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Abstract

Functional integration between two hemispheres is crucial for perceptual binding to occur

when visual stimuli are presented in the midline of the visual field. Mima and colleagues

(2001) showed using EEG that midline object recognition was associated with task-related

decrease in alpha band power (alpha desynchronisation) and a transient increase in inter-

hemispheric coherence. Our objective in the current study was to replicate the results of

Mima et al. and to further evaluate interhemispheric effective connectivity during midline

object recognition in source space. We recruited 11 healthy adult volunteers and recorded

EEG from 64 channels while they performed a midline object recognition task. Task-related

power and coherence were estimated in sensor and source spaces. Further, effective con-

nectivity was evaluated using Granger causality. While we were able to replicate the alpha

desynchronisation associated with midline object recognition, we could not replicate the

coherence results of Mima et al. The data-driven approach that we employed in our study

localised the source of alpha desynchronisation over the left occipito-temporal region. In the

alpha band, we further observed significant increase in imaginary part of coherency

between bilateral occipito-temporal regions during object recognition. Finally, Granger cau-

sality analysis between the left and right occipito-temporal regions provided an insight that

even though there is bidirectional interaction, the left occipito-temporal region may be crucial

for integrating the information necessary for object recognition. The significance of the cur-

rent study lies in using high-density EEG and applying more appropriate and robust mea-

sures of connectivity as well as statistical analysis to validate and enhance our current

knowledge on the neural basis of midline object recognition.

Introduction

Visual object recognition involves complex information processing and coordinated commu-

nication between several brain regions across the two hemispheres. When an object stimulus is
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presented at the centre of the visual field, the image from the right hemifield is formed on the

left visual cortex and that from the left hemifield is formed on the right visual cortex. Although

our sensory systems use a divide-and-conquer strategy, our perception is of a unified whole

[1]. Therefore, for the brain to perceive a complete image of the object, the two internal images

need to be integrated. This phenomenon is called perceptual binding [2–5]. For perceptual

binding to occur, there has to be some form of communication or functional integration

between the two hemispheres. One of the widely accepted views on neuronal communication

is the ‘communication through coherence (CTC)’ hypothesis [6–9]. It proposes that distinctly

located neuronal groups can communicate with one another by virtue of phase-locked neuro-

nal oscillations known as neuronal coherence. The communication between the two hemi-

spheres during object recognition may also occur via such neuronal synchronisation or

coherence. Researchers in the past have studied these neuronal synchronisations using EEG

[10, 11]. A study by Mima and colleagues [12] identified transient interhemispheric occipito-

temporal synchronisation of alpha rhythm (frequency range 8–12 Hz) during a midline object

recognition task using 29-channel EEG. Their study demonstrated a significant increase in

interhemispheric coherence in the 117–373 ms time window when healthy human participants

viewed familiar object stimuli compared to when they viewed non-familiar or meaningless

object stimuli. They also observed that in the later time window of 373–639 ms, there was a sig-

nificant decrease in alpha power for both object and meaningless object stimuli that were dis-

played in the midline of the visual field. However, the study was not without limitations. The

authors presumed that the power and coherence changes would be best observed over a prede-

termined set of 4 electrodes that were positioned over the occipito-temporal regions. We know

that volume conduction is clearly a significant problem with EEG [13] and also that coherence

is a connectivity measure that could be greatly influenced by volume conduction [14, 15]. Fur-

thermore, due to the smaller number of EEG electrodes, they were not able to localize the

brain sources which could justify their choice of electrodes of interest. They also did not deter-

mine the direction of functional connectivity.

In the current study, we aimed to replicate the results of Mima et al. [12] using high density

EEG while participants performed the midline object recognition task and to resolve the limi-

tations of their study. Precisely, we intended to replicate the task-related alpha desynchronisa-

tion and the transient increase in interhemispheric coherence during midline object

recognition. We further sought to localize the sources in the brain that are crucial for midline

object recognition and also to determine the direction of this interhemispheric connectivity.

Materials and methods

Participants

Eleven healthy adult volunteers (mean age ± SD = 49.1y ± 14.7y; 6 women) participated in the

study. The sample size for the current study was determined by statistical power analysis.

Based on the results of Mima et al. [12], we intended to achieve a minimum effect size of 1.25

in event-related coherence, statistical power of 0.80 and threshold alpha of 0.05, which yielded

a sample size of 11 estimated based on paired sample t test. Participants were recruited from

the healthy volunteer database of the Human Motor Control Section. All participants were

right-handed as assessed by Edinburgh Handedness inventory [16]. The protocol was

approved by the Combined Neuro Sciences Institutional Review Board (CNS IRB) of the

National Institutes Health (NIH) and conformed to the guidelines of the Declaration of Hel-

sinki. All participants gave written informed consent prior to the study. They underwent a

physical and neurological examination by a physician and were certified eligible to participate

PLOS ONE Interhemispheric connectivity during object recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0270949 August 26, 2022 2 / 19

Funding: The work was supported by NINDS

intramural research program. NT was funded by

Ruth L. Kirschtein NRSA award from NINDS

(2013-2016) and DBT/WT India Alliance fellowship

grant IA/CPHI/16/1/502624 (2017-present). AD

was funded by the Master’s research fellowship

from the Department of Biotechnology, Ministry of

Science and Technology, India. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0270949


as a healthy volunteer in the study. They did not have any significant medical/surgical history

and did not take any medication that affected the central nervous system.

Procedure

The participants were seated comfortably on a chair and asked to relax. A 64-channel EEG cap

(Braincap, Brain Products GmbH, Germany) was positioned on the participant’s head and the

skin beneath the electrodes was prepared with abrasive and conductive gel to achieve an

impedance less than 5 kohms. EEG was recorded (Brainamp MR, Brain Products GmbH, Ger-

many) throughout the duration of the experiment at a sampling rate of 5000Hz with FCz as

reference and AFz as ground electrodes (See Fig 1A for electrode layout).

The experiment consisted of a single session split into 2 blocks, each consisting of 50 trials.

In every trial, a visual stimulus, which was an image of either a familiar/meaningful object or

an unfamiliar/meaningless object (taken from the standard set of meaningless objects pub-

lished in [17]), was briefly presented at the centre of the visual field. The participants had to

respond by pressing the left mouse button if they recognized the object and the right mouse

button if they did not. Visual masks were presented before and after the stimulus to prevent an

after-image. The inter-trial interval was 2s. A total of 50 object and 50 meaningless object sti-

muli were presented randomly over the 2 blocks of the experiment. The course of the experi-

ment is illustrated in Fig 1B.

T1-weighted anatomical magnetic resonance images (MRI) were obtained for all partici-

pants from a 3T scanner. Further, the positions of all the EEG electrodes in each participant

were captured using an MRI-guided optical neuronavigation system (Brainsight, Rogue Reso-

lutions, Cardiff, UK). Both the individual MRI images and the electrode positions were used

for precise source localization.

Sensor-space analyses

The EEG data analysis was performed using the MATLAB-based toolboxes–Brainstorm [18]

and FieldTrip [19], and custom-written scripts in MATLAB. Continuous raw EEG data were

bandpass filtered with lower cut-off frequency of 2 Hz, higher cut-off frequency of 50Hz and a

stopband attenuation of 60dB. The data was then downsampled to 1000Hz and re-referenced

to common average. The data from channels A1 and A2 were removed for all participants. For

one of the participant’s data from one block, the signal from channel CPz was intermittently

saturated and had large fluctuations. Hence, CPz channel was removed from this particular

dataset and later interpolated using EEGLAB toolbox. Eye blinks and eye movement artefacts

were removed using SSP/ICA methods. An average of 2 ICA components was removed from

both datasets of the participants. The data was epoched from -2 seconds to 4 seconds from the

time of stimulus onset. The trials which had excessive muscle artefacts were removed by care-

ful visual inspection. The trials from both the blocks were then pooled together and those with

correct responses were categorized into objects and meaningless objects datasets. An average

of 44 ± 4 (mean ± SD; range: 36–49) meaningless objects trials and 44 ± 3 (mean ± SD; range:

37–49) object trials per participant were finally used for the analyses.

Time frequency analysis was performed using short-time Fourier transforms with Hanning

window tapering for the frequency range of (2–50) Hz with a stepping frequency of 1 Hz. Slid-

ing time windows of 500 ms length were used with 50% overlap of segments, which yielded a

frequency resolution of 4 Hz. The resulting values were then log-transformed and normalised

to the baseline -500–0 ms to obtain the task-related power change over time. Further, we calcu-

lated the alpha band power over the electrodes of interest for five (1 baseline + 4 task-related)

500 ms time windows. We defined such distinct time windows based on the results obtained
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by Mima and colleagues because we intended to verify if their results were temporally replica-

ble or not.

We calculated interhemispheric alpha band (8–12 Hz) coherence for the electrode pairs of

interest (TP7-TP8; P7-P8; TP7-P8 and P7-TP8). These electrodes were chosen by Mima and

colleagues based on previous neuroimaging studies which had shown that the regions underly-

ing these electrodes were involved in object recognition. Magnitude-squared coherence [20] is

a statistical measure which computes the relation between two signals, like x(t) and y(t), in the

frequency domain. We calculated magnitude-squared coherence (Cxy) via the algorithm

embedded in Brainstorm toolbox [18], which used the following formula–

Cxy ðfÞ ¼
jSxyðfÞj

2

SxxðfÞSyyðfÞ

The coherence function used the Fourier transform (f) to compute the spectral densities.

Sxy (f): - Cross-spectral density

Sxx (f) and Syy (f): - Auto-spectral density

For every participant, the mean alpha (8–12 Hz) coherence for the electrode pairs of interest

were calculated separately for five different 500 ms time windows [Baseline = average of -750

to -250 ms & -500 to 0 ms; t1 = 0–500 ms; t2 = 250–750 ms; t3 = 500–1000 ms; t4 = 750–1250

ms]. We then applied inverse hyperbolic tangent transformation to stabilize the variance and

calculated task-related coherence (Coh task–Coh baseline) [21].

Additionally, to alleviate the problem of volume conduction, we also calculated imaginary

part of coherence [22], which is a more conservative and robust method of evaluating func-

tional connectivity. Imaginary part of coherency, ICxy, was calculated as:

ICxy ðfÞ ¼
Im ðSxy ðfÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SxxðfÞ SyyðfÞ

p

Imaginary part of coherency was calculated for the same 5 time windows and the frequency

bands, as used for the calculation of magnitude-squared coherence. Using the imaginary part

of coherency reduces the possible confounding effects of zero-lag interactions. However, when

estimated in sensor-space, even this measure does not provide any meaningful interpretations

in terms of underlying cortical sources, but it provides only an estimate of statistical dependen-

cies between sensors [14, 23].

Source localisation and analysis of source data

Each participant’s individual MRI image was used for constructing the forward model and

localising the sources of alpha band activity. The fiducial points were set according to the CTF

head coordinate system, by computing automatic MNI normalisation [24] followed by manual

adjustments. MRI segmentation for each participant was done using the SPM12 algorithm

embedded in the Brainstorm interface. Next, the positions of the EEG electrodes which were

captured using the neuronavigation system, were used to co-register the MRI anatomy for

every participant. The electrodes positions were then manually adjusted to ensure that the sen-

sors were optimally positioned on the scalp surface.

Fig 1. (A) Electrode layout used for the experiment. Red ovals indicate the electrodes of interest: TP7, TP8, P7, P8

used in Mima et al. 2001. (B) Illustration of experimental design. (C) Example images of object (top panel) and

meaningless object (bottom panel) stimuli.

https://doi.org/10.1371/journal.pone.0270949.g001
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For performing source localisation, the forward model for every participant was con-

structed using the Symmetric Boundary Element Method of the OpenMEEG [25, 26] software.

A head surface was also estimated. A noise-covariance matrix was estimated from the individ-

ual participant’s EEG recordings, for baseline time window -2 to -0.001 s. Finally, with the

help of a linear kernel, the minimum norm estimate method was employed to estimate dynam-

ical Statistical Parametric Mapping (dSPM) [27] sources from every trial’s sensor data.

Time frequency analysis was performed on the sources of the individual trials under each

condition. To compute time-frequency maps, short-time Fourier transform with Hanning

window tapering was performed on 100 ms data segments sliding from -0.5s to 1s with 50%

overlap. The obtained maps were then normalised to baseline (-0.5s to 0s) using z-score

normalisation.

For determining the interhemispheric coherence, two regions of interest (ROIs) were

demarcated based on the results of power spectral analysis. These ROIs were then projected on

each participant’s individual anatomical cortex surface and the mean time series data from

them were extracted for the time range -0.5s to +1s.

Magnitude-squared coherence and imaginary part of coherency values were computed

between these two ROIs, participant-wise and for each condition. Spectral Granger causality

[28, 29] values were computed in the frequency domain for both left ROI-to-right ROI and

right ROI-to-left ROI directions, using FieldTrip toolbox [19].

Statistical analysis

Sensor space. To replicate the results of Mima and colleagues, we extracted the task-

related alpha power and coherence values, and performed statistical analysis using IBM SPSS

Statistics version 23. For alpha power, repeated measures ANOVA was applied with mean

task-related power over electrodes of interest as dependent variable, and stimulus (object/

meaningless object) and time (t1/ t2/ t3/ t4) as independent variables. For coherence data,

mean task-related alpha band coherence over the electrode pairs of interest was used as the

dependent variable. The data were tested for sphericity using Mauchly’s test and Greenhouse-

Geisser correction was applied wherever needed. A p value of 0.05 was considered to be statis-

tically significant. Further, relevant post hoc pairwise comparisons were made and Bonferroni

correction was applied to correct for multiple comparisons.

Source space. Using the results from the time-frequency analysis in the source space, a

paired permutation test [30] (via algorithm embedded in Brainstorm toolbox) was performed

for the time window of -0.5s to 1s. The threshold p-value was set at 0.05 and corrected for mul-

tiple comparisons. The obtained results were projected on a template anatomy cortex for

visualisation.

Data-driven analysis

Mima et al. used only four electrodes of interest for their analysis. They were selected on the

basis of prior neuroimaging studies that showed those locations to be involved in object recog-

nition. Since we could not replicate their coherence results, we wanted to verify whether this

selection of electrodes was appropriate using a data-driven approach. We applied non-

parametric cluster based permutation tests [31] on the alpha power data from all 64 channels

and across all time points, and looked for time points and electrodes that showed significant

differences in the task-related alpha power change for object versus meaningless object stimuli.

A similar data-driven statistical approach [32] was also employed to identify electrode pairs of

interest that showed significant differences in coherence.
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Results

All participants tolerated the procedure well and no adverse events occurred. An average of

89 ± 6 (mean ± SD, range: 78–98) trials (including object and meaningless object trials) per

participant were used for final analysis.

Sensor space

We did not observe any significant difference in the baseline alpha power (t(10) = -1.50964;

p = 0.162065) and coherence (t(10) = -0.75202; p = 0.469367) for object versus meaningless

object stimuli. Time frequency plots for objects and meaningless objects over the electrodes of

interest (TP7, TP8, P7, P8) showed a clear decrease in task-related power for both object and

meaningless object stimuli in the alpha (8-13Hz) frequency band (see Fig 2). We were able to

replicate the non-specific alpha desynchronisation, as reported by Mima et al. [12]. ANOVA

showed significant main effect of time (F(1.881,18.814) = 16.409, p<0.001), but not stimulus

(F(1,10) = 0.631, p = 0.445). We did not find a significant time x stimulus interaction (F (4,40)

= 0.901, p = 0.472). Post-hoc pairwise comparisons using paired t-test showed that for both

object and meaningless object stimuli, alpha power was significantly lower (objects: t(10) =

5.401; p<0.001 meaningless objects: t(10) = 3.647; p<0.005) during t2 (250–750 ms) alone

(Fig 3).

With the connectivity analysis, however, we could not reproduce the increase in interhemi-

spheric magnitude-squared coherence that was reported by Mima and colleagues. ANOVA

showed neither time (F(2.596,25.958) = 0.664, p = 0.561) nor stimulus (F(1,10) = 0.385,

p = 0.549) nor their interaction (F(2.708,27.078) = 2.024, p = 0.168) to be significant (Fig 4A).

For imaginary part of coherency (Fig 4B), ANOVA showed no significant main effects but sig-

nificant stimulus x time interaction (F(4,40) = 2.928, p = 0.033). Further, post-hoc pairwise

comparisons with paired t-test showed a near-significant difference between objects and

meaningless objects conditions in 500–1000 ms time window (t(10) = 2.183; p = 0.054).

A non-parametric cluster-based permutation test showed significant alpha desynchronisa-

tion over C3, P3, Pz and O1 electrodes for time points 600 and 700ms (p = 0.02) (Fig 5A and

5B). However, similar analysis for coherence data did not reveal any significant electrode

clusters.

Fig 2. Frequency power spectrum averaged over four electrodes of interests (TP7, TP8, P7, P8) for object (2A)

and meaningless object (2B) stimuli plotted across time.

https://doi.org/10.1371/journal.pone.0270949.g002
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Source space

Paired permutation test was performed on the power spectrum data (averaged across time and

frequency) from the source grids for the alpha band (8–12 Hz) and for the 500–750 ms time

window. The results from the comparison of ‘objects’ vs ‘meaningless objects’ were projected

on a template cortex (Fig 6), for visualisation of the regions which showed significant differ-

ence between conditions. As shown in the figure, the left occipito-temporal region showed sig-

nificant desynchronisation during object recognition. Based on this result, the ROIs were

demarcated such that the first ROI covered the left occipito-temporal region and the second

ROI covered the homologous region in the right hemisphere. Fig 7 shows the two ROIs com-

prising equal number of vertices, between which connectivity analysis was performed. To eval-

uate the connectivity between the defined ROIs, magnitude-squared coherence was computed

in the alpha band for five different time windows. ANOVA did not show a significant main

effect of stimulus (F(1, 10) = 1.813, p = 0.208) or stimulus x time interaction (F(4, 40) = 0.136,

p = 0.968). However, main effect of time (F(2.384, 23.842) = 8.592, p = 0.001) was significant.

Post hoc analysis revealed the increase in coherence with respect to the baseline, during the

time window of 0–250 ms to be statistically significant (objects: t(10) = -2.28554; p = 0.045

meaningless objects: t(10) = -3.55515; p = 0.005) (Fig 8A).

In order to minimize volume conduction effects that may give rise to spurious connectivity

between regions, imaginary part of coherency was computed [22]. The results of ANOVA

revealed a significant main effect of stimulus (F(1,10) = 6.128, p = 0.033) alone. Main effect of

time (F(4,40) = 0.448, p = 0.773) and stimulus x time interaction (F(4,40) = 1.193, p = 0.329)

were not significant. Post-hoc pairwise comparisons showed that there was a significant

increase in imaginary part of coherency for object stimuli in the 250–500 ms time window (t

(10) = 2.219; p = 0.05) (Fig 8B).

Further, we determined the direction of this transient increase in interhemispheric connec-

tivity. Granger causality values were computed between the ROIs, in both left-to-right and

right-to-left directions for the time window of 250–500 ms (Fig 9) as the imaginary part of

coherency was significantly different between conditions only during this time period.

ANOVA results showed significant main effect of direction (F(1,10) = 7.386, p = 0.022) but

Fig 3. Task-related change in alpha band power averaged over four electrodes of interest (TP7, TP8, P7, P8) and

plotted for different time windows. Solid black bars represent object stimuli; checked bars represent meaningless

object stimuli. t1 = 0–500 ms; t2 = 250–750 ms; t3 = 500–1000 ms; t4 = 750–1250 ms. Error bars are SEM. Asterisks

indicate p<0.05.

https://doi.org/10.1371/journal.pone.0270949.g003
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not stimulus (F(1, 10) = 0.068, p = 0.799) or stimulus x direction interaction (F(1,10) = 1.374,

p = 0.268). Although left-to-right causality was observed to be more than right-to-left

causality for both object and meaningless object stimuli, post-hoc pairwise comparisons using

paired t test showed that left-to-right directional connectivity was significantly higher only for

object stimuli (t(10) = 2.605, p = 0.026) but not for meaningless objects (t(10) = 1.197,

p = 0.259).

Fig 4. (A) Task-related change in alpha band coherence averaged for four electrode pairs of interest (TP7-TP8,

TP7-P8, P7-TP8 and P7-P8) pairs and plotted for four different time windows. Solid black bars represent object

stimuli; checked bars represent meaningless object stimuli. t1 = 0–500 ms; t2 = 250–750 ms; t3 = 500–1000 ms;

t4 = 750–1250 ms. Error bars are SEM. (B) Task-related change in imaginary part of coherency for alpha band

averaged for four electrode pairs of interest (TP7-TP8, TP7-P8, P7-TP8 and P7-P8) and plotted for four different time

windows. Solid black bars represent object stimuli; checked bars represent meaningless object stimuli. t1 = 0–500 ms;

t2 = 250–750 ms; t3 = 500–1000 ms; t4 = 750–1250 ms. Error bars are SEM.

https://doi.org/10.1371/journal.pone.0270949.g004
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Discussion

In the current study, we were able to partially replicate the results of Mima et al. [12]. We con-

firmed that the stimulus non-specific alpha desynchronisation occurs in the time window

around 500ms. However, we could not replicate the transient increase in interhemispheric

alpha coherence associated with object recognition using the same electrode pairs of interest.

Further, with detailed analysis using a data-driven approach we showed that there is signifi-

cantly high alpha desynchronisation associated with object recognition over C3, P3, Pz and O1

Fig 5. (A) Results of non-parametric cluster-based permutation analysis of power spectrum data for alpha band.

Asterisks indicate electrodes that showed significant difference (p<0.05) in alpha power between the two stimulus

conditions (Objects minus meaningless objects) that occurred at 0.6s (left) and 0.7s (right). The prominent cluster

visible over the left occipito-temporal region included C3, P3, Pz and O1 electrodes. (B) Task-related change in alpha

power averaged for the significant electrode cluster (C3, P3, Pz and O1) and plotted for four time windows. Solid black

bars represent object stimuli; checked bars represent meaningless object stimuli. t1 = 0–500 ms; t2 = 250–750 ms;

t3 = Cxy (f) = 500–1000 ms; t4 = 750–1250 ms. Error bars are SEM. Asterisks indicate p<0.05.

https://doi.org/10.1371/journal.pone.0270949.g005
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electrode cluster. We localised the source of this alpha desynchronisation to be in the left occi-

pito-temporal region and showed that interhemispheric connectivity (imaginary part of coher-

ency) between the homologous regions increased significantly for object recognition during

the 250–500 ms time window. Using Granger causality, we also showed that the interhemi-

spheric connectivity associated with object recognition is driven by the left occipito-temporal

region.

The possible reason why we could not replicate the sensor-space coherence results of

Mima’s study could be because of the high inter-individual variability in the data especially

with a sample size of 8 in Mima’s study [12]. Using the effect size and variability in their

results, we performed a statistical power analysis and accordingly used 11 participants for our

study. Notably, we used more appropriate and powerful analytical tools which have demon-

strated convincingly the transient increase in interhemispheric connectivity during midline

object recognition.

As in our study, recording with a higher-density EEG system is known to enable better cap-

turing of brain activity in the sensor space itself as we can record signals from more distributed

regions of the brain [33]. Also, our efforts in using the same protocol of data analysis as

Mima’s study, not only validated their results but also gave more definition and accuracy to

their observations. Very relevant in this context would be a study by Robinson et al. [34],

Fig 6. Results of paired permutation test (objects vs meaningless objects) performed on alpha power spectrum of

sources and projected on a template anatomy cortex.

https://doi.org/10.1371/journal.pone.0270949.g006

Fig 7. Regions of interest (ROIs) demarcated based on the results of time-frequency analysis for source space. The

left ROI encompassed the occipito-temporal region in the left hemisphere that showed significant alpha

desynchronisation associated with object recognition and the right ROI included the homologous region in the right

hemisphere.

https://doi.org/10.1371/journal.pone.0270949.g007

PLOS ONE Interhemispheric connectivity during object recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0270949 August 26, 2022 11 / 19

https://doi.org/10.1371/journal.pone.0270949.g006
https://doi.org/10.1371/journal.pone.0270949.g007
https://doi.org/10.1371/journal.pone.0270949


which showed both experimentally and computationally that 128-channel EEG captured con-

siderably more neural information from the visual cortex than 33-channel configurations

designed from 128-channel cap. Therefore, our study using 64-channel EEG allowed for a

more precise and accurate localisation of the sources of activity, compared to 29-channel EEG

Fig 8. (A) Task-related change in alpha band coherence between the left ROI and right ROI in source space and

plotted for four different time windows. Solid black bars represent object stimuli; checked bars represent meaningless

object stimuli. t1 = 0–250 ms; t2 = 250–500 ms; t3 = 500–750 ms; t4 = 750–1000 ms. Error bars are SEM. Asterisks

indicate p<0.05. (B) Task-related change in imaginary part of coherency for alpha band between the left ROI and right

ROI in source space and plotted for four different time windows. Solid black bars represent object stimuli; checked

bars represent meaningless object stimuli. T1 = 0–250 ms; t2 = 250–500 ms; t3 = 500–750 ms; t4 = 750–1000 ms. Error

bars are SEM. Asterisks indicate p<0.05.

https://doi.org/10.1371/journal.pone.0270949.g008
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used by Mima et al. The advantage of using an EEG system with a higher density of electrodes

has been acknowledged by many researchers in the past. A study by Lantz et al [35] had mea-

sured EEG under clinical conditions and found that increasing the number of electrodes from

31 to 63 to 128, considerably increased the source localisation accuracy. Another valuable

component in the current study is the time-frequency and connectivity analyses performed

using a data-driven approach [36], so as to get a global insight into the brain activity during

object recognition and also to confirm that the electrodes chosen by Mima’s study were appro-

priate. We clearly show in our results that by choosing a predetermined set of electrodes,

Mima et al. had overlooked the stimulus-specific alpha desynchronisation in a neighbouring

electrode cluster which we have identified in the current study. This also reiterates the inherent

problem of volume conduction with EEG. Additionally, in our study, we support the sensor-

space results with source localisation via estimation of head model from individual partici-

pant’s MRI. The advantage of EEG source localisation over other neuroimaging modalities,

lies not only in its reasonably precise localisation of sources, but also its high temporal resolu-

tion, which enables us to distinctly track the temporal propagation of information from the

origin of activity to other regions in distributed brain networks [37, 38].

At the time when Mima et al. [12] published their results, coherence (cross-spectra normal-

ised by auto-spectra), was a widely used measure for estimating connectivity between brain

regions at the sensor level. However, this method has a major drawback that it does not tackle

the problem of volume conduction [14] which is the superposition of many sources on a single

overlying sensor. A few years later in 2004, a study by Nolte et al. [22], introduced the use of

the ‘imaginary part of coherency’ measure which eliminates all sources of extraneous activity

that are a consequence of instantaneous activity and captures true source interactions with a

time lag. This method of estimating connectivity, although very conservative, is much more

robust [39] than coherence as it has a 100% positive predictive value, i.e., whenever it produces

a significant value, it indicates presence of coordinated activity between distinct sources. It

does not capture self-correlation or coordination of the same sources [15, 40, 41]. In our study,

Fig 9. Results of Granger causality (GC) analysis between left and right ROI in source space for the time window

of 250–500 ms. Solid black bar represents Left to Right GC for object stimuli; solid white bar represents Right to Left

GC for object stimuli; solid grey bar represents Left to Right GC for meaningless object stimuli; checked bar represents

Right to Left GC for meaningless object stimuli. Error bars are SEM. Asterisks indicate p<0.05.

https://doi.org/10.1371/journal.pone.0270949.g009
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we evaluated both magnitude-squared coherence [20, 42] and imaginary part of coherency

[22] in the sensor space as well as source space. Although we did not see significant results

with magnitude-squared coherence, evaluating imaginary part of coherency yielded significant

results in the time window of our interest. Having used a more conservative measure to bypass

one of the biggest drawbacks of EEG, we can confidently say that our results are more repre-

sentative of true and robust functional connectivity [22, 39] since it excludes self-correlations

arising from volume conduction. One of the reasons why we could not obtain significant mag-

nitude-squared coherence could be due to considerable volume conduction. Since we were

evaluating connectivity in the alpha frequency range, there is a possibility that a common

alpha rhythm, probably from the occipital cortex, was picked up by all the electrodes. Our

results showing significant increase in imaginary part of coherency within the first 500 ms of

stimulus presentation, confirms that there is definitely an enhanced flow of information

between the two hemispheres during that time window. This is also in accordance with the

results of Mima et al. which also identified that the coherence change preceded the power

change. We have not fully exploited the advantage of high temporal resolution of the tech-

nique. However, we have been able to achieve precise localization of activity and narrow down

our findings to a temporal resolution of 250ms. We had to pool our data to 250ms time win-

dows to decrease the number of multiple comparisons. Future studies can focus on further

improving upon the current methodology by using MEG to decrease volume conduction

effects or increasing the temporal resolution of the effects.

The ROI that we identified to be specific for object recognition lies in the occipito-temporal

region, falling in the ventral (what) pathway of visual processing [43]. The visual information

from the retina reaches the striate cortex or V1 after a few synapses. Further processing of this

information occurs via two main pathways—either a dorsal (occipito-parietal stream) path

from V1 to posterior regions of the parietal lobe or a ventral (occipito-temporal stream) path

from V1 to the temporal lobe of the brain. It is known that the ventral stream is associated

with object recognition; i.e., for determining ‘what’ the object is, whereas the dorsal stream is

crucial for spatial perception–for determining ‘where’ an object is. The region which showed

significant alpha desynchronisation during midline object recognition in our study clearly falls

in the left hemisphere’s ventral stream of visual processing [1, 43]. This confirms that our

region of interest is surely relevant to object recognition. However, our results from time-fre-

quency analysis in the source space showed that the significant change in alpha power is more

pronounced in the left hemisphere than in the right hemisphere. We did not see significant

change in alpha power during object recognition over the right hemisphere. Existing literature

provides two possible reasons for this observation–ocular dominance and attentional bias.

Ocular dominance or eyedness is the tendency to prefer visual input from one eye than the

other eye [44]. Studies have shown how handedness is related to one’s dominant eye; i.e.,

right-handed people tend to have their right eye as the dominant one [45, 46]. As all the partic-

ipants in our study were right-handed, it is possible that they had right-eye dominance and

therefore a perceptual bias in the left hemisphere [47]. Secondly, both modelling [48] and

empirical studies [49] in the past have shown evidence for a hemispheric bias (theory of inter-
hemispheric competition) in attentional mechanisms and it is known that the rightward bias of

the left hemisphere is stronger than the leftward bias of the right hemisphere. This asymmetry

leads to a left-hemispheric dominance in attention. Alpha desynchronisation is representative

of an active state with respect to visual processing [50] as decrease in alpha power is associated

with increased attention [51]. Thus, significant decrease of alpha power over only the left

hemisphere may suggest that attentional networks were active during the time frame of recog-

nition [52]. Finally, recognition of a meaningful object involves matching of the visual infor-

mation with prior semantic knowledge of the object’s features and retrieving the object’s name
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correctly which is a language skill. As previous studies have shown that semantic processing

and language lateralization are predominantly localised in the left hemisphere [53–55], it

seems plausible that we clearly observed dominance of left hemispheric activity during object

recognition [56].

In conclusion, our results confirm that midline object recognition requires integration of

information from the two hemispheres. This interhemispheric exchange of information is

mediated by transient synchronisation of neuronal activity between the ventral pathways of

visual processing. Interhemispheric coherence has relevance not only in the visual sensory sys-

tem but is also crucial for a broad repertoire of cognitive functions including language, visuo-

spatial attention and manual preference [57–59]. Consequently, disruption of

interhemispheric coherence may impact behavioural [60, 61] and cognitive functioning. Thus,

our study may have implications in many neuropsychiatric disorders like schizophrenia [62–

65], stroke [66, 67], focal hand dystonia [68] where interhemispheric coherence is known to be

impaired. Future studies may attempt to boost the impaired interhemispheric connectivity,

using non-invasive brain stimulation methods [69, 70] like rhythmic transcranial magnetic

stimulation or transcranial alternating current stimulation and evaluate the impact on

behaviour.
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