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ABSTRACT Bacterial adhesion is accompanied by altered gene expression, leading
to “emergent” properties of biofilm bacteria that are alien to planktonic ones. With
the aim of revealing the role of environmental adhesion forces in emergent biofilm
properties, genes in Streptococcus mutans UA159 and a quorum-sensing-deficient
mutant were identified that become expressed after adhesion to substratum sur-
faces. Using atomic force microscopy, adhesion forces of initial S. mutans colonizers
on four different substrata were determined and related to gene expression. Adhe-
sion forces upon initial contact were similarly low across different substrata, ranging
between 0.2 and 1.2 nN regardless of the strain considered. Bond maturation re-
quired up to 21 s, depending on the strain and substratum surface involved, but
stationary adhesion forces also were similar in the parent and in the mutant strain.
However, stationary adhesion forces were largest on hydrophobic silicone rubber (19
to 20 nN), while being smallest on hydrophilic glass (3 to 4 nN). brpA gene expres-
sion in thin (34 to 48 �m) 5-h S. mutans UA159 biofilms was most sensitive to adhe-
sion forces, while expression of gbpB and comDE expressions was weakly sensitive.
ftf, gtfB, vicR, and relA expression was insensitive to adhesion forces. In thicker (98 to
151 �m) 24-h biofilms, adhesion-force-induced gene expression and emergent extra-
cellular polymeric substance (EPS) production were limited to the first 20 to 30 �m
above a substratum surface. In the quorum-sensing-deficient S. mutans, adhesion-
force-controlled gene expression was absent in both 5- and 24-h biofilms. Thus, ini-
tial colonizers of substratum surfaces sense adhesion forces that externally trigger
emergent biofilm properties over a limited distance above a substratum surface
through quorum sensing.

IMPORTANCE A new concept in biofilm science is introduced: “adhesion force sensi-
tivity of genes,” defining the degree up to which expression of different genes in
adhering bacteria is controlled by the environmental adhesion forces they experi-
ence. Analysis of gene expression as a function of height in a biofilm showed that
the information about the substratum surface to which initially adhering bacteria ad-
here is passed up to a biofilm height of 20 to 30 �m above a substratum surface,
highlighting the importance and limitations of cell-to-cell communication in a bio-
film. Bacteria in a biofilm mode of growth, as opposed to planktonic growth, are re-
sponsible for the great majority of human infections, predicted to become the num-
ber one cause of death in 2050. The concept of adhesion force sensitivity of genes
provides better understanding of bacterial adaptation in biofilms, direly needed for
the design of improved therapeutic measures that evade the recalcitrance of biofilm
bacteria to antimicrobials.
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Biofilms are surface-adhering and surface-adapted communities of microorganisms
(1), in which adhesion to a substratum surface is the initial step. Two surfaces,

including the surface of bacteria adhering on a substratum surface, can be attracted to
each other by a combination of Lifshitz-van der Waals, electrostatic double-layer, and
acid-base forces (2). The sum total of these forces is generally called the “adhesion
force.” The environmental adhesion forces by which a bacterium adheres to a surface
are orders of magnitude larger than the gravitational forces bacteria experience and
give rise to nanoscopic deformation of the cell wall (3, 4). Cell wall deformation in its
turn causes changes in lipid membrane surface tension that provides a stimulus for the
environmentally triggered expression of a great number of genes in adhering bacteria
(5) to facilitate their surface adaptation. This leads to new, so-called “emergent”
properties of adhering bacteria in their biofilm mode growth (6). Emergent properties
reflect bacterial surface adaptation and arise only after bacteria have adhered to a
surface. According to their definition (6), emergent properties of bacteria in biofilm
mode growth are alien to their planktonic counterparts and cannot even be predicted
on the basis of the properties of planktonic bacteria. The most prominent, landmark
emergent property of adhering bacteria is the production of an extracellular polymeric
matrix in which biofilm bacteria protect themselves against host defenses (7) and
antimicrobial agents (8, 9) and through which they enforce their bond with a substra-
tum surface (10).

Adhesion-force-induced surface adaptation in adhering bacteria has been observed
in Staphylococcus aureus biofilms for the icaA gene, regulating production of extracel-
lular polymeric substances (EPS). However, adhesion-force-induced surface adaptation
was not observed for the cidA gene, which is associated with cell lysis and extracellular
DNA (eDNA) release (11). Also, nisin clearance in staphylococci through the two-
component NsaRS intramembrane-located sensor NsaS and NsaAB efflux pump (12)
was enhanced when staphylococci adhered more strongly to a substratum surface (13).
Hitherto, adhesion force sensing and associated cell wall deformation have appeared as
an appealing concept to explain what environmental stimulus externally triggers the
development of emergent properties of bacteria in biofilm mode growth. Yet, there still
are many questions to be addressed, most urgently concerning the range over which
adhesion force sensing operates in a biofilm. Typically, biofilms are much thicker than
the range of the adhesion forces extending from a substratum surface. Adhesion forces
can yield an attraction that can be sensed up to maximally 0.5 �m into a biofilm (2, 3).
The exact magnitude and range of an adhesion force depend on the hydrophobicity
and charge properties of the bacterial cell and substratum surfaces. Compared with the
thickness of a biofilm, the range over which adhesion forces operate is relatively short.
This suggests that quorum sensing plays a role in spreading the “news” that initial
colonizers in a biofilm have “landed” on a substratum surface exerting a specific
adhesion force. However, this suggestion has never been confirmed. Furthermore,
adhesion force sensing has never been confirmed in other species than staphylococci.

Adhesion to surfaces is a survival mechanism for streptococci in the oral cavity (14).
Accordingly, Streptococcus mutans has the ability to adhere to oral hard and soft tissues,
abiotic restorative dental materials, and other bacteria in the oral cavity (15). Frequently
studied genes involved in S. mutans initial adhesion and biofilm formation are sum-
marized in Table 1. Based on the definition of “emergent” properties as given by
Flemming et al. (6) and literature description of gene functions, a hypothetical distinc-
tion is made between genes whose expression prepares planktonic bacteria for adhe-
sion to a substratum surface and genes relevant for the development of emergent
properties in adhering bacteria. For instance, genes that regulate synthesis of specific
ligands of planktonic streptococci for optimal initial adhesion to saliva-coated surfaces,
such as ftf and gtfB (16–19), are not considered to be involved in the development of
emergent properties that arise by definition in already adhering bacteria. Also, genes
regulating bacteriocin production, cell death, and chemical stress responses (comDE,
virR, gbpB, and relA), although vital in biofilm formation, may not bear direct relevance
to EPS production, enforcing strong adhesion of biofilm inhabitants to a substratum
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surface (20–22). Autoinducer 2 in the S. mutans luxS quorum-sensing system (see also
Table 1) coordinates communication in S. mutans biofilms (23) and may be expected to
impact the extension of adhesion-force-sensitive genetic programming into a mature
biofilm, as adhesion forces can only be directly sensed by initial colonizers (4).

In order to further advance the concept of adhesion-force-induced gene expression
in relation to emergent biofilm properties, the aim of this article is first to identify genes
involved in biofilm formation by S. mutans and an isogenic, quorum-sensing-deficient
mutant whose expression is controlled by environmental adhesion forces. This would
confirm the hypothetical distinctions made in Table 1 between genes preparing
planktonic bacteria for adhesion to a substratum surface and genes relevant for the
development of emergent properties in adhering bacteria. To this end, biofilms of S.
mutans UA159 and its �luxS isogenic mutant were grown on four substratum surfaces
with different hydrophobicities, and single-bacterial contact probe atomic force mi-
croscopy (AFM) was applied to measure the forces by which both strains adhere to each
substratum surface. Gene expression was evaluated using RT-qPCR. Up- or downregu-
lation of selected genes upon adhesion was related to the forces by which the
streptococci adhere to yield a new concept of “adhesion force sensitivity of gene
expression.” Uniquely, the extension of adhesion-force-induced genetic programming
over the height of the biofilms above a substratum surface was investigated in
cryosections of the biofilms taken at different heights above a substratum surface.
Herewith it can be determined to what extent quorum sensing controls adhesion-force-
induced gene expression in later biofilm inhabitants, residing further away from the
substratum surface and not in direct contact with the substratum surface. Whiteness
analyses of optical coherence tomography (OCT) images of biofilms was employed to
support the conclusions regarding height-dependent gene expression taken from
cryosections of the S. mutans biofilms.

RESULTS
Bacterial cell and substratum surface characteristics. First, it was established that

S. mutans UA159 and its isogenic mutant UA159 �luxS exhibited comparable cell
surface characteristics, despite exchange of the luxS gene using an erythromycin
resistance determinant (24). Hydrophobicity and charge are both important physico-
chemical bacterial cell surface characteristics involved in adhesion and in combination
with comparable properties of the substratum surface define the magnitude of the

TABLE 1 Summary of genes involved in S. mutans UA159 initial adhesion and subsequent processes occurring during biofilm formation

Genea Function Reference(s)

Genes relevant to prepare initial adhesion
in planktonic S. mutans

ftf Catalysis of sucrose cleavage to synthesize fructan to promote
initial adhesion to salivary films

16, 17

gtfB Synthesis of water-insoluble glucans (�-1,3-linked) to promote
initial adhesion to saliva-coated tooth surfaces and establishment
of microcolonies in biofilm

18, 19

Genes relevant to develop emergent
properties in adhering S. mutans

brpA Regulation of cell wall stress responses, biofilm cohesiveness,
and biofilm formation

24, 33, 34

comDE Persister cell formation, bacteriocin production 30
vicR Synthesis of EPS matrix components, regulation of bacteriocin

production and cell death
44, 45

gbpB Regulation of sensitivity to antibiotics, osmotic and oxidative stresses,
cell wall construction and maintenance, cell shape, hydrophobicity,
and sucrose-dependent biofilm formation

28, 29

relA Regulation of stringent response, acid tolerance, and biofilm formation 46, 47
luxS Coordination of collective behaviors and cohesiveness in biofilms 48, 49

aA hypothetical distinction has been made with respect to genes relevant to prepare initial adhesion in planktonic streptococci and genes involved in the
development of emergent properties in adhering bacteria.
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adhesion forces (2). Cell surface hydrophobicity of bacteria is reflected among other
characteristics by their removal from an aqueous phase by a hydrophobic ligand (see
Fig. S1A in the supplemental material). Hydrophilic bacteria prefer to remain in the
aqueous phase rather than being removed from it by adhesion to a hydrophobic ligand
(25). Based on their equally low removal rates by hexadecane (P � 0.05, Mann-Whitney
test), both strains can be classified as hydrophilic (Fig. S1B and C). In addition,
streptococcal zeta potentials, reflecting surface charge, were slightly negative between
�7 and �3 mV, with no significant differences between strains (P � 0.05, Mann-
Whitney test). Like the hydrophobicity of the bacterial cell surfaces, the hydrophobicity
of the substratum surfaces is also involved in bacterial adhesion and the forces by
which bacteria adhere to a substratum surface. Water contact angles on substratum
surfaces reflect the hydrophobicity of a material surface and were measured using the
sessile drop technique (Fig. S1D). Water contact angles ranged from 11 to 103° for glass
and silicone rubber surfaces, respectively, and differed significantly between all surfaces
(P � 0.05, Mann-Whitney test). Also, hydrophobic, bacterial-grade and more hydro-
philic, tissue-grade polystyrene surfaces (Fig. S1D) demonstrated a significant (P � 0.05,
Mann-Whitney test) difference in water contact angles.

Bacterial adhesion forces. Streptococcal adhesion forces were measured on dif-
ferent substratum surfaces using single-bacterial-contact probe AFM (Fig. 1A). In single-
bacterial-contact probe AFM, a bacterium attached to a flexible cantilever is brought
into contact with a substratum surface and retracted after a specified time (the
so-called “surface delay” or “bond maturation” time). Upon retraction, the cantilever
bends until the bacterial bond with the substratum is disrupted. The force at which this
occurs is subsequently calculated from the cantilever bending and recorded as the
adhesion force of the bacterium to the substratum surface. Adhesion forces increased
with increasing bond maturation time between the bacterium and a substratum
surface. (See Fig. 1B for examples of force-distance curves taken after different bond
maturation times for the parent strain and its isogenic, quorum-sensing-deficient
mutant.) Adhesion forces as a function of bond maturation time followed an exponen-
tial increase (Fig. 1B). Accordingly, adhesion forces as a function of bond maturation
time were fitted to equation 1

Ft � F0 � (Fstationary � F0)�exp��
t

��� (1)

in which t denotes the surface delay time, F0 is the initial adhesion force at 0-s surface
delay time, Ft is the adhesion force after surface delay time t, and Fstationary indicates the
stationary adhesion force, while � is the characteristic time constant for bond matura-
tion. Initial adhesion forces, F0 (Fig. 1C), were all in the sub-nN range on each
substratum for the parent and the isogenic mutant strain (P � 0.05, one-way analysis
of variance [ANOVA]). Bond maturation (compare � values in Fig. 1C) occurred slower
in the parent strain than in the isogenic mutant, especially on the silicone rubber. Like
initial adhesion forces, stationary adhesion forces were similar in the parent strain and
the isogenic mutant (P � 0.05, one-way ANOVA) when measured on the same material
and increased for both strains with increasing hydrophobicity of the substratum
surfaces. The difference between the two extremes in hydrophobicity on the glass and
silicone rubber surfaces was significant within each strain (P � 0.05, one-way ANOVA).

Streptococcal biofilm growth and gene expression. Streptococcal biofilms were
grown, and their thicknesses were evaluated using optical coherence tomography
(OCT) (see Fig. S2A in the supplemental material). Twenty-four-hour biofilms were all
significantly (P � 0.05, Mann-Whitney test) thicker than 5-h biofilms. Five-hour biofilms
showed thicknesses ranging from 34 to 48 �m for S. mutans UA159 and from 26 to
34 �m for its isogenic mutant, UA159 ΔluxS (Fig. S2B). Comparison within each sub-
stratum surface showed these differences between strains to be not statistically signif-
icant (P � 0.05, Mann-Whitney test).

Next, gene expression was evaluated in all streptococcal biofilms and normalized
with respect to gene expression in planktonic streptococci of the corresponding strain
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(see Fig. S3A in the supplemental material). (Examples of amplification and melting
curves are presented in Fig. S4 in the supplemental material.) An example of a heat map
for the different genes expressed on different substrata for S. mutans UA159 is given in
Fig. S3B. Note that all gene expression was also normalized with respect to expression
of the internal control gene 16S rRNA, and thus, different bacterial numbers will not
affect the evaluation of gene expression. Gene expression as normalized with respect
to planktonic streptococci varied in each strain on the different substratum surfaces, in
both 5- and 24-h biofilms (Fig. S3C and D, respectively). Subsequently, normalized gene
expression on different substrata was plotted as a function of the environmental
adhesion forces experienced by each of the two streptococcal strains (Fig. 2; see Fig. S5
and Fig. S6 in the supplemental material). In the parent strain, significant linear
relationships (correlation coefficients of 0.7 or higher [Fig. 2]) were observed for three

FIG 1 Bacterial adhesion force characteristics of both streptococcal strains on four substratum surfaces with different hydrophobicities. (A) Schematics of
single-bacterial-contact probe atomic force microscopy. A bacterium is attached to a tipless AFM cantilever and brought to contact with a substratum surface,
after which the cantilever is retracted following a surface delay that can be varied up to a maximum of 30 s. Upon retraction, the adhesion force by which the
bacterium was attracted to the surface can be calculated from the cantilever bending. (B) Example of retraction force-distance curves taken after different
surface delay times for S. mutans UA159 on a bacterial-grade polystyrene (PS) surface. (The arrow points to the force value, taken as the adhesion force.) Also
included is a graph of streptococcal adhesion forces as a function of surface delay time for the parent strain and its quorum-sensing-deficient isogenic mutant.
(C) Initial and stationary streptococcal adhesion forces F0 and Fstationary, together with the characteristic bond maturation time constant � on the different
substratum surfaces. All data represent averages over 8 spots on 4 different surfaces of each substratum, measured with 4 different probes and bacteria from
4 different cultures, with � signs representing standard deviation (SD) values over 32 measurements. Superscript letters in panel C indicate statistical
significance as follows: a, statistically significant (P � 0.05, one-way ANOVA) differences from silicone rubber; b, statistically significant (P � 0.05, one-way
ANOVA) differences between tissue-grade and bacterial-grade PS surfaces.
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(brpA, comDE, and gbpB) out of the seven genes evaluated in 5-h biofilms. However, in
5-h biofilms of the isogenic quorum-sensing-deficient mutant, none of the genes
showed such linear relationships (correlation coefficients less than 0.7) and gene
expression was considered not to be governed by adhesion forces. In cases where
correlation coefficients were 0.7 or higher, the slopes in the graphs representing gene
expression versus adhesion force can be interpreted as the sensitivity of a given gene
to adhesion forces (Table 2). This renders expressions of comDE and gbpB genes as
weakly sensitive to environmental adhesion forces, while externally triggered expres-
sion of brpA was strongly adhesion force sensitive in the parent strain. Note that when
evaluated over the entire thickness of the 3- to 4-fold-thicker 24-h biofilms, none of the
genes showed adhesion-force-induced expression (Fig. S6), regardless of the strain
involved.

Extension of adhesion-force-induced gene expression into a biofilm. In order to
determine how far adhesion-force-induced gene expression extended into a biofilm,
levels of gene expression at different heights above a substratum surface (Fig. 3A) were

FIG 2 Normalized fold gene expression with significant relationships to adhesion forces in S. mutans
UA159 as a function of the stationary adhesion force to different substratum surfaces over the entire
height of 5-h biofilms. Error bars denote SD values in fold gene expression over triplicate experiments,
while the solid lines represent assumed linear relationships through the data points, with the correlation
coefficient R2 as presented. Dotted lines represent 95% confidence intervals.
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evaluated in cryosectioned slices with a thickness of approximately 30 �m. Silicone
rubber was chosen, because in 5-h biofilms grown on silicone rubber, most genes
studied were expressed most strongly (Fig. S3C). Since 5 h biofilms were too thin for
sectioning, sectioning was only done on 24-h biofilms. Setting gene expression nor-
malized with respect to the internal 16S rRNA control and closest to the substratum
surface at 100%, it can be seen in Fig. 3B that the adhesion-force-induced expression
of brpA and comDE was significantly decreased (P � 0.05, one-way ANOVA) in the
middle and top layers of the biofilm compared to the 30-�m bottom layers, decreasing
to 30 to 70% in the top layer of the biofilm, depending on the gene considered.

Extension of water- and EPS-filled pockets in streptococcal biofilms. OCT im-
aging of biofilms allows comparison of biofilm regions with different levels of back-
scattering of incident light that can be associated with bacteria, insoluble EPS, and
water- and soluble EPS-filled pockets (26). (See Fig. 4A for schematics.) Since bacteria
are much larger than insoluble EPS molecules, most back-scattered light originates
from bacterial presence, as confirmed recently for a wide variety of bacterial strains and
species by a relationship between signal intensities in OCT images and volumetric
bacterial densities (26). Using an artificial whiteness scale (white representing the
highest signal intensity of back-scattered light), the average whiteness in images of
24-h S. mutans UA159 biofilms was significantly (P � 0.05, Mann-Whitney test) lower on
all substratum surfaces than in biofilm images of S. mutans UA159 ΔluxS (Fig. 4B). This

TABLE 2 Adhesion force sensitivity of different genes over the entire height of 5- and
24-h S. mutans UA159 and UA159 ΔluxS biofilmsa

Gene

S. mutans UA159 S. mutans UA159 �luxS

Adhesion force
sensitivity
(nN�1) R2

Adhesion force
sensitivity
(nN�1) R2

5 h 24 h 5 h 24 h 5 h 24 h 5 h 24 h

ftf 0.3 0.4 �0.1 0.4
gtfB 0.1 0.5 0.3 0.1
brpA 1.6 0.96 �0.1 0.6 0.2
comDE 0.2 0.7 0.2 0.1 0.2
vicR 0.3 0.1 �0.1 0.2
gbpB 0.1 0.7 0.1 0.6 0.2
relA 0.3 �0.1 0.3 �0.1
aLinear relationships between gene expression and stationary adhesion force with a correlation coefficient of
less than 0.7 were considered insignificant, and no sensitivity values were derived. Data in boldface are
considered significant.

FIG 3 Gene expression in different layers of 24-h S. mutans UA159 biofilm on a silicone rubber surface. (A) Schematics of biofilm
cryosectioning and gene expression in three biofilm slices taken at different heights in the biofilm above the substratum surface. (B)
Percentage of normalized (with respect to the internal 16S rRNA control) adhesion-force-induced expression of selected genes at
different heights above a silicone rubber surface in 24-h S. mutans UA159 biofilm, expressed relative to gene expression in the bottom
layer of the biofilm closest to the substratum surface, set at 100%. Error bars denote SD values over triplicate experiments. *,
statistically different at P � 0.05 by one-way ANOVA.
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suggests that the great majority of individual bacteria in S. mutans UA159 biofilms were
triggered to produce soluble EPS, while biofilm images of quorum-sensing-deficient S.
mutans UA159 ΔluxS appeared much whiter in the absence of water- and soluble
EPS-filled pockets. As a consequence of differential soluble EPS production, the volu-
metric density of bacteria in streptococcal biofilms (i.e., the number of bacteria per unit
of biofilm volume, determined by enumeration of the number of bacteria after biofilm
dispersal from a defined substratum surface area, and subsequently divided by the
biofilm volume) was lower (P � 0.05, Mann-Whitney test) for the parent strain than for
the quorum-sensing-deficient mutant and related linearly to the average signal inten-
sity in OCT images (Fig. 4C). Analysis of the local signal intensity in OCT images as a
function of height above the substratum surfaces demonstrates that signal intensities
of the S. mutans UA159 ΔluxS images (Fig. 4D) varied in a nearly identical fashion above
both surfaces. However, in biofilm images of the parent strain, local signal intensities as
a function of height above the surface suggest more extensive (P � 0.05, Student’s t
test) soluble EPS production on the hydrophobic silicone rubber surface than on the
hydrophilic glass surface up to a height of 20 to 25 �m above the surfaces.

DISCUSSION

S. mutans is an avid sugar consumer in the oral cavity, allowing it to produce acids
that make it one of the world’s most widespread pathogens, responsible for the
decalcification of oral hard tissues. For its survival in the oral cavity, S. mutans needs to

FIG 4 Analysis of OCT images of 24-h S. mutans UA159 and UA159 ΔluxS biofilms. (A) Schematics of signal intensity
development by back-scattered light in OCT: based on an artificial whiteness scale, bacteria yield white regions
(high signal intensity) due to back-scattering, while water- and soluble EPS-filled pockets do not back-scatter light
and appear as black regions (low signal intensity). (B) Average signal intensity over an entire biofilm in 24-h
streptococcal biofilms on the four different substratum surfaces. The superscript letter a in panel B indicates
significant difference between S. mutans UA159 and UA159 ΔluxS (P � 0.05, Mann-Whitney test). (C) Average signal
intensity over an entire biofilm as a function of the volumetric bacterial density for 24-h streptococcal biofilms of
both strains on the four different substratum surfaces. Dotted lines represent 95% confidence intervals. (D) Local
signal intensity in OCT images of 24-h streptococcal biofilms on glass and silicone rubber as a function of the
biofilm height above the substratum surface. There are no statistically significant (P � 0.05, Mann-Whitney test)
differences at corresponding heights for the mutant strain on hydrophobic silicone rubber and hydrophilic glass,
while for the parent strain, signal intensities are lower on silicone rubber than on hydrophilic glass up to a thickness
of 20 to 25 �m. Error bars indicate SD over different experiments with separately cultured bacteria (n � 3).
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adhere (14). Once adhering, S. mutans enforces its adhesion to oral surfaces through the
production of EPS (27) as a landmark, emergent biofilm property. In this article, we
identified gbpB, brpA, and comDE as genes that became more strongly expressed upon
adhesion of S. mutans UA159, compared with ftf, gtfB, vicR, and relA. This confirms our
hypothetical distinction (Table 1) of ftf and gtfB genes being more relevant for the
preparation of planktonic streptococci for their initial adhesion to surfaces. Also, it
justifies the classification of the gbpB, brpA, and comDE genes as more relevant for the
development of emergent properties in adhering streptococci. The vicR and relA genes
play roles with respect to diverse processes occurring during biofilm formation (Ta-
ble 1), but these are not exclusively involved in directly enforcing the initial adhesion
of S. mutans to oral surfaces.

Based on the differential expression of the gbpB, brpA, and comDE genes in
streptococci adhering on different substratum surfaces and relating it to the adhesion
forces experienced by adhering bacteria, a new concept of “adhesion force sensitivity
of gene expression” is introduced. Adhesion force sensitivity reflects whether expres-
sion of a gene is more or less strongly influenced by the adhesion force sensed by
bacteria upon their adhesion to a substratum surface. Among the three genes identi-
fied, gbpB had the weakest adhesion force sensitivity. However, gbpB is not only
involved in enforcing initial streptococcal adhesion but also possesses an array of other
pivotal functions in biofilm formation (Table 1) (28, 29). comDE is also weakly adhesion
force sensitive and also possesses other functions than enforcing initial adhesion,
including persister cell formation (30). However, persister cell formation usually involves
bacteria closely associated with a substratum surface (31), and hence the weak control
of adhesion forces over comDE expression as determined over the entire height of a
biofilm is not surprising. Moreover, these weakly adhesion-force-sensitive genes as
identified in this study have also been found to be upregulated in biofilm detached
cells (32). Detachment is an important mechanism for bacterial survival, since it protects
the biofilm from overpopulation, which is opposite from enforcing initial adhesion.
Expression of brpA was by far several fold more sensitive to adhesion forces than gbpB
and comDE, and its role in biofilm formation has been forcefully emphasized in the
literature (24, 33, 34).

When averaged over the entire height of relatively thin, 5-h biofilms of S. mutans
UA159, biofilms demonstrated adhesion-force-controlled gene expression, but this was
not observed in thicker, 24 h biofilms (Table 2). In order to study the biofilm height
above a substratum surface over which initially adhering streptococci in direct contact
with a substratum surface can signal the news of being in an adhering state on a
specific surface, 24-h biofilms on silicone rubber were sliced (Fig. 3A). Biofilm slices
taken at different heights were examined for expression of the three adhesion-force-
sensitive genes identified. In 24-h biofilms, slices taken closest to the substratum
surface demonstrated higher expression of the three adhesion-force-sensitive genes
than slices of biofilm taken more distant from the surface (Fig. 3B). Thus, adhesion-
force-induced gene expression extended over at least half of the biofilm height above
a surface, which represents a considerably larger distance than that over which
adhesion forces arising from the substratum surface can range (2, 3). In addition to this,
most bacteria in a biofilm have never visited a substratum surface (35). This implies that
quorum sensing must be responsible for the extension of adhesion-force-induced gene
expression in biofilms. This conclusion is supported by the observation that adhesion-
force-induced gene expression of quorum-sensing-deficient S. mutans UA159 ΔluxS was
fully absent in both 5- and 24-h-old biofilms (Table 2).

Moreover, in quorum-sensing-deficient S. mutans UA159 ΔluxS, EPS production
reflected by local back-scattered light intensities (Fig. 4D) showed identical distribu-
tions of soluble EPS over the height of biofilms on silicone rubber and glass (Fig. 4D).
Alternatively, in biofilms of S. mutans UA159 with the ability of quorum sensing, soluble
EPS production on hydrophobic silicone rubber was higher than on hydrophilic glass
up to a distance of around 20 to 25 �m above the substratum surface. Thus, it can be
concluded based on height-dependent gene expression and local EPS production that
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adhesion-force-induced expression of genes extends into a biofilm through quorum
sensing over a height limited to 20 to 30 �m above the substratum surface, beyond
which autoinducer concentrations become below their threshold concentrations re-
quired to invoke a response. “Calling” distances over which bacteria can communicate
through quorum sensing have been reported between 5 �m (36) and 200 �m (37),
which indicates that our estimate of 20 to 30 �m as the calling distance in streptococcal
biofilms is reasonable.

In summary, this work extends our understanding of emergent properties in strep-
tococcal biofilms and the role of quorum sensing herein. Environmental adhesion
forces have been identified to externally control expression of genes that are directly
involved in the development of emergent biofilm properties in adhering S. mutans,
leading to a new concept of “adhesion-force-induced gene expression in adhering
bacteria.” brpA was the most adhesion-force-sensitive gene, as well as the most strongly
expressed gene in adhering streptococci. Extension of its expression decreased with
height above the substratum surface. Adhesion-force-induced gene expression was
fully absent in a quorum-sensing-deficient isogenic streptococcal mutant. The concept
of adhesion-force-induced gene expression and its extension through a biofilm through
quorum-sensing mechanisms advance our understanding of why biofilms of the same
strain or species may possess different properties when grown on different substrata,
which is relevant in all environmental, industrial, and biomedical applications where
biofilms develop.

MATERIALS AND METHODS
Bacterial strains, growth conditions, and harvesting. S. mutans UA159 and UA159 �luxS were

cultured at 37°C in 5% CO2 on blood agar for 24 h. One colony was inoculated in 10 ml brain heart
infusion (BHI) broth (Oxoid, Basingstoke, United Kingdom) with 1% (wt/vol) sucrose added at 37°C in 5%
CO2 for 24 h. These precultures were used to inoculate the main cultures (1:20 dilution), which were
grown for 16 h. For S. mutans UA159 �luxS, 30 �g/ml erythromycin was added to both precultures and
main cultures. Bacteria were harvested by centrifugation (Beckman J2-MC centrifuge; Beckman Coulter,
Inc., Pasadena, CA, USA) for 5 min at 5,000 � g and washed twice with freshly made buffer (1 mM CaCl2,
2 mM potassium phosphate, 50 mM KCl, pH 6.8) and resuspended in buffer. In order to break strepto-
coccal chains, bacterial suspensions were sonicated 3 times for 10 s each with 30-s intervals at 30 W
(Vibra cell model 375; Sonics and Materials, Inc., Danbury, CT, USA), while cooling in an ice-water bath.
The bacterial suspensions were diluted in buffer to a concentration appropriate for the respective
experiments, as determined by enumeration in a Bürker-Türk counting chamber or measurement of the
optical density at 600 nm (OD600).

Bacterial cell surface characterization. Microbial adhesion to hydrocarbons (MATH) (Fig. S1) was
carried out in its kinetic mode (25) to reveal possible differences in adhesive cell surface properties
between S. mutans UA159 and UA159 �luxS. To this end, streptococci were suspended in buffer to an
OD600 of between 0.4 and 0.6 (A0), and 150 �l hexadecane was added to 3 ml of bacterial suspension. The
two-phase system was vortexed for 10 s and allowed to settle for 10 min. The optical density (At) was
measured, this procedure was repeated 6 more times, and the results were plotted as log(At/A0 � 100)
against the vortexing time (t) to determine the rate of initial bacterial removal, R0 (min�1), from the
aqueous phase (i.e., their hydrophobicity) as by the kinetic MATH assay, according to equation 2:

R0 � lim
t→0

d

dt
log �At

A0
� 100� (2)

Zeta potentials of both S. mutans strains (3 � 108 ml�1) were determined in buffer by particulate
microelectrophoresis (Zetasizer nano-ZS; Malvern Instruments, Worcestershire, United Kingdom) at 37°C.
All bacterial cell surface characterizations were done in triplicate with different bacterial cultures, and
data are presented as averages � standard deviations (SD) of the mean.

Substratum materials and characterization. Four different substratum materials were used in this
study: glass (Thermo Scientific, Braunschweig, Germany), bacterial-grade polystyrene (Greiner Bio-One
GmbH, Frickenhausen, Germany), tissue-grade polystyrene (Greiner Bio-One GmbH), and medical-grade
silicone rubber (ATOS Medical B.V., Zoetermeer, The Netherlands). Polystyrene is a hydrophobic material,
mostly applied in microbiology for well plates to keep bacteria in suspension. Therefore, the company
also advocates it for use as “suspension culture plates” made of hydrophobic “bacterial-grade” polysty-
rene. In cell biology, a hydrophilically modified type of polystyrene is preferred, since cells grow on
surfaces. These plates are called “tissue culture plates” made of relatively hydrophilic “tissue-grade”
polystyrene. All materials were made to fit into a 24-well plate, allowing samples with a surface area of
1 cm2. Polystyrene surfaces were used as received, while glass and silicone rubber surfaces were cleaned
first with 2% RBS (Rue Bollinckx, Brussels, Belgium) under sonication and rinsed with warm tap water,
sterilized in ethanol (96%), and finally washed with sterilized buffer.

The hydrophobicities of the different substratum materials were determined through water contact
angle measurements. Water contact angles were measured at 25°C using the sessile drop technique with
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a homemade contour monitor. Droplets of 1.5 to 2 �l ultrapure water were put on the different surfaces,
and the contours of the droplet were measured between 5 and 10 s after placing a droplet, from which
contact angles were subsequently calculated after gray value thresholding. Contact angles were mea-
sured in triplicate on each of the four materials.

Adhesion force measurement. Single-bacterial-contact probes were prepared by attaching strep-
tococci to a tipless cantilever (NP-O10; Bruker AFM Probes, Camarillo, CA, USA) via electrostatic interac-
tion with poly-L-lysine (PLL) (molecular weight, 70,000 to 150,000; Sigma-Aldrich, St. Louis, MO, USA)
adsorbed to the cantilever using a micromanipulator (Narishige Groups, Tokyo, Japan). Cantilevers were
calibrated using the thermal method (38), yielding spring constants in the range of 0.03 to 0.12 N/m.
Briefly, the far end of a tipless cantilever was dipped in a droplet of PLL for 1 min and dried in air for
2 min, followed by 2 min of immersion in a droplet of bacterial suspension (3 � 107 ml�1 in buffer) to
allow one bacterium to adhere to the cantilever. Attachment to the PLL-coated cantilever did not affect
the viability of the bacteria (39, 40). Freshly prepared bacterial probes were directly used for adhesion
force measurements. Adhesion force measurements (Fig. 1A) were performed at room temperature in
buffer using a Dimension 3100 system (Nanoscope V; Digital Instruments, Woodbury, NY, USA). For each
bacterial probe, force-distance curves were measured with 0, 2, 5, 10, and 30 s of surface delay at a 5-nN
trigger threshold. In order to verify whether a measurement series had disrupted bacterial integrity, five
force-distance curves at a loading force of 5 nN and surface delay of 0 s were measured at the beginning
and end of each experiment on glass. When the adhesion forces measured differed more than 1 nN from
the beginning to the end of an experiment, data were discarded and the probe was replaced by a new
one.

Biofilm formation. Silicone rubber and glass samples were put in 24-well plates of either bacterial
or tissue grade, and initial bacterial adhesion was allowed by adding 1 ml of streptococcal suspension
(3 � 108 ml�1) in buffer to each well under static conditions for 2 h at 37°C under 5% CO2. In addition,
initial adhesion was allowed on the bottom of 24-well plates of either bacterial or tissue grade. After 2
h, the bacterial suspension was removed, and each well was carefully washed once with 1 ml buffer, after
which 1 ml BHI with 1% sucrose (wt/vol) was added to each well to allow biofilm growth under a static
condition in 5% CO2 at 37°C. After 5 or 24 h of growth, biofilms were carefully washed with buffer and
then imaged with OCT (Thorlabs Ganymede, Newton, NJ, USA) to determine their thickness and
whiteness distribution over the biofilm height above the substratum surface. Then streptococcal biofilms
were carefully scraped off the surfaces and resuspended in buffer for gene expression or for bacterial
enumeration in a Bürker-Türk counting chamber as described above in order to calculate volumetric
bacterial densities in the biofilm, defined as the number of bacteria divided by the volume they occupy
in a biofilm. Alternatively, intact biofilms were embedded in Tissue-Tek OCT compound (Sakura Finetek
USA, Inc., Torrance, CA, USA) and stored at – 80°C for later cryosectioning.

Gene expression of planktonic and biofilm-grown bacteria. (i) Gene expression in planktonic
and resuspended biofilms. Planktonic as well as resuspended biofilm-grown streptococci were centri-
fuged at 6,500 � g for 5 min, the supernatant was removed, and pellets were stored at – 80°C until RNA
isolation. In order to prevent possible alterations in gene expression during sample collection, resus-
pension, centrifugation, and freeze storage were done as fast as possible (less than 45 min). Total RNA
was isolated using RiboPure bacterial kit (Ambion, Invitrogen, Foster City, CA) according to the manu-
facturer’s instructions. Traces of genomic DNA were removed using the DNAfree kit (Ambion, Applied
Biosystems, Foster City, CA). The amount and quality of extracted RNA were based on the 260/280-nm
ratio measured using a NanoDrop ND-1000 (NanoDrop Technologies LLC, Thermo Fisher Scientific,
Wilmington, DE). A ratio of around 2.0% � 10% was accepted as ‘‘pure” for RNA. A mixture of 200 ng RNA,
4 �l 5 � iScript reaction mixture, and 1 �l iScript reverse transcriptase, in a total volume of 20 �l (Iscript;
Bio-Rad, Hercules, CA), was used for cDNA synthesis according to the manufacturer’s instructions.
Real-time reverse transcription-quantitative PCR (RT-qPCR) was performed in a 384-well plate (HSP-3905;
Bio-Rad Laboratories, Foster City, CA, USA) with the primer sets for the selected genes (see Table S1 in
the supplemental material). The following thermal conditions were used for all RT-qPCRs: 95°C for 3 min
and 39 cycles of 95°C for 10 s and 59°C for 30 s. The mRNA levels were quantified in relation to
endogenous control gene coding for 16S rRNA. Gene expression levels in the biofilms were normalized
to planktonic S. mutans UA159. Gene expression was assessed in triplicate experiments with separately
grown cultures.

(ii) Gene expression in biofilm slices as a function of biofilm height above a substratum surface.
Twenty-four-hour biofilms grown on silicone rubber surfaces were washed with freshly made buffer and
removed from their 24-well plates. Tissue-Tek OCT compound (Sakura Finetek USA, Inc., Torrance, CA,
USA) was applied to the biofilm surface, and thus embedded biofilms were subsequently stored at – 80°C.
Embedded biofilms were sliced using a cryostat into 10-�m-thick slices taken parallel to the substratum
surface. The top, middle, and bottom slices of biofilm (6 slices of 10 �m of the biofilm) were collected
separately in 1.5-ml tubes and stored at – 80°C for further RNA isolation and analysis of the expression
of selected genes, as described above. Finally, gene expression was normalized with respect to gene
expression in the layer adjacent to the substratum surface (i.e., the bottom slices).

OCT imaging. Biofilms were imaged using an OCT Ganymede II (Thorlabs Ganymede, Newton, NJ,
USA) with a 930-nm center wavelength white light beam and a Thorlabs LSM03 objective scan lens,
providing a maximum scan area of 100 mm2. The imaging frequency was 30 kHz, with a sensitivity of
101 dB, and the refractive index of biofilm was set as 1.33, equal to the one of water. Two-dimensional
(2D) images had fixed 5,000 pixels with variable pixel size, depending on magnification in the horizontal
direction, while containing a variable number of pixels with a 2.68-�m pixel size in the vertical direction.
Images were created by the OCT software (ThorImage OCT 4.1) using 32-bit data, and signal intensities
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of back-scattered light were reflected by a whiteness distribution in OCT images (41). Biofilm thickness
was subsequently determined from the OCT images after Otsu thresholding (42). To eliminate the
influence of autoscaling by the instrument on signal intensities of back-scattered light, rescaling was
applied (26, 43). Rescaled signal intensities have been demonstrated to reflect the absence or presence
of water- and EPS-filled pockets in a biofilm and relate to the volumetric bacterial density in biofilms
(26, 43).

Statistical analysis. GraphPad Prism, version 7 (San Diego, CA), was employed for statistical analysis.
Significance among groups was assessed by one-way analysis of variance (ANOVA) followed by Dunn’s
multiple-comparison test. Alternatively, the Mann-Whitney test was used to compare two sets of data at
a time. For comparison of OCT signal intensities at different biofilm heights, Student’s t test was applied.
Significance was adapted at P � 0.05.
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