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Angiogenesis, the process of new blood vessel formation from pre-existing ones, plays a

key role in various physiological and pathological conditions. Alteration of the angiogenic

balance, consequent to the deranged production of angiogenic growth factors and/or

natural angiogenic inhibitors, is responsible for angiogenesis-dependent diseases,

including cancer. Fibroblast growth factor-2 (FGF2) represents the prototypic member

of the FGF family, able to induce a complex “angiogenic phenotype” in endothelial cells

in vitro and a potent neovascular response in vivo as the consequence of a tight cross

talk between pro-inflammatory and angiogenic signals. The soluble pattern recognition

receptor long pentraxin-3 (PTX3) is a member of the pentraxin family produced locally in

response to inflammatory stimuli. Besides binding features related to its role in innate

immunity, PTX3 interacts with FGF2 and other members of the FGF family via its

N-terminal extension, thus inhibiting FGF-mediated angiogenic responses in vitro and in

vivo. Accordingly, PTX3 inhibits the growth and vascularization of FGF-dependent tumors

and FGF2-mediated smooth muscle cell proliferation and artery restenosis. Recently,

the characterization of the molecular bases of FGF2/PTX3 interaction has allowed the

identification of NSC12, the first low molecular weight pan-FGF trap able to inhibit FGF-

dependent tumor growth and neovascularization. The aim of this review is to provide

an overview of the impact of PTX3 and PTX3-derived molecules on the angiogenic,

inflammatory, and tumorigenic activity of FGF2 and their potential implications for the

development of more efficacious anti-FGF therapeutic agents to be used in those clinical

settings in which FGFs play a pathogenic role.
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FGF2 AS AN ANGIOGENIC GROWTH FACTOR

Angiogenesis is a multistep process leading to the formation of new blood vessels from
pre-existing ones. It occurs in different physiological and pathological settings, including
embryonic development, wound repair, inflammation, and cancer. During the “angiogenic switch,”
activated endothelial cells (ECs) degrade the basement membrane and start migrating (tip cells)
and proliferating (stalk cells) to form EC sprouts that will originate vascular loops and capillary
tubes with formation of tight junctions, deposition of a new basement membrane and pericyte
recruitment (1, 2). The activation of ECs results from the balance between pro-angiogenic
growth factors and anti-angiogenic players released by different perivascular cell types (2). A
plethora of molecules have been described to regulate angiogenesis, including Fibroblast Growth
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Factor-2 (FGF2) that, together with FGF1, was first identified in
the 1980s as a heparin-binding angiogenic factor (3, 4).

FGF2 exerts pleiotropic activities on target cells, including
ECs, by interacting with cell surface heparan-sulfate
proteoglycans (HSPGs) and high affinity tyrosine kinase
receptors (FGFRs) (5). FGF2/FGFR interaction fosters the
dimerization of the receptor and the autophosphorylation of its
intracellular tyrosine kinase domain that, in turn, leads to the
activation of complex signal transduction pathways (6).

Among the 23 members of the FGF family (5), FGF2
represents the most characterized and potent pro-angiogenic
mediator in vitro and in vivo (7), even though a significant
pro-angiogenic activity has been demonstrated also for FGF4
and FGF8 whereas it remains debated for other FGFs
(including FGF5, FGF7, FGF9, FGF16, and FGF18) (8). In vitro,
FGF2 induces EC proliferation and migration, promotes the
production of proteases and expression of integrin and cadherin
receptors (9).

In vivo, FGF2 stimulates the neovascularization process in
different experimental models, including the chick embryo
chorioallantoic membrane (CAM) (10), rabbit/mouse cornea
(11, 12), zebrafish yolk membrane (ZFYM) (13), and murine
subcutaneous Matrigel plug (14) assays. Conversely, loss of FGF
signaling in ECs results in augmented vascular permeability and
loss of vessel integrity (15). Notably, the pro-angiogenic function
of FGF2 is mostly mediated by FGFR1, that represents the main
FGFR expressed by activated ECs (9), and less frequently by
FGFR2 (16), whereas FGFR3 and FGFR4 do not appear to be
expressed in ECs.

Usually, the biological effect exerted by FGF2 on ECs is the
consequence of a paracrine stimulation due to its release by
inflammatory cells, stromal components or tumor cells, as well
as by its mobilization from FGF-binding components that are
present in the extracellular matrix (ECM) (6, 7, 17). Moreover,
ECs can undergo autocrine or intracrine stimulation due to the
self-production of FGF2 (18).

Finally, FGF2 stimulates lymphangiogenesis by direct and
indirect (often vascular endothelial growth factor (VEGF)-C
mediated) action on lymphatic endothelial cells (LECs), where it
promotes proliferation, migration, and survival (19, 20). Recent
observations have shown that FGF2 controls the glycolytic
metabolism in ECs and LECs through a FGFR/MYC/Hexokinase
2-mediated pathway (21).

FGF2-DEPENDENT ANGIOGENESIS AND
INFLAMMATION

Emerging evidence supports a role for inflammation in
angiogenesis and suggests mutual dependency of the two
processes in several physiological and pathological conditions
(22, 23) due to common signaling pathways and mediators
(24). During inflammatory reactions, the immune infiltrate
may produce pro-inflammatory cytokines with pro-angiogenic
properties, together with growth factors and proteases that
contribute to the formation of new vascular structures (25, 26).
The newly formed vasculature, in turn, sustains inflammation by

facilitating the recruitment of inflammatory cells to the site of
inflammation (27–29).

Noteworthy, elevated levels of FGF2 have been implicated
in the pathogenesis of several diseases characterized by a
deregulated angiogenic/inflammatory response, including cancer
(7).

Contribution of Inflammatory Cells in
Promoting FGF2-Dependent Angiogenesis
In response to phlogistic stimuli, inflammatory cells provide key
cytokines and growth factors to the angiogenic vascular network
and interact with endothelial surface adhesion molecules,
affecting vascular permeability and inducing EC migration and
proliferation (30–32). These cells can produce pro-angiogenic
factors, including FGF2, that stimulate the proliferation and
migration of hypoxic ECs, supporting a paracrine model for the
modulation of EC growth at the inflammatory site. Thus, various
cell types known to play a pivotal role in the initiation and
progression of inflammation have been considered active players
in angiogenesis (33–36). In this context, monocytes/macrophages
(MCs/MPHs) (37, 38), T lymphocytes (34, 39) and mast cells
(40) express FGF2 and their homing to inflammatory sites can
impact the neovascular response associated to inflammation (41).
In addition, platelet alpha granules represent a source of various
angiogenic factors, including FGF2, that are released during
physiological and pathological conditions and may contribute to
angiogenic responses (42).

The involvement ofMCs/MPHs in inflammatory angiogenesis
has been reported in a variety of experimental settings (43). For
instance, Polverini and colleagues found that activatedMPHs and
their cell culture media were able to induce neovascularization
in the cornea assay, thus relating the angiogenic activity
of macrophages with their secretome (44). MCs/MPHs are
frequently associated with proliferating blood vessels where they
accumulate and provide angiogenic growth factors, including
FGF2, as is the case for coronary collaterals where the rapid vessel
growth correlates with MC adhesion to the intima (45, 46).

Factors released by MCs/MPHs alter the tissue
microenvironment, promoting EC migration, proliferation
and new vessel formation (47, 48) and stimulate the migration of
other accessory cells, in particular mast cells, able to potentiate
the angiogenic response (29, 49). The early recruitment of
MCs/MPHs (within 2–3days after implantation) precedes blood
vessel formation in a FGF2-driven Matrigel plug angiogenesis
assay (23). Accordingly, a significant reduction of the angiogenic
response elicited by FGF2 and other angiogenic factors has
been demonstrated following MC/MPH depletion induced
by intraperitoneal pretreatment with clodronate liposomes
(Clodrolip) (50, 51). Notably, MPHs may facilitate FGF signaling
by producing heparinases and plasmin that degrade the ECM,
thus disengaging ECM-bound FGF molecules that eventually
will activate FGFRs in ECs, and create “guiding paths” for
proliferating and migrating ECs (35, 43). Accordingly, long-
term treatment with FGF2 stimulates ECM degradation by
MCs/MPHs to facilitate the invasion of Tie2+ EC precursors and
blood vessel formation in Matrigel implants (48).
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The significant inhibition of the angiogenic response to
FGF2 observed in neutropenic mice suggests that, similar to
MCs/MPHs, neutrophils may play a key role in FGF2-mediated
angiogenesis (32), most likely by producing additional pro-
angiogenic cytokines and ECM-degrading proteases (52–54). On
the other hand, neutrophil-derived elastase may favor FGF2
degradation, thus counteracting its angiogenic activity (55, 56).

The tissue density of mast cells is highly correlated with the
extent of normal and pathologic angiogenesis (57). Mast cells are
recruited by FGF2 (58) and, in turn, may release FGF2, as well as
other pro-angiogenic factors, leading to EC activation (59, 60).
Accordingly, mast cells and their isolated secretory granules
induce an angiogenic response in the chick embryo CAM assay
(61) that is inhibited by neutralizing anti-FGF2 antibodies (40).

More recently, it has been demonstrated that dendritic
cells may sustain inflammatory neovascularization through
the expression of a wide array of pro-angiogenic mediators
(including FGF2, VEGF, and ETS-1) (62–66). In addition,
similar to MCs, DCs may contribute to neovessel formation
by differentiating into endothelial-like cells following treatment
with FGF2, VEGF-A, and IGF-1 (67).

FGF2 Amplifies the EC Response to
Inflammatory Stimuli
ECs themselves may play important autocrine, intracrine, or
paracrine roles in angiogenesis via FGF2 production (18), thus
inducing a pro-angiogenic status in the endothelium that creates
a favorable environment for vascular growth. FGF2 production
and release from ECs can be triggered by inflammatorymediators
such as IL-1β (68), nitric oxide (NO) (69), prostaglandin E2
(PGE2) (70), and IL-2 upon exposure of ECs to interferon-α
(IFN-α) (71).

The observation that angiogenesis is accompanied by
vasodilation prompted studies aimed to assess the involvement
of vasodilators, like NO and PGE2, in the angiogenic activity
of FGF2. Even though FGF2-induced angiogenesis can occur
independently from NO production (72), elevation of NO levels
in ECs increases their FGF2 production (72). Similarly, PGE2
exerts its pro-angiogenic action through paracrine activation of
endothelial FGFR1 following mobilization of FGF2 sequestered
in the ECM (70). Conversely, FGF2 and VEGF-A induce
angiogenesis by increasing cyclooxygenase and PGE2 production
(73, 74).

A transcriptome study on murine microvascular ECs
demonstrated that FGF2-driven neovascularization induces a
complex pro-inflammatory signature in the endothelium, with
early upregulation of several inflammation-related genes (23).
Even though also VEGF-A may upregulate the expression of
inflammation-related genes in ECs (75–77), it remains unclear
whether the two angiogenic mediators utilize distinct or common
molecular pathways to exert their biological effects on ECs.
Indeed, although an intimate cross-talk between FGF2 and
VEGF-A during angiogenesis may exist (78), FGF2 appears to
be responsible for the early induction of inflammation-related
genes independently from VEGF expression, that represents a
later event (23).

FGF2 amplifies the EC response to inflammatory stimuli by
vasoactive effects and recruitment of a consistent inflammatory
infiltrate. Besides inducing vasodilation of coronary arterioles
through endothelial NO production (79), FGF2 increases
vascular permeability via VEGF-A and protease upregulation
(80). Moreover, FGF2 enhances the recruitment of MCs, T cells,
and neutrophils (25) by increasing their adhesion and trans-
endothelial migration via the upregulation/expression of the cell
adhesion molecules ICAM-1 and VCAM-1 in ECs (81, 82).

Notably, studies from different groups suggest that FGF2
might have a context-dependent pro- or anti-inflammatory
activity. While a rapid, transient exposure to FGF2 induces the
upregulation of endothelial adhesion molecules that contribute
to immune infiltrate recruitment, a prolonged exposure to
FGF2 may result in a marked down-regulation of ICAM-1,
VCAM-1, and E-selectin expression on ECs, accompanied by a
strong reduction of adhesion and transmigration of monocytes,
neutrophils and CD4+ T lymphocytes even in response to potent
chemotactic factors (83–85). This biphasic effect of FGF2 might
be one of the mechanisms utilized by cancer cells to escape from
host immune reactions during the angiogenic stage of tumor
development (86).

Finally, inflammation may also impair the angiogenic effects
mediated by FGF2 via the production of molecules that sequester
FGF2. For instance, the C-X-C chemokine platelet factor 4,
a well-known inhibitor of angiogenesis released from alpha-
granules of activated platelets, is able to bind FGF2, thus
preventing FGFR activation and proliferation in ECs (87). A
further, remarkable example is represented by long pentraxin-
3 (PTX3), a member of the innate immunity with relevant
functions in inflammatory responses and pathogen recognition,
whose FGF2 antagonist activity will be discussed in details here
below.

PTX3/FGF INTERACTION

Biochemical Interactions
The pentraxin family is a highly conserved group of pattern
recognition glycoproteins implicated in innate immunity. PTX3,
a prototypic member of the long pentraxin subfamily, is a 340
kDa octamer in which up to 92% of the amino acid sequence
(each subunit being formed by 389 residues) is common between
mouse and human proteins (88).

The roles played by PTX3 in innate immunity, wound
healing/tissue remodeling, cardiovascular diseases, fertility, and
infectious diseases span, among others, from opsonization to
apoptotic cell clearance, extracellular matrix formation and FGF2
inhibition in tissue homeostasis (89). This functional variety is
due to the complex structure of the protein. PTX3 has a unique
N-terminal domain with non-redundant functions, whereas its
C-terminal domain is common to all pentraxins and contains the
“pentraxin signature” (89, 90). PTX3 contains anN-glycosylation
site in Asn220 that contributes to the fine tuning of ligand
binding (91).

The N-terminal domain of PTX3 binds FGF2 with high
affinity (Kd ∼ 30–300 nM) (92–94) and one octameric PTX3
molecule binds FGF2 in a 1 to 2 stoichiometric ratio (95).
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FIGURE 1 | PTX3/TSG-6 interaction modulates FGF2-mediated angiogenesis. (A) PTX3 acts as a natural FGF trap, thus inhibiting FGF2/FGFR1 complex formation

and angiogenesis. (B) TSG-6 binds PTX3 and prevents PTX3/FGF2 interaction. This abrogates the inhibitory effect exerted by PTX3 on FGF2 activity.

Using various biochemical approaches, the N-terminal amino
acidic sequence 97–110 was recognized as responsible for
FGF2 binding. Later, the acetylated pentapeptide Ac-ARPCA,
corresponding to amino acids 100–104, was identified as the
minimal sequence of PTX3 able to bind FGF2 (93, 96). Of
note, PTX3 can interact via its N-terminal also with FGF8b,
anothermember of the FGF family endowed with pro-angiogenic
properties (97), and other family members, like FGF6, FGF10,
and FGF17 (92).

An important player in modulating PTX3/FGF2 interaction
is represented by the tumor necrosis factor-stimulated gene-
6 (TSG-6) protein. TSG-6 is expressed in inflamed and
neovascularization sites by lymphocytes, smooth muscle cells,
and ECs in response to inflammatory stimuli (98). TSG-6 binds
PTX3 and other ECM components, like hyaluronic acid and the
heavy chains of inter-α-inhibitor, thus allowing the formation
of intricate molecular webs in the ECM (99, 100). TSG-6 binds
the PTX3 N-terminus and prevents its interaction with FGF2,
thus reverting the inhibition exerted by PTX3 on FGF2 activity.
This may provide a mechanism to control angiogenesis in those
inflammatory conditions characterized by the co-expression of
TSG-6 and PTX3, in which the relative levels of these proteins
may act as a biological rheostat to fine-tune the angiogenic
activity of FGF2 (101) (Figure 1).

Biological Implications
PTX3/FGF2 interaction prevents the formation of the
biologically active HSPG/FGF2/FGFR ternary complex, thus
inhibiting FGF2-dependent EC activation and angiogenesis
(94, 102). In vitro experiments demonstrated that the N-terminal
domain of PTX3 and the PTX3-derived ARPCA pentapeptide
impair the proliferation/activation of ECs in response to FGF2
but not to VEGF-A, thus confirming the specificity of the effect

(94, 96). In vivo, PTX3 significantly hampers the angiogenic
response triggered by alginate beads adsorbed with FGF2 and
implanted on the chick embryo CAM (Figures 2Aa) (96). Similar
results were obtained in a zebrafish/tumor xenograft model (103)
where the angiogenic response to FGF2-overexpressing tumor
cells was strongly impaired by the co-injection of PTX3 or
ARPCA (Figures 2Ab) (96). Accordingly, overexpression of
PTX3 by tumor cells of different origin (including melanoma,
prostate, and breast cancer cells) causes a significant inhibition of
tumor-associated neovascularization and FGF-dependent tumor
growth (92, 104, 105).

The effect of PTX3 overexpression on ECs was assessed
in a transgenic mouse model where the human Ptx3 gene
was under the control of endothelial-specific Tie2 promoter
[TgN(Tie2-hPTX3) mice] (106). When isolated from the
lung of TgN(Tie2-hPTX3) animals, PTX3-overexpressing ECs
showed a reduced capacity to respond to exogenous FGF2 in
terms of cell proliferation and 3D-sprouting when compared
to ECs isolated from wild type animals (106). This was
accompanied by a significant reduction of endothelial FGFR1
activation/phosphorylation following stimulation with FGF2.
In agreement with these observations, the overexpression of
PTX3 by the endothelium of transgenic animals caused a
significant inhibition of the angiogenic response triggered by
FGF2 in an ex vivo murine aorta ring assay and in vivo when
TgN(Tie2-hPTX3) mice were tested in a Matrigel plug assay
(Figures 2Acd). No inhibitory effect was observed when VEGF-

A was used an angiogenic stimulus, thus confirming that the

anti-angiogenic activity of PTX3 was directly mediated by the

impairment of the FGF2/FGFR1 axis. As a consequence of the

anti-FGF2/anti-angiogenic activity of PTX3, FGF2-dependent
syngeneic tumor grafts of different origin were characterized by
impaired FGFR1 activation and reduced CD31+ vascularization
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FIGURE 2 | PTX3 inhibits the angiogenic activity of FGF2. (A) When tested in different angiogenesis models, a molar excess of purified PTX3 protein (a,b) or its

transgenic endothelial overexpression (c,d) inhibits the neovascular response triggered by an optimal dose of recombinant FGF2 [see references (13), (94), (106) for

details] **p < 0.01; #p < 0.001. (B) The PTX3-derived pentapeptide ARPCA (ball and stick representation) interacts with the FGFR-binding domain of FGF2 (red

circle) without affecting its heparin-binding region (green circle). A similar mechanism of action is hypothesized for the FGF trap small molecule NSC12.

and tumor growth when injected in TgN(Tie2-hPTX3) mice
(106). Notably, the TRAMP-C2 prostate adenocarcinoma cell
grafts generated in TgN(Tie2-hPTX3) mice were characterized
also by a significant decrease of the mast cell infiltrate
into the lesion (58). These data, in keeping with previous
observations about the capacity of mast cells to respond
chemotactically to FGF2, provide evidence about a relationship

among FGF2-dependent mast cell recruitment, angiogenesis, and
tumor growth in prostate adenocarcinoma, all hampered by
PTX3.

Moreover, when considering the role of FGF2 in the
formation and maintenance of lymphatic vessels (19, 20), it is
possible to hypothesize that PTX3 may inhibit FGF2-mediated
lymphangiogenesis and its associated events, including tumor
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metastatic dissemination (107). Further experiments are required
to assess this hypothesis.

The anti-angiogenic/anti-tumor activity of PTX3 was not
restricted to FGF2. Indeed, due to its capacity to bind FGF8b,
PTX3 prevents the interaction of this FGF family member
with FGFR1 and blocks FGF8b-induced EC proliferation and
chemotaxis in vitro and angiogenesis in vivo, causing a significant
inhibition of tumor growth and vascularization when transduced
in androgen-regulated Shionogi 115 mouse breast tumor cells
(97) that express both FGF2 and FGF8b following stimulation
with dihydrotestosterone (105).

PTX3 binds extracellular matrix component of the vessel
wall, including collagen and fibrinogen, thus affecting platelet
aggregation (108), In addition, it can bind activated circulating
platelets and dampen their proinflammatory and prothrombotic
action (109). It will be of interest to assess whether such
interactions may result in the sequestration of platelet-released
FGF2, with a consequent modulation of its bioavailability and
biological activity in different thrombosis-prone conditions,
including tissue ischemia, wound healing, atherosclerosis, and
cancer.

Therapeutic Implications
When considering its FGF2 antagonist activity, PTX3 might be
regarded as a potential therapeutic agent in those pathological
settings in which FGF2 exerts a driving role. Endovascular
injection of adeno-associated virus harboring the PTX3 cDNA
was used to block FGF2-mediated intimal thickening after
balloon injury in the rat carotid artery (110) whereas its
retroviral/lentiviral transduction has been exploited to inhibit
FGF activity in different tumor models (102). However, due to its
size (340 kDa), complex quaternary structure (homo-octamer),
and proteinaceous nature, any pharmacological application of
PTX3 protein appears unrealistic unless functional “shuttles”
can be identified for this “cargo.” One possibility for a direct
therapeutic exploitation of the PTX3 protein has been shown
by using “tumor targeting” Tie2+ monocytes (TEMs) (111)
derived from the bone marrow of TgN(Tie2-hPTX3) mice (106).
In this experimental model, PTX3-expressing TEMs were able
to efficiently deliver the PTX3 protein to the tumor site in a
syngeneic FGF2-dependent model of prostate cancer, causing a
significant reduction of the growth of the tumor grafts (106).

In order to set the basis for the development of novel
PTX3-derived FGF2 antagonists with potential therapeutic
implications, the PTX3-derived pentapeptide ARPCA
was characterized in preclinical models of FGF-dependent
angiogenesis and cancer. Acetylated ARPCA appears to bind
the FGF2 protein in a region responsible for its interaction
with the D2-D3 linker and D3 domain of FGFR1 (Figure 2B)

and inhibits the angiogenic activity exerted by FGF2/FGF8, as
well as the FGF-dependent growth of prostate and androgen-
dependent breast tumors (96, 105). More recently, based on
the analysis of ARPCA/FGF2 interaction, molecular modeling
and small molecule library screening, a PTX3-derived 480 Da
compound (named NSC12, Figure 2B) was identified as the
first small molecule to function as a pan FGF2 trap (106, 112).
Indeed, NSC12 binds and impairs the biological activity of all
the canonical FGF family members and displays significant
anti-angiogenic activities in vitro, ex vivo and in vivo in a series of
FGF2-dependent angiogenesis assays, with no effect on VEGF-
dependent EC activation (106). In addition, in vivo experiments
performed on FGF-dependent models of prostate and lung
cancer confirmed the capacity of NSC12 to inhibit FGFR1
activation and to reduce tumor growth and tumor-associated
angiogenesis (26, 74). The non-aminoacidic structure of NSC12
makes this molecule a promising candidate for the development
of more efficacious anti-FGF therapeutic agents to be used in
clinical settings.

It must be pointed out that, at variance with tyrosine kinase
FGFR inhibitors, FGF trapping following PTX3 overexpression
in transgenic mice, as well as long-term NSC12 administration
(106) or treatment with the FGFR-derived decoy molecule FP-
1039 (113), are all devoid of significant toxic effects. This
appears to be in contrast with the alterations of vascular integrity
observed after systemic overexpression of soluble FGFRs in
transgenic mice (15) and calls for further experiments aimed at
assessing the therapeutic window of FGF trapping agents.

In conclusion, FGF2/PTX3 interaction may exert a deep
impact on the angiogenesis process during inflammation
and tumor growth. The balance among these interactors and
other FGF and/or PTX3 binding molecules (e.g., TSG-6, ECM
components and HSPGs) may further modulate neovessel
formation under different physio/pathological conditions. A
better understanding of these interactions may provide valuable
insights into the pathogenesis of angiogenesis-dependent
diseases and will set the basis for the development of novel
therapeutic agents.
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