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Abstract 

Background:  The geniculatus clade, composed by the rufotuberculatus, lignarius, geniculatus and megistus groups, 
relates evolutionarily the species of the genus Panstrongylus and Nesotriatoma. Several studies have shown that tri‑
atomine hybrids can play an important role in the transmission of Chagas disease. Natural hybrids between species of 
the geniculatus clade have never been reported to our knowledge. Thus, carrying out experimental crosses between 
species of the geniculatus clade can help to elucidate the taxonomic issues as well as contribute to the epidemiologi‑
cal knowledge of this group.

Methods:  Experimental crosses were carried out between species of the megistus and lignarius groups to evaluate 
the reproductive compatibility between them. A phylogenetic reconstruction was also performed with data available 
in GenBank for the species of the geniculatus clade to show the relationships among the crossed species.

Results:  Phylogenetic analysis grouped the species of the geniculatus clade into four groups, as previously reported. 
In the interspecific crosses performed there was no hatching of eggs, demonstrating the presence of prezygotic barri‑
ers between the crossed species and confirming their specific status.

Conclusions:  In contrast to the other groups of the Triatomini tribe, as well as the Rhodniini, there are prezygotic bar‑
riers that prevent the formation of hybrids between species of the megistus and lignarius groups. Thus, the geniculatus 
clade may represent an important evolutionary model for Triatominae, highlighting the need for further studies with 
greater sample efforts for this clade (grouping the 17 species of Panstrongylus and the three of Nesotriatoma).

Keywords:  Triatomines, Chagas disease vectors, Panstrongylus, Nesotriatoma, Prezygotic isolation barrier

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The triatomines (Hemiptera, Triatominae) are insects 
of great importance to public health because all 154-liv-
ing species of the subfamily Triatominae [1–3] are con-
sidered potential vectors of the protozoan Trypanosoma 
cruzi (Chagas, 1909) (Kinetoplastida, Trypanosomati-
dae) etiological agent of Chagas disease [4]. This disease 
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is neglected, has no cure in the chronic phase (effec-
tive treatment being only possible in the early stages of 
infection) and affects about 6 to 7 million people world-
wide [5, 6]. In addition, about 120 million people live in 
endemic areas with risk of infection [6].

Currently, the subfamily Triatominae is divided into 
18 genera and five tribes (Alberproseniini, Bolboder-
ini, Cavernicolini, Rhodniini and Triatomini) [1, 7]. The 
Triatomini tribe is the most numerous (composed of 
114 species grouped in ten genera [1–3]) and one of the 
most important from an epidemiological point of view 
[8]. Two most diverse genera in Triatomini (Triatoma 
Laporte, 1832, and Panstrongylus Berg, 1879) are para-
phyletic [8, 9]; therefore, this tribe is divided into clades, 
groups, complexes and subcomplexes. Although these 
species groupings are not formally recognized as taxo-
nomic ranks, Justi et  al. [9] propose that they represent 
monophyletic lineages.

The geniculatus clade, composed by the rufotubercula-
tus, lignarius, geniculatus and megistus groups [10, 11], 
relates evolutionarily  the species of the genus Panstron-
gylus and Nesotriatoma Usinger, 1944 [8–11]. The tax-
onomy of Nesotriatoma spp. is quite discussed because 
some authors consider Nesotriatoma a valid genus [1, 7, 
9, 12–15], and others classify the species of this genus in 
Triatoma [8, 16–18]. However, phylogenetic studies indi-
cate the validity of the genus Nesotriatoma and demon-
strate that this genus is closer to Panstrongylus spp. [9]. 
Chromosomal data also support this relation [16, 19–21]. 
In addition, a new species [N. confusa Oliveira et  al. 
(2018)] has recently been described from specimens that 

were incorrectly classified as N. bruneri Usinger, 1944 
[15].

Natural hybrids between species of the geniculatus 
clade have never been reported. Recently Villacís et  al. 
[22] performed experimental crosses between two spe-
cies of the rufotuberculatus group [P. chinai (Del Ponte, 
1929) and P. howardi (Neiva, 1911)] and observed the 
production of hybrids. Several studies have shown that 
triatomine hybrids can play an important role in the 
transmission of Chagas disease [23–26]. Shorter def-
ecation time [23] and greater fitness [24, 25] have been 
observed in the hybrids resulting from crosses between 
Triatoma species of the phyllosoma complex compared 
to the parents. Higher fitness has also been reported for 
hybrids between T. protracta (Uhler, 1894) subspecies 
[26]. Thus, we consider that carrying out experimental 
crosses between species of the clade geniculatus can help 
to elucidate the taxonomic problems as well as contribute 
to the epidemiological knowledge of this group.

Methods
Phylogenetic analysis
Sequences of several molecular markers for 13 taxa 
available in GenBank (Table  1) were aligned in the 
MEGA 11 program [27] using the Muscle method [28]. 
The alignments were concatenated by name using the 
Seaview4 program [29], resulting in an alignment with 
8617 nucleotides. The phylogenetic reconstruction was 
performed using Beast 1.8.4 [30] under the GTR + I + G 
model, a strick clock model and Yule Process prior [31, 
32]. The analysis was carried out with a total of 100 

Table 1  GenBank accession number for each marker used in the phylogenetic analysis

Species Molecular markers

16S 18S 28S cytb COI COII ITS-1 ITS-2 12S

Geniculatus clade

 P. chinai – – – JX400960 – – – AJ306547 –

 P. geniculatus AF394593 – KX109907 KX109903 – – AM949585 AJ306543 –

 P. howardi – – – JX400969 – – – JX400871 –

 P. lignarius AY185833 JQ897584 KX109906 ON262111 AF449141 – – AJ306549 AY185818

 P. lutzi KC248969 – KC249135 KC249227 KC249307 KC249401 ON262110 – –

 P. megistus KC248975 AJ243336 KC249141 KC249232 KC249312 KC249403 AM949580 AJ306542 AF021178

 P. rufotuberculatus KY748239 AJ421955 – JX400989 – – – AJ306546 –

 P. tibiamaculatus KC249080 KC249127 KC249214 KC249296 KC249389 KC249485 ON262109 – AY185829

 P. tupynambai KC248978 – KC249142 KC249234 – KC249404 – – –

 N. confusa KC248989 – KC249146 – – KC249418 – – –

 N. flavida AY035451 AJ421959 – JX848648 – – – AM286732 –

Outgroup

 T. brasiliensis KC248985 AJ421957 KC249145 KC249239 KC249318 KC249413 KJ125138 KJ125138 AF021187

 R. prolixus AF324519 AJ421962 AF435860 AF045718 AF449138 – – AJ286888 AF394519
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million generations. Trees were sampled every 1000 
generations and burn-in adjusted to 25%. Tracer v. 
1.7 [33] was used to verify the stabilization (ESS val-
ues > 200) of the sampled trees. The generated phylo-
genetic tree was visualized and edited in the FigTree 
v.1.4.4 program [34] and Adobe Illustrator CS6.

Experimental crosses
To evaluate the reproductive compatibility [35] between 
the species of the geniculatus clade, reciprocal crossing 
experiments were conducted among species of the genus 
Panstrongylus and Nesotriatoma (Table 2). Species were 
selected according to phylogenetic proximity (Fig. 1) and 
the availability of colonies at Triatominae insectary of 

Table 2  Experimental crosses performed between geniculatus clade species

SD standard deviation
a Neves et al.[39]

Crossing experiments Number of eggs (mean ± SD) Egg hatching rate (%)

Interspecific

 P. megistus ♀ × P. lignarius ♂ 157 (52 ± 28) 0

 P. lignarius ♀ × P. megistus ♂ 523 (174 ± 152) 0

 P. megistus ♀ × P. tibiamaculatus ♂ 107 (36 ± 4) 0

 P. tibiamaculatus ♀ × P. megistus ♂ 265 (88 ± 2) 0

 P. lignarius ♀ × P. tibiamaculatus ♂ 546 (182 ± 131) 0

 P. tibiamaculatus ♀ × P. lignarius ♂ 68 (23 ± 9) 0

 N. confusa ♀ × P. tibiamaculatus ♂ 111 (37 ± 6) 0

 P. tibiamaculatus ♀ × N. confusa ♂ 164 (55 ± 9) 0

 P. lignarius ♀ × N. confusa ♂ 122 (41 ± 3) 0

 N. confusa ♀ × P. lignarius ♂ 130 (43 ± 7) 0

Intraspecific (control)

 P. megistus 372 (124 ± 87) 68

 P. lignarius 700 (233 ± 12) 51

 P. tibiamaculatus a 190 (63 ± 4) a 65 a

Fig. 1  Bayesian phylogeny of geniculatus clade species. The posterior probability is shown in the nodes. A Geniculatus group. B Rufotuberculatus 
group. C Megistus group. D Lignarius group. *Species used in the experimental crosses
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the School of Pharmaceutical Sciences, São Paulo State 
University (FCFAR/UNESP), Araraquara, São Paulo, Bra-
zil, where the experiments were carried out. The insects 
were sexed as fifth instar nymphs based on Rosa et  al. 
[36]: the nymphs were separated from the colony and 
analyzed one by one under a stereoscopic microscope, 
with emphasis on the ninth segment of the sternite and 
tergite (characters that allow the differentiation between 
males and females). Posteriorly, males and females were 
kept separately until they reached the adult stage to 
cross adult virgins [37]. For the crosses, three couples 
from each set were placed in separate plastic jars (5 cm 
diameter × 10 cm height) and kept at room temperature 
(average of 24  ºC [38]) and an average relative humidity 
of 63% [38]. The crosses were maintained for 4 months. 
Weekly, the insects were fed on duck blood and the eggs 
were collected. Matings between species were observed 
only occasionally during the period of feeding and main-
tenance of crosses. The eggs were checked for 2 months 
after the end of the crosses to assess the hatching rate.

Furthermore, intraspecific crosses (Table  2) were also 
performed for control following the same methodol-
ogy as for interspecific crosses. Unfortunately, intraspe-
cific crosses of N. confusa, as well as interspecific crosses 
between N. confusa and P. megistus (Burmeister, 1835), 
were not performed because of the low population in the 
FCFAR/UNESP colony. The data used as control for P. 
tibiamaculatus (Pinto, 1926) were obtained from Neves 
et  al. [39] (although Neves et  al. [39] consider P. tibi-
amaculatus to be T. tibiamaculata, we highlight that this 
species was recently transferred to the genus Panstrongy-
lus based on integrative taxonomy [11]).

Results and discussion
In none of the interspecific crosses did the eggs hatch; 
in contrast, the hatching rate ranged from 51–68% in 
the intraspecific crosses (Table 2). Although some clades 
showed support < 0.8 (which highlights the importance of 
including more taxa and mainly new genes to rescue the 
natural history of the geniculatus clade), most clades were 
recovered with good support (later probability > 0.8). The 
rufotuberculatus and geniculatus groups were recovered 
as monophyletic (Fig.  1A and B). Panstrongylus megis-
tus and P. tibiamaculatus were recovered as sister spe-
cies, grouping with Nesotriatoma spp. (Fig. 1C). Already 
P. lignarius (Walker, 1873) is the most divergent species 
within the geniculatus clade (Fig. 1D). Thus, the species 
selected for the experimental crosses are close phyloge-
netically (with the exception of P. lignarius).

The phylogenetic relationships obtained in our analy-
sis are very similar to the most recent phylogenies of this 
group [10, 11]. The previously proposed groups (rufotu-
berculatus, lignarius, geniculatus and megistus [10, 11]) 

were also recovered as monophyletic (Fig.  1). Thus, the 
presence of a prezygotic barrier observed between the 
crosses of P. tibiamaculatus with P. lignarius (Table  2) 
(both with 2n = 23 chromosomes [40]) may be associated 
with the divergence between these taxa, since they belong 
to distinct groups (Fig. 1). Until now, only Villacís et al. 
[22] had carried out experimental crosses in the genus 
Panstrongylus. The authors crossed two sister species of 
the rufotuberculatus group (P. chinai and P. howardi) that 
present morphological similarities and the same number 
of chromosomes (2n = 23) and observed the hatching of 
hybrids in the first generation (F1) (absence of prezygotic 
barrier). The hybrids reached the adult stage but were 
sterile (postzygotic barrier of sterility of the hybrid), con-
firming the specific status of the taxa, based on the bio-
logical species concept.

Absence of hybrids between P. megistus and other spe-
cies of geniculatus clade is expected, mainly because this 
species presents a karyotype (2n = 21) [40] different from 
the other species of Panstrongylus (2n = 22, 23 and 24) 
[40, 41] and Nesotriatoma spp. (2n = 23) [40], and the 
number of chromosomes can act as a barrier of repro-
ductive isolation for Triatomini tribe [39]. However, the 
absence of hybrids among the other crosses (Table 2) is 
an interesting and intriguing result for Triatomini tribe 
evolutionary studies, since experimental hybrids have 
already been observed for species that did not derive 
from an ancestor—for example, T. infestans (Klug, 1834) 
× T. rubrovaria (Blanchard, 1843), T. maculata (Erich-
son, 1848) × T. sordida (Stål, 1859), T. maculata × T. 
infestans, T. maculata × T. brasiliensis Neiva, 1911, 
and T. pseudomaculata Corrêa & Espínola, 1964 × T. 
infestans [42].

The position of Nesotriatoma spp. in the clade genicu-
latus leads us to question whether Nesotriatoma would 
also be a Panstrongylus with homoplasy (as observed for 
P. tibiamaculatus [11]) because there is cytogenetic and 
phylogenetics evidence that confirms this relationship [9, 
13, 16, 19]. The reproductive isolation observed between 
N. confusa and geniculatus clade species (Table 2) may be 
due to the long time these species have been geographi-
cally isolated, since Nesotriatoma spp. are found only in 
the Antillean Islands [8, 43]. It has been suggested that 
the ancestor of Nesotriatoma spp. reached these islands 
approximately 14.8–18.8 million years ago [8]. As the 
selective pressures on islands tend to be quite divergent 
[44], there may have been selection of characters that 
resulted in prezygotic reproductive isolation and phe-
notypic diversification of this genus in relation to Pan-
strongylus. Justi et al. [8] suggest that events of vicariancy 
were the main evolutionary mechanisms that acted in 
the diversification of the geniculatus clade species. The 
main reproductive isolation mechanisms reported for the 
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Triatominae subfamily were ecological and mechanical 
isolation [45]. The interspecific mating observed among 
Panstrongylus species (Fig.  2) suggests the absence of 
mechanical barrier. Based on this, we believe that during 
the divergence of the crossed species, different selective 
pressures led to events of genomic reorganization that 
did not numerically alter the chromosomes (with the 
exception of P. megistus [40]) resulting in total reproduc-
tive isolation among the evaluated taxa of this clade.

If it is confirmed that all geniculatus clade species are 
really of a single genus (probably Panstrongylus) with 
convergence in morphological characteristics, this case 
will provide another example of how misleading mor-
phology-based triatomine taxonomy can be (as recently 
suggested by Monteiro et  al. [10]). This highlights the 
need to combine different approaches (such as molecular 
clocks, phylogeography and genomic studies) to under-
stand the evolutionary processes of this important group 
of vectors.

Conclusion
Our results demonstrate that different from the other 
groups of the Triatomini tribe [42], as well as the Rhod-
niini [42, 46], there are prezygotic barriers that prevent 
the formation of hybrids in the crosses between the 
megistus and lignarius group of the geniculatus clade. 
This confirms the specific status of the crossed species 
and demonstrates why there are no reports of natural 
hybrids between them. Based on these results, we sug-
gest that the geniculatus clade may represent an impor-
tant evolutionary model for Triatominae, highlighting 

the need for new studies with greater sample effort for 
the geniculatus clade (grouping the 17 species of Pan-
strongylus and the three of Nesotriatoma [1–3]).
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Fig. 2  Interspecific mating observed between Panstrongylus spp. (P. 
tibiamaculatus ♀ × P. lignarius ♂). The background was removed with 
Adobe Photoshop CS6. Bar: 6 mm
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