10q
and 13q, where the phosphatase and tensin homolog (PTEN) and
the retinoblastoma 1 (RB1) tumor suppressor genes, respectively,
reside (96–98). In addition, PTEN point mutations (99, 100) as
well as constitutive hyperactivation of PI3K/AKT pathway (101),
have been detected in LMS, suggesting that loss of PTEN might
contribute to the initiation or progression of LMS. Epigenetic
changes could also contribute to LMS. For instance, Roncati
et al. showed that methylation-dependent silencing of CDKN2A,
which is associated with decreased expression of both p16INK4A

and p14ARF and with higher activity ofMDM2 and CDK4/CDK6,
results in LMS progression (102). Additionally, treatment with
the HDAC inhibitor vorinostat in combination with a DNA
demethylating agent such as decitabine allowed overcoming the
resistance to cell death induction due to promoter methylation of
apoptotic genes in uterine LMS (103).

Recent findings suggest a mesenchymal stem cell origin for
LMS. By using Cre-Lox technology to generate murine MSC
cultures knock-out for Trp53 and Rb1 alone or in combination,
Rubio et al. showed that Tp53−/− mouse adult MSCs underwent
in vitro transformation and developed LMS-like tumors in vivo
when injected as xenografts in immunodeficient mice (104).
A microRNA (miRNA) signature distinctive of MSCs includes
several components of the miR-17-92 cluster, and appeared
downregulated during MSC differentiation into SMCs while up-
regulated in uterine LMS, supporting the hypothesis that LMS is
a mesenchymal stem cell-related malignancy (32). In testicular
LMS, a subpopulation of cells with stem-like characteristics was
described (105). These cells showed high tumorigenic potential
and the capacity to re-derive the original parental tumor in
immunodeficient mice.

Liposarcoma (LPS)
LPS is also one of the most common STS, accounting
for at least 20% of all adult sarcomas. The World Health
Organization classifies LPS into four main subtypes: 40–45%
well differentiated (WD-LPS), 15–25% dedifferentiated (DD-
LPS), 30–35% myxoid/round-cell (MR-LPS) and about 5%
undifferentiated high-grade pleomorphic liposarcomas (P-LPS)
(106). The histological subtypes reflect both clinical behavior
and prognosis (107). WD-LPS occurs most frequently in the
retroperitoneum and limbs, rarely metastasizes and shows low
recurrence rates. By contrast, DD-LPS is more aggressive, with
a metastatic rate of 15–20% and a worse prognosis. Both WD-
LPS and DD-LPS can be distinguished from other adipocytic
neoplasms based on the amplification of the chromosome region
12q13-15, in which MDM2, CDK4 and SAS genes reside (108).
MR-LPS is characterized by the appearance of spindle to oval-
shaped cells in a myxoid stroma (109) and has a predilection
for the limbs, with abdomen and bones as typical metastatic
sites (110, 111). MR-LPS harbors the chromosomal translocation
t(12, 16)(q13;p11) that results in a fusion gene arrangement
between FUS and the C/EBP homologous protein (CHOP, also
known as DDIT3 or GADD153) and appears to constitute the
primary oncogenic event in MR-LPS (112). P-LPS is a rare tumor
of adulthood and can be distinguished from the other subtypes by
the presence of pleomorphic lipoblasts. It occurs most commonly
in soft tissues of the extremities and is associated with pulmonary
metastases (113).

Previously, adipose-derived stem cells (ASC) were proposed
as a cell of origin of LPS (114). In support of this, Rodriguez
and colleagues showed that the expression of a FUS-CHOP
transgene in Trp53-deficient mouse ASCs was able to shift the
tumor phenotype toward LPS-like tumors (115). Consistently,
the expression of FUS-CHOP in murine MSCs resulted in
the development of tumors resembling LPS with features such
as intracellular lipid accumulation, presence of lipoblasts with
round nuclei, and an adipocyte differentiation block (116). In the
human setting, FUS-CHOP has been reported to cooperate with
other oncogenic hits to block the differentiation potential of bone
marrow-derivedMSCs toward adipocytes, and to transform them
into LPS cells resembling themyxoid subtype (117).Matushansky
and colleagues linked adipocyte differentiation from humanMSC
to all LPS subtypes, in dependence of their maturation status (33).
They propose that additional secondary mutations could lead to
morphologically diverse tumors arising from the same stage of
transformation (33).

Using a LPS xenograft model, Stratford et al. identified a
small (0.1–1.7%) fraction of cells characterized by a stem-like
phenotype (CD133+/ALDH+). This putative CSC population
was able to self-renew in vitro, differentiate into mature
adipocytes and be highly tumorigenic in nude mice (118).
Recently, LPS-like tumor xenografts were generated in
immunocompromised mice from subcutaneous injection of
murine induced pluripotent stem cells (miPSCs) that were
cultured in conditioned media from the Lewis lung carcinoma
(LLC) cell line, which secretes tumor-derived extracellular
vesicles [the resulting cells were termed miPSC-LLCev] (119).
Cells derived from the LPS-like xenografts were characterized by
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CSC features including self-renewal ability, increased expression
of Sox2, Nanog and Klf4, the capacity to generate secondary
tumors resembling the original histotype of the primary ones,
and to disseminate into the mesentery of abdominal cavity.
When cultured as spheres, the miPSC-LLev cells were also able
to differentiate into adipocytes under appropriate conditions,
suggesting phenotypic heterogeneity (119).

Undifferentiated Pleomorphic Sarcoma
(UPS)
UPS is the most common STS in the elderly. In the 1960s this
malignancy was thought to arise from histiocytes and thus was
named “malignant fibrous histiocytoma.” It was later proven that
this tumor was not a true histiocytic malignancy and it was
renamed pleomorphic fibrosarcoma, or undifferentiated high-
grade pleomorphic sarcoma (UPS) (120). UPS cells have variable
morphology without a hint of differentiation (121). Recently, rare
gene fusions involving PRDM10 were identified in UPS tumors
(122). Li et al formed pleomorphic sarcomas in immunodeficient
mice out of a transformed culture of bone marrow stromal cells
(30). Martinez et al were also able to engineer a model of UPS
out of a mutated human bone-marrow derived MSCs, proving
that MSCs are most likely the origin this sarcoma (123, 124).
Rubin et al. were able to generate UPS through the loss of
Tp53 in combination with Ptch1 inMyf6-expressingmuscle cells.
Interestingly, however, when these cells were depleted only of
Trp53, they formed ERMS, suggesting a common progenitor
(125). Wang et al. isolated a subpopulation of cells in UPS that
exhibits stem-like properties identified as a “side population” by
flow cytometry (126).

ISOLATION AND CHARACTERIZATION OF
CSCS IN STS

Successful and specific investigation of CSCs is a prerequisite for
better understanding of the molecular mechanisms underlying
STS initiation, progression, relapse, metastasis and resistance
to therapies. Currently, evaluation of CSCs is achieved through
both in vitro and in vivo approaches, including (i) generation
of non-adherent “sarcosphere” cultures under serum-free
conditions; (ii) flow cytometry sorting based on expression
of CSC-specific surface markers; (iii) assessment of aldehyde
dehydrogenase (ALDH) activity through the ALDEFLUOR
(Stemcell Technologies) assay; (iv) detection of a side population
identified by exclusion of Hoechst 33342 dye; (v) xenograft
tumor initiation of the ability of a low number of cells in
immunodeficient mice, and (vi) reprogramming of cancer cells
back to pluripotency (127–129). Remarkably, since none of these
methods alone is enough to identify CSCs unequivocally within a
tissue, the use of several markers and properties in combination
could be helpful to better define the CSC phenotype in these
tumors. The stem cell markers and assays that have been used
to identify, isolate and characterize potential STS CSCs are
summarized in Table 1. An overview of STS CSCs including
their characteristics and signaling is provided in Figure 1.

TABLE 1 | List of soft tissue sarcoma (STS) subtypes and the stem cell markers

and assays that have been used to investigate their cancer cell stemness.

Subtype Stem cell markers

and assays

Rhabdomyosarcoma (RMS) CD133

CD184 (CXCR4)

ABCG2

Nestin

ALDH

Sphere formation

Synovial sarcoma (SS) CD133

CD271

CD344

ABCG2

ALDH

Sphere formation

Side population/dye

efflux

Fibrosarcoma (FS) CD133

CD271

ABCG2

ALDH

Sphere formation

Malignant peripheral nerve sheet tumor (MPSNT) CD184 (CXCR4)

Nestin

Sphere formation

Leiomyosarcoma (LMS) CD184 (CXCR4)

CD271

CD344

Sphere formation

Side population/dye

efflux

Liposarcoma (LPS) CD184 (CXCR4)

CD271

ALDH

Sphere formation

Undifferentiated pleomorphic sarcoma (UPS) Side population

Three-Dimensional Cell Cultures
First used by Reynolds and Weiss to isolate stem cells of neural
origin (130), the 3Dmodel enables cells to grow in all dimensions,
thus mimicking the interactions between cells of interest and
the microenvironment in a given tissue (131). A single-cell
suspension is grown in low-density conditions to avoid cell
aggregation, and in defined serum-free media supplemented
with specific growth factors (epidermal growth factor, and basic
fibroblast growth factor), in ultra-low attachment plates (132).
In these conditions, cells can proliferate to form non-adherent,
floating spheres, which in turn can be dissociated to allow
secondary and tertiary sphere formation. Each sphere consists of
a small percentage of self-renewing cells and a large percentage of
progenitor cells at various stages of differentiation (133). In the
last few years, sphere culture techniques have been employed to
allow CSC enrichment in STSs, including both ERMS and ARMS
(50, 53), FS (77), SS (54, 77), MPNSTs (94), LMS (105), and LPS
(118, 119).

Stem Surface Markers
The first idea for CSCs isolation based on the expression
of certain surface markers came with the identification of

Frontiers in Oncology | www.frontiersin.org 5 October 2018 | Volume 8 | Article 475

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Genadry et al. Stemness in Soft Tissue Sarcomas

FIGURE 1 | Overview of CSC characteristics and signaling in STS. STS CSCs express specific stem cell surface markers (orange), which have been used as CSC

identifiers, along with some intracellular markers such as the intermediate filament Nestin or the enzyme ALDH. Developmental signaling pathways play a role in the

CSC phenotype by promoting the expression of embryonic transcription factors (blue). Epigenetic modulators (green, confirmed modulators; red, putative modulators)

also participate in the CSC phenotype through different mechanisms: maintenance of existing methylation patterns or de novo methylations at CpG islands, histone

modification and chromatin remodeling.

a small subset of leukemic stem cells with a CD34+CD38−

phenotype. When these cells were transplanted into non-obese
diabetic/severe combined immunodeficient (NOD/SCID) mice,
they were able to initiate acute myeloid leukemia with the same
heterogeneity of the primary cancer, whereas the most abundant
subset of CD34+CD38+ was ineffective (11). These results
stimulated many researchers to isolate CSCs from heterogeneous
cell populations of STS through fluorescent-activated cell sorting
(FACS) of cells expressing specific stem surface markers, alone or
in combination. Following is a list of cell surface markers thought
to have roles in stemness.

CD133 (Prominin-1) is a glycosylated protein involved in
topological organization of the cell membrane (134). CD133 has
been shown to mark a subpopulation of tumor cells characterized
by high levels of stemness genes, higher clonogenicity and in
vitro self-renewal, and increased in vivo tumorigenicity than
the CD133- subpopulation in several STS, including SS (135–
137), RMS (49, 50, 52, 138) and FS (77, 78, 136). Similarly, LPS
putative CSCs, prospectively isolated by FACS of the stem surface
marker CD133 and of ALDH activity, were shown to produce
tumors at limiting cell dilution more efficiently compared to
the other sorted subpopulations (118). In MPNST, CD133+ cells
were able to self-renew, yielding more spheres and proliferating

faster compared to the CD133− cells, and to give rise to tumors
resembling the original heterogeneous tumor when injected
at low number (94). In LMS, She et al. found that CD133
expression positively correlates with tumor size, mitotic counts
and histological grade in primary retroperitoneal LMS, proposing
it as prognostic marker (139).

CD184 (chemokine receptor type-4, CXCR4) is a seven
transmembrane chemokine receptor normally expressed on
immune cells, but also on embryonic stem cells (ESCs) (140)
and MSCs (141). Recently, CD184 has been identified as
a SS-initiating surface marker. By using sphere formation
assays, the authors enriched for a CSC subpopulation that was
characterized by high levels of CXCR4. These cells exhibited
higher tumor initiation potential after serially transplantations
into NOD/SCID mice compared to their CXCR4− counterpart
and were able to recapitulate the phenotype observed in the
original tumor (142). Interestingly, CXCR4 was found highly
expressed on the surface of ARMS cells, where it correlates
with unfavorable primary sites, advanced stage, decreased overall
survival and bone marrow involvement (143, 144), and was also
used as a prognostic marker for MPNSTs, LMS, LPS and FS
(145). However, the above-mentioned studies did not determine
whether CD184 is associated with a CSC phenotype in these STS.
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CD271 (low-affinity nerve growth factor receptor), is
expressed in neural crest tissue and suggested to be a CSC surface
marker in SS, FS, LMS and LPS (146).

CD344 (frizzled-4), a neuronal stem cell marker that plays
important roles in vascular development of the retina and inner
ear, has been shown to identify a tumor cell subpopulation with
increased capacity for proliferation and sarcosphere formation
and resistance to doxorubicin in LMS and SS cells (146).

ABCG2 (ATP binding cassette G2) has been used to isolate
a subpopulation of CSCs with increased drug resistance in SS
and FS (77, 78). ABCG2 expression has been associated with
shortened survival in RMS patients (147).

Nestin is an intermediate filament protein first identified in
stem cells of neuroepithelial origin. It is expressed in several
cell types during development, including neural crest cells and
myocytes. It was found upregulated in tumor cell spheres derived
from MPNSTs compared to their corresponding adherent cells
(94) and overexpressed in RMS (148).

ALDH Activity
In addition to the cell surface markers described above, a few
specific intracellular enzymes and their activity can be utilized
to identify CSCs. Among them, the detoxifying enzyme aldehyde
dehydrogenase (ALDH), which is highly expressed in normal
stem cells (149, 150), has been recently implicated in therapy
resistance and tumor recurrence (151–154). Detection of ALDH
activity is captured through the ALDEFLUOR assay, an enzyme-
based assay thought to specifically detect the ALDH isoform
ALDH1A1 (155). ALDH proteins have been used as markers
of CSC identification in many STSs including ERMS (51), LPS
(118), FS and SS, in which their expression correlates with higher
proliferation and clonogenicity, and is associated with increased
drug resistance (156).

Side Population
The side population phenotype (SP) was first defined in
hematopoietic cells (157, 158). SP cells show limited intake
or active extrusion of the fluorescent dye Hoechst 33342 as a
consequence of increased expression of the ABC transporter
ABCG2 (159–161). SP cells can be isolated by flow cytometry
based on the absence of accumulation of Hoechst dye, and have
been used to enrich for CSCs in various cancers, including
sarcomas (162, 163). Indeed, the SP phenotype has been shown
to correlate with high tumorigenicity in immunocompromised
mice, the ability to repopulate both the SP and the non-SP
fractions (164, 165) and resistance to therapy (166–168)-all
established criteria for CSCs. In the context of STSs, Alman’s
group was the first to identify a SP fraction within human
LMS and SS through Hoechst dye staining. The size of this SP
appeared to positively correlate with the tumor grade, although it
is unclear whether the SP fraction isolated in this study reflected
a population of cells enriched in CSC features such as self-
renewal ability and higher in vivo tumorigenicity compared to
non-SP cells (169). By contrast, Sette et al. demonstrated that the
subpopulation of testicular LMS stem-like cells characterized by
a SP phenotype showed enhanced ability to extrude doxorubicin
and high clonogenicity in limiting dilution assays (105).

Limiting Dilution in vivo
The most stringent method to define the frequency of CSCs in
vivo is the limiting dilution cell transplantation assay (LDA). In
this assay, tumor cells are transplanted at defined, decreasing
doses into animals and tumors allowed to develop over time.
At analysis, the percentage of animals that develop (or do not
develop) tumors is used to determine the number of tumor cells
with self-renewal capacity (170, 171). These “LDA frequencies”
are calculated using a web-based tool called ELDA (extreme
limiting dilution analysis), which is the first software for limiting
dilution analysis that delivered useful confidence intervals for
all LDA cell subpopulations, even those with no (or complete)
response (172). In vivo LDA must be performed to confirm
that a defined marker enriches for CSC activity, and must
be done with both the positive and negative fractions. It is
important to highlight that the in vitro sphere-forming assay
does not constitute a surrogate for the in vivo LDA, and can
only complement, rather than replace, it. By using a Trp53-null
mouse model of breast cancer, Zhang and colleagues identified
a cell subpopulation characterized by high levels of CD24 and
CD29 using in vitro LDA and subsequent transplantation in vivo
(173). However, to date LDA has been performed only for few
STS tumors in vivo, and further studies are required to confirm
the true nature of marker-sorted CSCs in STSs.

Reprogramming Mechanisms Potentially
Involved in CSCs in STS
Similar to normal cells, in which reprogramming toward a
pluripotent state can be achieved by nuclear transfer, blastocyst
injection, or by applying induced pluripotent stem cell (iPSC)
technology [forced expression of a specific panel of TFs such
as Oct4, Sox2, Klf4, and Myc (174, 175)], human cancer cells
can also be reprogrammed. Hochedlinger and colleagues showed
that introduction of nuclei derived from mouse melanoma
cells into enucleated oocytes induced the establishment of
an ESC line from blastocysts with the potential to generate
teratomas (176). Alternative methods to reprogram cancer
cells include: the transfection of cancer cells with the family
of micro-RNA miR-302 that is highly expressed in ES cells,
thus generating pluripotent stem-like cells with both self-
renewal and multipotency properties (177, 178); the use of
small chemical molecules to enrich for cancer stem-like cells
endowed with increased in vitro tumor-sphere formation and
in vivo tumorigenic abilities (179); and the application of the
iPSC technology to primary tumor cells to successfully convert
several cancer types into induced-pluripotent cancer stem cells
(iPCSCs) (176, 180–182). These iPCSCs resemble the ES cell
state at both epigenetic and transcriptional levels and repress
the reprogrammed cancer genome in the pluripotent state,
constituting a live cell model for studying cancer progression
(183).

Stemness Signals
It is known that adult SCs and CSCs both express key
evolutionarily conserved developmental pathways such as
Wnt/β-catenin, Notch, Hedgehog and Hippo, which play
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pivotal roles in regulating stemness and differentiation (184–
189). In fact, aberrant stemness signaling has been related to
tumorigenesis, as deregulation of these pathways in adult SCs can
lead to unchecked cell proliferation and aberrant differentiation
in a tissue-specific manner. Besides, their reactivation in bulk
tumor cells plays critical roles in cancer plasticity, by inducing a
CSC phenotype, to promote EMT and to enhance drug resistance
(190–192). However, the final goal is the alteration of gene
expression patterns through the induction of embryonic TFs
such as OCT4, NANOG, SOX2, KLF4, and MYC, which are
part of a transcriptional network in which they regulate each
other and affect chromatin remodeling (193–195). The existence
of a link between reprogramming mechanisms and the stem
cell TF network is supported by the revolutionary study of
Yamanaka and colleagues, showing that lineage committed cells
can be reprogrammed to an induced pluripotent state after
the introduction of Sox2, Oct4, Klf4, and Myc (175). As such,
a stemness signature is seen more often in less differentiated
cancers with worse clinical outcomes (196, 197).

Hedgehog pathway
The Hedgehog (HH) pathway is a signaling network that
plays a crucial role during organogenesis in the developing
embryo, mainly by modulating genes involved in stem cell fate
determination (198). Similarly, it is important for the existence
of CSCs, as it is believed to support the CSC phenotype
by driving the expression of stemness-related genes, including
Oct4, Sox2, Bmi1, and Nanog (199). However, few studies are
currently available about its role in CSCs of STS. In 1996,
Hahn et al described a critical role for HH pathway in ERMS
(200). Later studies confirmed then its activation in ERMS,
its role in promoting self-renewal of ERMS CSCs (201, 202),
and its association with a poor prognosis (203). The HH
pathway has been proven to be hyperactivated also in ARMS,
although it appears mainly activated in translocation-negative
ARMS compared to translocation-positive ones (202), and its
upregulation has been associated with a poor prognosis (204). A
recent study showed HH pathway activation in cells contained in
CSC-enriched structures including holoclones and spheres (53).
In UPS, the HH pathway has been linked to the maintenance
of self-renewal and proliferation of a subpopulation of putative
CSCs characterized by a SP phenotype (126).

Hippo pathway
The Hippo tumor suppressor pathway plays key roles in tissue
homeostasis and repair by regulating stem cell proliferation and
expansion (203). It consists of cytoplasmic kinases (MST1/2
and LATS1/2) that act as tumor suppressors by restraining
the activity of the transcriptional co-activators yes-associated
protein (YAP1)/transcriptional co-activator with PDZ-binding
motif (TAZ, also known as WWTR1) via phosphorylation,
hence preventing their nuclear localization and activation of
TEA domain (TEAD) family members transcription factors.
Dysregulation of the Hippo pathway has been linked to cancer
development, including STSs (205–208). Besides, increased
expression of YAP/TAZ has been correlated with the acquisition
of cancer stem cell traits that lead to EMT, drug resistance and

metastasis (209). Recent evidence points to the role of the Hippo
pathway in maintaining CSCs in STS. For instance, Linardic
and co-workers identified a novel NOTCH-YAP1-SOX2 circuit
critical for maintaining stem cell plasticity in ERMS (210). The
same group found expression of TAZ in ARMS, in which it
supports stemness and promotes drug resistance (211).

Notch pathway
The Notch pathway regulates cell fate determination mainly of
stem and/or progenitor cells during embryonic development of
organs such as pancreas, bones, muscles, heart and the nervous
system (186, 212, 213), and its role in CSC establishment and
maintenance has been reported in a wide range of human
cancers (214, 215). The Notch pathway was found deregulated
in some STS. For instance, both ERMS and ARMS show
significant upregulation of the pathway, which has been shown
to affect motility and invasiveness of both RMS subtypes
(216). However, its importance in RMS CSC self-renewal and
differentiation has been reported only for the ERMS subtype
(217). The Notch pathway was found hyperactivated also in
SP cells of UPS compared to non-SP cells, pointing toward a
critical role in in maintaining CSC self-renewal and proliferation
(126). In SS, Notch pathway components NOTCH1, JAG1
and the transducin-like enhancer of split (TLE)-1 were found
overexpressed, although any association with the CSC phenotype
of SS has not been yet reported (218).

Wnt/β-catenin pathway
TheWnt/β-catenin pathway plays roles in cell fate determination,
cell proliferation and migration during embryogenesis. After
development, it participates in preserving homeostasis in
different organs, mainly those who rely on the function of stem
cells (184, 185). Wnt/β-catenin signaling is involved in MSC
self-renewal and differentiation (219) and it appears aberrantly
expressed in a variety of CSC settings (220), although its role as
oncogenic influence is still debated since its recent association
with a tumor suppressive effect (221, 222). As an example,
in ERMS some researchers observed inhibition of the Wnt/β-
catenin pathway (223), whereas others identified opposing roles
for the canonical and non-canonical pathway in regulating ERMS
self-renewal and differentiation, as the canonical pathway plays
a tumor-suppressor role whereas the non-canonical pathway an
oncogenic one (224). By contrast, Wnt/β-catenin pathway has
not been extensively studied in ARMS, although Kephart et al.
found that an inhibitor of the Wnt/β-catenin pathway secreted
frizzled related protein 3 is upregulated in PAX3-FOXO1+
human ARMS cells, suggesting a tumor-suppressive role for
Wnt/β-catenin signaling (225).

In SS, Barham et al. provided evidence that the fusion protein
SYT-SSX2 activates Wnt/β-catenin signaling through its nuclear
reprogramming function, using a combination of SS cell cultures,
xenografts and a SYT-SSX2 transgenic mouse model. In this
study, inhibition of the Wnt pathway with small molecule CK1α
activators induced SS growth arrest and, importantly, reversed
the myogenesis block induced by the fusion oncoprotein by
downregulating many of the Wnt/β-catenin targets involved
in the embryonic program, including pluripotency factors,
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differentiation blockades, embryonic lineage determinants,
homeobox, and forkhead box factors (226), suggesting that
targeting this pathway may a rational approach in patients with
SS (227, 228).

In MPNSTs, a forward genetic screen using the Sleeping
Beauty mutagen transposon approach in vivo revealed the over-
activation of Wnt signaling, exemplified by overexpression and
enhanced activity of β-catenin due to both decreased levels of the
destruction complex and up-regulation of R-spondin2, a secreted
ligand that can stimulate Wnt signaling. Data were confirmed in
murine models of MPNST and in primary samples from patients,
and the translational relevance was verified from the evidence
that the blockade of this pathway affected the tumorigenic
properties of tumor cell lines in vitro and in vivo. Notably,
simultaneous inhibition of Wnt signaling and mTOR pathway,
the latter over-activated in this tumor, showed synergistic effects
suggesting a path to intervention (229). It has been proposed that
Wnt/β-catenin signaling activation could be also triggered by an
autocrine loop via the activation of the CXCR4 receptor, which
is overexpressed on the surface of MPNST cells, resulting in the
inactivation of GSK3β that mediates β-catenin destabilization
(230).

Epigenetic Alterations
Alterations of the epigenetic machinery are considered critical
for CSC formation and persistence. In both embryonic and adult
SCs, epigenetic processes modulate the transcriptional programs
to regulate the balance of self-renewal vs. differentiation. Thus,
undifferentiated SCs express high levels of TFs OCT4, SOX2,
and NANOG, which work to ensure the maintenance of self-
renewal and pluripotency through their co-localization on
specific regulatory regions (231, 232). During the differentiation
program, genes that are associated with pluripotency and self-
renewal become silenced, whereas tissue-specific genes are
turned on (233). Interestingly, developmental and lineage-
committed genes are often present within “bivalent” chromatin
domains (promoters and enhancers) containing both repressive
(H3K27me3 or H3K9me3) and permissive (H3K4me3 or
H3K4me1) histone marks (234–237). These genes are repressed
even if polymerase II is present on bivalent promoters/enhancers
to allow rapid activation (236, 238, 239) by safeguarding
differentiation. These bivalent regions appear to be enriched
for binding sites for at least one of the pluripotency TFs
mentioned above and can be poised for transcriptional activation
or repression during both developmental and differentiation
processes to respond quickly to developmental cues (238, 240–
242).

Some cancer cells have bivalently marked genes that
correspond to those in embryonic SCs, but a remarkable number
of regions that are bivalently marked in SCs are frequently
hypermethylated and thus completely silenced in cancer cells
(243, 244). Local DNA hypermethylation at tumor suppressor
genes or genes associated with differentiation has been shown to
predispose precancerous cells to oncogenic transformation and
CSC establishment (243, 244). Mechanistically, many tumor cells
show aberrant activation of the DNAmethyltransferases DNMT1
and DNMT3, which are involved in the maintenance of existing

methylation patterns or in the de novo methylation at CpG
islands, respectively. DNMT hyperactivation is also required for
the maintenance of the CSC subpopulations (245).

In the context of STSs, increased expression of DNMT1
in LPS (compared to fat) results in miR-193b downregulation
by promoter methylation (246). Expression of miR-193b has
been linked with adipogenesis in adipose-derived SCs and with
increased apoptosis in LPS cells, as miR-193b mimetics were
able to inhibit LPS xenograft growth in vivo (246). However,
further studies are required to clarify whether DNMT1 might
play a role in the establishment of CSCs in LPS. Similarly, in
ERMS DNMT3B appears to be important for the maintenance
of a less differentiated phenotype, since its depletion reverses cell
cancer phenotype by rescuing the myogenic program (247). In
uterine LMS, treatment with the HDAC inhibitor vorinostat in
combination with a DNA demethylating agent such as decitabine
allowed overcoming the resistance to cell death induction
due to promoter methylation of apoptotic genes (103). Given
that resistance to chemotherapeutics represents an essential
characteristic of CSCs, it is possible that DNAmethylation might
favor a CSC phenotype.

The process of CSC reprogramming has been also correlated
to histone modifications. Thus, it is not surprising that epigenetic
modifiers constitute the most altered genes in both solid cancers
and hematological malignancies (248). For example, enhancer of
zeste homolog 2 (EZH2), the catalytic subunit of the polycomb
repressive complex PRC2, has been found overexpressed in
several tumors, in which it contributes to H3K27me3-mediated
silencing of tumor suppressor genes, besides promoting a self-
renewal transcriptional program that allows CSC expansion
(249–253). Similarly, upregulation of a key subunit of the PRC1
complex, BMI1, has been shown to favor the reprogramming
toward a CSC phenotype through the repression of tumor
suppressor pathways in tumor-initiating cells (254, 255).

Except for BMI1, which has been reported to be highly
expressed in fractions of CD133+ SS cells, characterized
by increased clonogenicity, self-renewal, and in vivo tumor
formation (137), no association between histone modifications
and CSC phenotype has been demonstrated to date in STS.
However, studies showed altered expression of the epigenetic
modifier EZH2 in ERMS and SS, which has been related
to the survival of cancer cells and to the maintenance of a
less differentiated and more aggressive phenotype, suggesting
pharmacological inhibition of EZH2 as adjuvant differentiation
therapy (256–258). Also, a direct involvement of PRC2
components in the progression from neurofibroma to MPNST
has been demonstrated showing that, surprisingly, EZH2 works
as a tumor suppressor, and the detection of the loss of H3K27
trimethylation has entered the clinical practice to help in the
diagnosis of MPNST (83).

Three well characterized ATP-dependent chromatin
remodelers (SWI/SNF, ISWI, CHD) have also been also
implicated in tumor initiation. Loss of the SWI/SNF complex, for
instance, plays an important role in sarcomagenesis (259–261).
Together, these data indicate that alterations in chromatin status
may represent a key step for CSC formation and maintenance,
by inducing the activation of several stemness signals in
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differentiated cancer cells. In SS, the SS18-SSX fusion protein
has been shown to compete with SS18, a normal subunit of
the SWI/SNF complex, for the assembly into the complex, thus
reverting the H3K27me3-mediated repression at the Sox2 locus
(262). In RMS, several lines of evidence suggested that alteration
of SWI/SNF components might help to maintain tumor cells in
a less-differentiated state. Indeed, the activation of the ATPase
subunit of the SWI/SNF chromatin remodeling complex BRG1,
for instance, provided an open chromatin conformation for
the induction of myogenin in ERMS cell lines (263). Likewise,
silencing of the SWI/SNF complex subunit BAF53a, which has
been found hyper-expressed in primary RMS tumors compared
to normal muscle, increases the expression of myogenic markers
contributing to the differentiation program (264). Interestingly,
CHD4 was identified as an important epigenetic co-regulator of
PAX3-FOXO1 activity in ARMS. Together, both of these proteins
bind to the regulatory regions of PAX3-FOXO1 target genes
(265). All together, these data emphasize the necessity to address
the requirement of these epigenetic modifiers in the maintenance
of a stem-like phenotype in STSs.

CHALLENGES AND FUTURE DIRECTIONS

The role of CSCs in tumorigenesis and the ability to
therapeutically target their vulnerabilities will continue to be
important for all cancer types. However, since STSs are less
common than—for example—cancers of the breast, colon, lung,
prostate, and melanoma, and exhibit enormous cellular and
molecular heterogeneity, information regarding stemness in STS
and how to apply it therapeutically will lag. On the other
hand, because of the unique characteristics of STSs, there may
be unanticipated opportunities for investigation. For example,
since STSs are all soft tissue cancers of mesenchymal origin,
can we identify conserved CSC signatures spanning STSs that
can be exploited for therapy? Since many STSs have unique
signature translocations that drive their tumorigenesis, can we
compare and contrast the impact of the encoded oncogenic
fusion proteins on CSC stemness and identify commonalities
to target? It is likely that there is not a “one-size-fits-all” CSC
for STSs, and that translocation-positive STSs with their more
homogeneous genomes may need to be studied separately from
translocation—negative STSs in order to understand how and
when the stochastic and hierarchical models of CSCs apply.

There remain many gaps in the STS CSC field. Some of
these gaps are technical—for example, can we standardize our
definition of CSC, and consistently apply the most stringent
criteria for “stemness,” which is the ability for a small number
of tumor cells to give rise to an STS, rather than rely on
descriptions of stemness TF or cell surface marker expression?

On the other hand, some of these gaps are conceptual. Because
of the sheer number of STSs subtypes and the intrinsic
complexity of a heterogeneous tumor, it has not been possible
to undertake a comprehensive and systematic investigation of
other forces that impact cancer cell stemness in STSs, such as the
microenvironment, the CSC niche, the role of immunoediting,
mechanical cellular forces, and so forth (26, 266). Bridging these
knowledge gaps will take time and coordinated effort between
fields including but not limited to cancer biology, bioinformatics,
mathematics, bioengineering, immunology, and evolutionary
biology.

Regarding future directions, two fields in particular are rapidly
changing and having an immediate impact on STS biology
and therapy: epigenetics and immunotherapy. Knowledge of
epigenetic circuitry in both SC and CSC is increasing, and many
of the involved proteins have druggable moieties (267). Can these
moieties be evaluated in STS basic and preclinical studies? Once
we identify these moieties, can we then understand patterns
of treatment resistance, whereby one CSC epigenetic circuit
might compensate for another? Knowledge and application
of immunotherapy has also revolutionized the treatment of
cancer at the CSC level, including via monoclonal antibodies,
checkpoint modulators, and CAR-T approaches (268). For
example, targeting CSC markers is currently being attempted
via CAR-T cells against CD133 (clinicaltrials.gov NCT02541370,
NCT03423992, NCT03473457). Caution must be maintained,
however, since in some carcinoma xenograft studies even
CD133− cells can initiate tumors (269). Nevertheless, with
transdisciplinary approaches, we should have confidence that
knowledge of STS cancer stem cell biology will also progress and
lead to improve patient outcomes.
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