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The bone morphogenetic protein (BMP) signaling pathway is highly conserved across
many species, and its importance for the patterning of the skeletal system has been
demonstrated. A disrupted BMP signaling pathway results in severe skeletal defects.
Murine calvaria has been identified to have dual-tissue lineages, namely, the cranial
neural-crest cells and the paraxial mesoderm. Modulations of the BMP signaling
pathway have been demonstrated to be significant in determining calvarial osteogenic
potentials and ossification in vitro and in vivo. More importantly, the BMP signaling
pathway plays a role in the maintenance of the homeostasis of the calvarial stem cells,
indicating a potential clinic significance in calvarial bone and in expediting regeneration.
Following the inherent evidence of BMP signaling in craniofacial biology, we summarize
recent discoveries relating to BMP signaling in the development of calvarial structures,
functions of the suture stem cells and their niche and regeneration. This review will
not only provide a better understanding of BMP signaling in cranial biology, but
also exhibit the molecular targets of BMP signaling that possess clinical potential for
tissue regeneration.

Keywords: BMP signaling, neural-crest cells, suture stem cell, calvarial regeneration, mesoderm

INTRODUCTION

The murine calvaria is evolutionally patterned and well developed. The calvaria provides important
protection for the growth and formation of the brain, and its growth is concordantly orchestrated
across developmental stages. Since the establishment of the dual-tissue lineages of the calvaria
(Jiang etal., 2002), studies are focusing on region-dependent differential regulation of calvarial bone
development (Quarto et al., 2009, 2010, 2018; Wiren et al., 2011; Ichikawa et al., 2015; Li et al., 2015;
Doro et al., 2019). On one hand, the region-dependent roles of evolutionally conserved signaling
pathways in calvarial bones are under clarifying (Quarto et al., 2009; Behr et al., 2010; Li et al,,
20105 Li et al., 2015). On the other hand, high-throughput sequencing results indicate that gene-
regulatory networks are differently enriched in different segments of calvarial bones (Homayounfar
et al,, 2015; Hu et al., 2017; Wu et al., 2017; Chen et al., 2019a), both of which have the potential
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to explain the regional differences upon osteogenic capacities,
ossification, and regeneration in the calvarial bones.

The bone morphogenetic protein (BMP) signaling pathway
has been demonstrated to be an important regulator in the
shaping of the skeletal system, patterning the neural crest and
craniofacial development (Mishina and Snider, 2014; Graf et al.,
2016). This pathway is transduced through the binding of BMP
ligands to BMP receptor (BMPR) type I and type IT (BMPRI and
BMPRII), which further activate the intracellular Smads (Smad1,
Smad5, and Smad8) proteins, and Smads phosphorylation can
associated with co-Smad4 into a complex, which can translocate
into the nucleus and trigger bone-related gene expression.
Deficiencies of the BMP signaling pathway at different cellular
levels lead to a malformation of the skeleton and birth defects
in a tissue-specific manner (Nie et al., 2006; Trainor, 2010;
Chen et al., 2012; Bhatt et al., 2013; Graf et al., 2016). Here,
the versatile regulatory functions of the BMP signaling pathway
in orchestrating the homeostasis of the stem-cell niche and the
calvarial bones with dual-tissue lineages are summarized.

BMP SIGNALING IN TISSUE-DERIVED
OSTEOBLASTS

The Calvarial Bones Have Two
Tissue-Lineages
Using genetic mouse model, the murine calvaria has been
demonstrated originated from with dual-tissue lineages (Jiang
et al,, 2002; Kuratani, 2005), namely, the cranial neural-crest
cells (CNC) and paraxial mesoderm mesenchymal stem cells.
The CNC cells that originate from the dorsal neural tube
appear early during embryogenesis, and can diversify into
multiple cell types, and contribute to most cranial bones,
including the nasal-frontal bones, maxillary, frontal bone,
and mandible (Chai and Maxson, 2006). Paraxial mesoderm-
derived cells contribute to the formation of parietal bone
(Jiang et al, 2002; Kuratani, 2005). Both CNC-derived and
paraxial mesoderm derived osteoprogenitor cells undergo
intramembranous ossification to produce cranial bones. Some
bones in the cranial base are also from CNC, but they are
formed via endochondral ossification, where mesenchymal cells
first differentiate into the chondrocytes to form the cartilage
primordial. The intramembranous ossification happens with
a direct differentiation into osteoblasts progenitors from the
mesenchymal cells (Mishina and Snider, 2014). Different bones
are connected by different sutures. Nasal and metopic sutures
are derived from CNC, and coronal sutures are derived from
mesoderm, which connect CNC-derived frontal bone and
mesoderm-derived parietal bone, and the sagittal suture is
derived from CNC, which separate two mesoderm-derived
parietal bone (Mishina and Snider, 2014). However, CNC-
derived and paraxial mesoderm derived osteoblasts show distinct
differences in osteogenic potential, the regenerative capacities
and ossification (Reichert et al., 2013).

The main difference between CNC-derived osteoblasts and
mesoderm-derived osteoblasts has been demonstrated in vitro

(Xu et al, 2007), namely, CNC-derived osteoblasts display
robust proliferation, and the extent of the cell differentiation
is much less, and the extent of bone formation is faster
compared to mesoderm-derived osteoblasts, exhibiting minimal
capacities of bone nodules formation in vitro (Xu et al., 2007).
When mesoderm-derived osteoblasts are cultured with the
addition of CNC-derived osteoblasts, the inferior performance
of ossification in mesoderm-derived osteoblasts have been
improved (Doro et al., 2019), suggesting that CNC input can
favor the osteogenic capacities and the extent of ossification
(Doro et al., 2019) (Figure 1).

The Levels of BMP Signaling in

Tissue-Derived Osteoblasts

Bone morphogenetic protein signaling in bone has been
reviewed previously (Nie et al., 2006; Chen et al., 2012; Graf
et al., 2016; Wu et al, 2016). Briefly, BMP ligands bind to
their receptors in the membrane, triggering phosphorylation
of R-Smads (Smadl, Smad5, and Smad9) that complex with
co-Smad (Smad4) and translocate into the nucleus to drive
target gene expressions. BMP-Smad signaling is well-known
to be regulated by extracellular antagonists (e.g., Noggin)
and intracellular inhibitors (e.g., Smad6 and Smad7). In a
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FIGURE 1 | BMP signaling in tissue-derived osteoblasts. BMPRs (BMPRIA/IB)
were highly expressed in neural-crest-derived frontal osteoblasts (Fb-derived
OB) (green in arrow), which exhibited increased proliferation, and
osteogenesis and bone formation. Noggin was highly expressed in
mesoderm-derived parietal osteoblasts (Pb-derived OB), which exhibited
decreased proliferation, inferior osteogenesis, lower bone formation and
increased apoptosis (gray in arrow). The addition of some Fb-derived OB into
Pb-derived OB can significantly improve the ossification. Proper modulation of
BMP signaling (dotted box) can influence the osteogenic potential in
tissue-derived osteoblasts.
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TABLE 1 | Functions of BMP signaling in the development of cranial bones.

Gene Model Defects References

BMP2 Wnt1-Cre Smaller craniofacial bones Chen et al., 2019¢c

BMP2/BMP4 Whnt1-Cre Defective skull and dural cerebral veins Tischfield et al., 2017

BMPRIA Wnt1-Cre Defective temporomandibular joint Gu et al,, 2014

enhanced BMPRIA Whnt1-Cre Inhibitory osteogenesis Guetal., 2014

BMP7 Whnt1-Cre Alteration of oral cavity morphology Kouskoura et al., 2013
BMP7/BMP4 Mef2c-Cre Defective mesenchymal transition Bai et al., 2013

BMPRIA PO-Cre Wide-open anterior fontanelles Saito et al., 2012

BMPRIA Pax3-Cre Reduction in neural-crest cells Stottmann and Klingensmith, 2011
BMPRIA Wnt1-Cre Post-migratory development of a subset of NCC derivative cell types Stottmann and Klingensmith, 2011
Smad1 Col2ai-Cre Defective calvarial bone Wang et al., 2011

Smad4 Wnt1-Cre Defective mid-gestation Nie et al., 2008

Smad4 Wnt1-Cre Underdevelopment of branchial arch Ko et al., 2007

ALK2 Whnt1-Cre Impaired neural-crest cells Kaartinen et al., 2004

ALK2 Wnt1-Cre Multiple craniofacial defects Dudas et al., 2004

BMPRII Prx1-Cre Normal skeletons Gamer et al., 2011

BMPRIA Dermo1-Cre Defective ventral body wall formation Sun et al., 2007

previous study, BMPRs were found with higher expressions in
CNC-derived osteoblasts, while the expressions of the Noggin
were higher in mesoderm-derived osteoblasts compared to
that in CNC-derived osteoblasts from 2 to 5-day-old mice
(Xu et al, 2007). Based on our high-through sequencing
data, the level of BMPRs in embryonic frontal bone tissues
were higher than that in embryonic parietal bone tissues
(Hu et al, 2017). The inhibition of BMP signaling using
Noggin results in increased apoptosis and osteogenesis
in CNC-derived osteoblasts, and similarly, the exogenous
stimulation of BMP signaling using BMP2 results in reduced
apoptosis and osteogenesis in mesoderm-derived osteoblasts
(Senarath-Yapa et al., 2013), suggesting that the modulation
of BMP signaling in vitro is able to influence the extent
of osteogenic potentials in CNC- and mesoderm-derived
osteoblasts (Figure 1).

Functions of BMP Signaling in the

Development of Cranial Bones

There are 15 BMPs in humans and rodents. Among them,
BMP2, BMP4, and BMP?7, as well as growth differentiation factor
5 (GDF5) are essential for embryonic skeletal development,
while BMP6, BMP7, and GDF6 are essential for late stages
of skeletal development (Graf et al., 2016; Wu et al., 2016).
A number of BMPs are expressing in craniofacial bones in
a temporospatial manner, including BMP2, BMP4, BMP3,
BMP5, BMP6, and BMP7 as well as GDF1 and GDF6. Genetic
mouse models have been used to verify the functions of
BMP signaling in calvarial bones in vivo. In CNC cells, the
deletion of BMP2 using Wnt1-Cre leads to craniofacial anomalies
that resemble the symptoms of the Pierre Robin sequence
(PRS), including smaller craniofacial bones (Chen et al., 2019c).
Mutation of BMP2 in CNC leads to abnormal coordination
between the proliferation and differentiation of osteogenic
progenitors (Chen et al., 2019¢c). GDF6 is expressed in the

primordia of mouse frontal bones, and GDF6 removal results
in coronal suture fusion and defective frontal and parietal
bones. The accelerated differentiation of suture mesenchyme
was found earlier than the onset of calvarial ossification
(Clendenning and Mortlock, 2012). BMP4 is a major regulator
in shaping the craniofacial cartilage (Albertson et al., 2005).
Interestingly, the inactivation of BMP2 and BMP4 using
Whntl-Cre in preosteoblasts and periosteal dura can result in
defective skull and cerebral veins. BMP2/BMP4, which can be
secreted from CNC or mesoderm-derived preosteoblasts and
dura, can function in a paracrine manner to regulate the
morphogenesis of the cerebral veins (Tischfield et al., 2017),
revealing the unrecognized importance of BMP signaling in the
maintenance of tissue-tissue interactions for craniofacial organ
growth (Table 1).

Bone morphogenetic protein receptors are heterodimers
complex composed of type I receptors and type II receptors.
There are also different type I and type II receptors, which
create a complex ligand-receptor interaction network and
allows for specific outcomes for the skeleton. Among the
three type I receptors, BMPRIA has been best-studied and
shown to be indispensable for hindbrain neural tube closure
(Stottmann and Klingensmith, 2011). Deletion of BMPRIA in
CNC using P0-Cre leads to 100% abnormal phenotype with wide-
open anterior fontanelles. This phenotype in the craniofacial
mesenchyme results in an activated p53 apoptosis pathway and
a downregulation of c-Myc and Bcl-XL. Therefore, the optimal
BMPRIA-mediated signaling is essential for CNC-derived frontal
bone development (Saito et al., 2012). Further exploration of the
phenotype of the deletion of BMPRIA in CNC cells using WntI-
Cre results in a defective temporomandibular joint (Gu et al,,
2014). The constitutive activation of BMPRIA in CNC cells leads
to the craniosynostosis, which happened through the induction of
p53-mediated apoptosis in nasal cartilage (Hayano et al., 2015).
Three type II receptors (BMPRII, ActRIIA, and ActRIIB) were
also important for the signaling transduction. Deficiencies of
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BMPRII, one of the three type II receptors, result in normal
skeleton using PrxI-Cre, suggesting that different requirements
of BMPRs in transducing the signaling to shape the calvaria
development (Gamer et al., 2011) (Table 1). However, the roles of
other two type II receptors, ActRIIA and ActRIIB, in craniofacial
bones are still unclear.

The intracellular mediator Smadl is needed for bone
development, and deficient Smadl results in defective calvarial
bone (Wang et al., 2011). The inactivation of Smad4 in CNC
cells leads to birth death, accordingly, the defective mid-gestation
and increased cell death (Nie et al., 2008). Additionally, Smad4
deficiency leads to underdevelopment of the first branchial arch
(Ko et al., 2007). Improper mutation from a rare transmitted
frameshift in inhibitory Smad6 (p. 152 fs*27) can be inherited
from non-syndromic craniosynostosis parents (Timberlake et al.,
2018), emphasizing the importance of BMP-Smads signaling in
shaping CNC-derived craniofacial development.

The orchestration of the BMP signaling pathway eventually
converges at crucial transcriptional factors to regulate the
osteogenesis and ossification. For example, Msx2, a bona fide
downstream target of BMP signaling, regulates the activities
of osteoblast-specific transcriptional factors Runx2 and Osterix
(Osx). Mutations of Runx2 (Lee et al., 1997; Mundlos et al.,
1997) and Osx (Nakashima et al., 2002) lead to severe defects
in bone ossification. Msx2 can label a special population of
mesenchymal precursor cells in the cranial vault (Sakagami et al.,
2018). Deficient Msx1/2 using WntI-Cre leads to a larger defect
in frontal bone (Roybal et al., 2010). A deficiency of Runx2 in
CNC cells results in defective ossification, including the frontal
bone, mandible, and nasal bone. Runx2 is required both for
mesoderm- and CNC-derived cells to differentiate and ossify.
But CNC-derived frontal bone is more dependent on the activity
of Runx2 (Shirai et al., 2019). Neural crest-specific inactivation
of Osx resulted in a complete absence of intramembranous
skeletal bones that derived from the CNC. Besides, the CNC-
derived endochondral skeletal bones were also affected (Baek
et al., 2013). Taken together, the data suggested that a precise
responsiveness to BMP signaling in CNC cells is crucial for the
proper morphogenesis of the calvaria, and the BMP signaling
can be counted on for the superior osteogenic potential in CNC-
derived bones.

TABLE 2 | Distribution of identified populations of suture-derived stem cells.

Location Prx1+ Gli1+ (entire Axin2+ (~15%)
suture space)

Periosteum — + (born) — — (1 m) +—=—(1m)
Dura mater — + (born) — — (1 m) + = —(1m)
Patent posterior frontal suture + + +
Fused posterior frontal suture + - -
Coronal suture ++ 4+ +
Sagittal suture ++ +++ +
Lambdoid suture ++ +++ +
Osteocytes — — _
Osteogenic fronts + — +
Blood cells — — _

BMP SIGNALING IN CALVARIAL
SUTURE-DERIVED STEM CELLS

Identification of Calvarial Suture-Derived
Stem Cells

The sutures are the center of an environmental niche that
containing stem cells, such as Glil+ stem cells (Zhao et al,
2015; Park et al., 2016), Axin2+ stem cells (Maruyama et al.,
2016; Maruyama, 2019), and Prx1+ stem cells (Wilk et al., 2017),
where were identified and demonstrating a strong potential to
differentiate into osteoblasts and osteocytes at the postnatal stage.
Prx1+ suture-derived stem cells are resident in cranial sutures,
and they are not detectable in the skin or the dura mater at an
embryonic stage (Seo and Serra, 2009), neither in the postnatal
periosteum or the dura mater (Wilk et al., 2017). Prx1+ cells can
label both CNC- and mesoderm-derived cells. Prx1+ cells are
detectable at the osteogenic fronts but does not co-expressed with
Osx in the suture-space mesenchyme, and Prx1-derived cells are
not expressed in blood cells (Wilk et al., 2017) (Table 2). Gli1+
cells are more populous than the Prx1+ cells in the suture space.
Glil+ cells are detectable throughout the entire periosteum, dura,
and suture mesenchyme at birth (Guo et al., 2018), but this
pattern gradually becomes undetectable by 1 month postnatal,
and Glil+ cells are not detectable in fontanelles or osteocytes.
Glil+ cells eventually restricted to cranial sutures, including the
fused posterior frontal suture, where they remain throughout
adulthood (Zhao et al., 2015; Doro et al., 2017). Glil+ cells
can contribute to osteogenic fronts, periosteum, and dura after
tamoxifen treatment (Guo et al., 2018; Table 2). Axin2+ cells
only label ~15% of mesenchymal cells, and are highly restricted
to the midline of the suture (Maruyama et al., 2016). Axin2+
cells are detectable in osteogenic fronts and the periosteum at
birth, and they are almost undetectable at postnatal 1 month (Yu
et al., 2005). Axin2+ cells reside in all cranial sutures except the
fused posterior frontal suture (Maruyama et al., 2016), and they
exhibit a narrower range than the Glil4 and Prx1+ suture stem
cells (Table 2).

The Potential BMP Mediated
Contribution of CNC to Calvarial Stem
Cells

Prx1+, Axin2+, and Glil+ suture-derived stem cells account
for most cranial sutures, and most cranial sutures come
from CNC cells, such as the sagittal suture and posterior
frontal suture, and the coronal suture is a mixture of CNC-
and mesoderm-derived cells. CNC cells are multi-potent cells,
although they are transient during the development. It is
still not clear that how suture-derived stem cells have been
generated or maintained, and one possibility is that CNC
migrated there and some cells keep the stem-cell-like feature
in the sutures. The other possibility is that some genes
were specially expressed to maintain stem-cell feature. But
no evidences of early expressions of Prxl, Gli, or Axin2
at E8.5 when the CNC induced, some are expressed in
post-migratory neural-crest cells, such as Prxl is particularly
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expressed in post-migratory neural-crest cells (Thomas et al,
1998; Ishii et al., 2012), and Axin2 is highly activated in
migratory neural-crest cells (Yu et al.,, 2005). Glil-dependent
signaling is needed to regulate CNC cells (Brewster et al,
1998; Ahlgren et al, 2002). Axin2 is a region-specific factor,
and is required for CNC-dependent skeletogenesis, but it is
not important for mesoderm-derived parietal-bone osteoblasts
(Yu et al, 2005). Axin2 regulates the calvarial bone and
development (McGee-Lawrence et al., 2013). However, during
the CNC induction, BMP signaling is a vital growth factor
that emerged earlier. BMP4 and BMP7 were both found
expressed at the time of CNC induction, and the balance
between Noggin and BMPs signals are also needed for the
CNC delamination. BMP2 was also identified as a factor that
required for the production of migratory cranial neural crest
cells (Kanzler et al., 2000). We previously proposed a potential
gene-regulatory network from the patterning of neural-crest
cells to calvaria development (Wu et al., 2017), where we
proposed that CNC cells may provide instructive cues for their
derived cells or tissues, and these inherent cues may work to
maintain the properties of neural crest-derived tissues. BMP
signaling mediated CNC is probably needed to produce or
maintain suture-derived stem cells. More researches or BMP
based lineage tracing can be used to evaluate the detailed
contribution of BMPs to calvarial stem cells at embryonic
and adult stages.

BMP Signaling in Adult Calvarial
Stem-Cell Niche

Bone morphogenetic protein ligands, BMPRs, and intracellular
Smads are expressed in suture mesenchyme cells (Opperman,
20005 Ishii et al., 2015). Noggin expression is highly related
to patent sutures (Warren et al., 2003), and improper Noggin
expression can prevent cranial suture fusion (Warren et al,
2003). BMPRIA mutations in osteoclasts, osteoblasts, or cartilage
result in defective bone remodeling or growth (Mishina et al.,
2004; Kamiya et al., 2008; Okamoto et al., 2011; Jing et al,
2013, 2015), and constitutively activated BMPRIA in neural-
crest cells results in craniosynostosis (Komatsu et al.,, 2013).
BMP2 is ectopically expressed in Gli3 mutant mesenchyme,
which can lead to abnormal osteoblasts differentiation (Tanimoto
et al., 2012). Osteoprogenitors from Glil+ suture-derived stem
cells was found to release Ihh, which is required to maintain
the homeostasis of Glil4 suture-derived stem cells, and this
process is fine-tuned by BMPRIA (Guo et al., 2018). Further, the
paracrine BMP2/BMP4, secreted by preosteoblasts, is principally
required for the morphogenesis of dural cerebral veins (Tischfield
et al, 2017), which then influence the state of the suture-
derived stem niche. This suggested the unrecognized importance
of tissue-tissue interactions in suture biology. Therefore, we
proposed a BMP diagram where different factors that from
osteoprogenitors, osteoclasts, and suture-derived stem cells can
coordinate each other at spatial and temporal levels, in either a
paracrine or an autocrine manner, to converge together to fine-
tune the homeostasis of the suture-derived stem cells through
precise communications (Figure 2).

BMP SIGNALING IN CALVARIAL
REGENERATION

BMPs and Calvarial Regeneration

The superior ability of CNC-derived calvarial bone to regenerate
prompted a new idea for craniofacial construction, called
endogenous calvarial regeneration. Ideally, a suitable cytokine
or drug would be sufficient to initiate the endogenous program
for bone healing. FGF and Wnt signaling are able to quicken
bone healing from injury (Xu et al., 2007; Quarto et al., 2009,
2010, 2018; Behr et al., 2010; Ichikawa et al., 2015; Li et al,
2015; Hu et al,, 2017; Wu et al.,, 2017; Doro et al., 2019). BMPs,
receptors, and intracellular Smads have robust expressions in the
periosteum after a fracture, and their expressions are detectable
in endothelial cells that associated with new bone formation
(Yu et al., 2010). However, the deletion of BMP2 in osteoblasts
and vascular endothelial cells prior to the fracture results in no
significant influence on fracture healing (McBride-Gagyi et al.,
2015), which suggested that focusing on BMPs with distinct
expressions at the fracture sites is not work reliably to heal the
fractures or BMPs might play a redundant role. Recent evidence
has shown that BMP9 functions at the fracture site, at the same
time, BMP9 can function as an inductive signal to maintain
proliferative capacities of suture-derived stem cells in the long
term to differentiate into osteogenic lineages in vivo and in vitro
(Song et al., 2017). More interestingly, BMP9 regulates Nell-1
activity, which is an osteo-inductive growth factor, and mutant
Nell-1 results in significant cranial abnormalities (Song et al.,
2017; Chen et al., 2019b). In our early publication, we found
that Nell-1 in neural-crest-derived frontal bone is significantly
expressed compared to that in mesoderm-derived parietal bones
(Hu et al., 2017). Given the information, it will be a new strategy
or direction that combining BMPs screening at the injury site
and an emphasis of BMPs to induce the mobilization of the
suture-derived stem cells to the fracture sites, to be considered to
promote the potential application of BMPs therapy in the clinic
to heal the injury.

BMP Signaling Mediated Calvarial Stem

Cells to Regeneration

Cranial sutures provide guidance for the development and
regeneration of calvaria bone (Maruyama, 2019). The identified
suture-derived stem cells exhibit a greater potency in regenerative
medicine in the clinic. A complete removal of the sagittal suture,
and the defects can be completely restored in 6 weeks (Park
et al.,, 2016). The progeny of Glil+ suture-derived stem cells
are detectable after 2 weeks at parietal injury sites, and their
continuous increase contributes to new bone formation (Park
et al,, 2016). The ablation of Glil+ cells leads to growth arrest,
suture fusion, and severe osteoporosis (Zhao et al., 2015). The
progeny of Prx1+ cells migrate to the injury site to make new
bone (Wilk et al., 2017). The transplantation of Axin24 cells to
the injury site can significantly improve healing efficacy within
2-4 weeks (Maruyama et al., 2016; Table 3). Suture-derived stem
cells are suitable therapeutic targets to heal damaged calvaria
(Ransom et al., 2016). BMPs have been evaluated to be functional
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FIGURE 2 | BMP signaling interacts with different factors in suture-derived stem cells. In cranial sutures, identified and unidentified suture-derived stem cells were

development (solid arrow in red). CNC- and mesoderm-derived preosteoblasts expressed BMPs (e.g., BMP2/BMP4), which were needed for the proper shaping of

TABLE 3 | Calvarial injury model and stem-niches used in cranial bone regeneration.

Suture cells Injury model Progeny expression Bone regeneration References

Gli1+ cells Rectangular defect Bmpria loss in Gli1+ cells Disrupted osteoclastogenic Guo et al., 2018
crossing the sagittal suture activity, severely impaired

Gli1+ cells Calvarial injury to bone (1 m Detectable in Gli1+ in Strongly labeled Gli1+ cells Park et al., 2016
mice) 2 weeks in a month

Suture transplantation Suture injury Detectable on the surfaces Bone regeneration in Park et al., 2016

Suture stem cells

Suture stem cells

Glit+ cells

Suture stem cells

Suture stem cells

Gli1+ cells

Prx1+ cells

Axin2+ cells

2 mm? defect in mice
centered at the sagittal
suture

2 x 5 mm removal of
sagittal suture

2 mm? defects in parietal
bone (1 mm to sagittal
suture)

2 mm? defects in parietal
bone (0.5 mm to sagittal
suture)

4 mm?2 in rabbit parietal
bone or at the sagittal
suture

Ablation in Gli1+ cells

2 mm? in mouse frontal
and parietal bone

1.4 mm? in mouse parietal
bone

of the transplants in 1 week

Significant injury closure in
2 weeks

Newly formed bone in
3 weeks

Gli1+ cells detectable in
2 weeks

Most sutures patent in
1 month

Detectable in 10 days

~46% residing cells at the
injury site in 4 weeks

1 month

Complete recovery in
4 weeks

Complete recovery in

6 weeks

~50% healing of injury in
4 weeks

~80% healing of injury in
4 weeks

Suture injuries healed in
1 month

Growth arrest and
compromised repair in
2 months

New bone formed in
4 weeks

~98% derivative cells

Park et al., 2016

Park et al., 2016

Park et al., 2016

Park et al., 2016

Park et al., 2016

Zhao et al., 2015

Wik et al., 2017

Maruyama et al.,

2016

Frontiers in Cell and Developmental Biology | www.frontiersin.org

March 2020 | Volume 8 | Article 135



https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Chen et al.

BMP Signaling in Calvaria

to enhance the capacities of suture-derived stem cell. BMP2
encoding suture-derived stem cells is able to improve the healing
of critical size cranial bone defect (Vural et al., 2017). Interestedly,
BMPRIA is reported to be a principal factor to regulate the
homeostasis of Glil+ suture-derived stem cells. Disruption of
BMPRIA results in diminished cranial sutures and minimal
healing ability (Guo et al, 2018). It suggested that suitable
modulation of BMPs in suture-derived stem cells can facilitate
bone regeneration following calvarial bone damage.

SUMMARY

The BMP signaling pathway has been widely demonstrated to
be a critical requirement for organogenesis, involved in a broad
spectrum of regulation of cell proliferation, differentiation, and
survival in stem cell niches. Calvarial bones with dual-tissue
lineages exhibit distinct osteogenic capacities and regeneration.
The inherent cue of BMP signaling is highly associated with
the regulation of calvarial osteoblasts in vivo and in vitro. More
importantly, the modulation of BMP signaling is able to influence
osteogenic potential, ossification and the homeostasis of suture-
derived stem cells, which can significantly contribute to the repair
of craniofacial bone defects. As further investigation of BMP
signaling in suture stem-niches continues, a suitable BMP that
itself is able to accelerate the regeneration, and its novel function
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