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Abstract: In 2019, a novel severe acute respiratory syndrome called coronavirus disease 2019 (COVID-
19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported and was
declared a pandemic by the World Health Organization (WHO) in March 2020. With the advancing
development of COVID-19 vaccines and their administration globally, it is expected that COVID-19
will converge in the future; however, the situation remains unpredictable because of a series of
reports regarding SARS-CoV-2 variants. Currently, there are still few specific effective treatments for
COVID-19, as many unanswered questions remain regarding the pathogenic mechanism of COVID-
19. Continued elucidation of COVID-19 pathogenic mechanisms is a matter of global importance.
In this regard, recent reports have suggested that epigenetics plays an important role; for instance,
the expression of angiotensin I converting enzyme 2 (ACE2) receptor, an important factor in human
infection with SARS-CoV-2, is epigenetically regulated; further, DNA methylation status is reported
to be unique to patients with COVID-19. In this review, we focus on epigenetic mechanisms to
provide a new molecular framework for elucidating the pathogenesis of SARS-CoV-2 infection in
humans and of COVID-19, along with the possibility of new diagnostic and therapeutic strategies.

Keywords: COVID-19; SARS-CoV-2; epigenetics; ACE2; DNA methylation; histone modifications;
non-coding RNA

1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Its symptoms are varied and range
from mild to severe; common symptoms include headache, loss of sense of smell and taste,
nasal congestion and leakage, cough, myalgia, sore throat, fever, diarrhea, and difficulty
breathing [1–5]. Of those with symptoms significant enough to be classified as patients in
a study in China, most (81%) had mild to moderate symptoms (up to mild pneumonia),
14% had severe symptoms (dyspnea, hypoxia, or more than lung involvement on imaging),
and 5% had severe symptoms (respiratory failure, shock, or multiple organ failure) [6].
COVID-19 spread around the world within a short time and was declared a pandemic
by the World Health Organization (WHO) on 11 March 2020. Since the end of 2020, the
emergence of SARS-CoV-2 variants with genetic mutations that may affect transmission,
severity, and antigenicity has become a major problem. In particular, outbreaks of B.1.1.7
(Alpha variant), first detected in the UK, B.1.351 (Beta variant), first detected in South
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Africa, P.1 (Gamma variant), first detected in Japan among returnees from Brazil, and
B.1.617.2 (Delta variant), first detected in India, are of global concern [7,8].

Under these circumstances, the development of vaccines aiming to provide acquired
immunity to humans against SARS-CoV-2 has been progressing, and as of July 2021,
multiple vaccines with varying methods and manufacturers have been developed, ranging
from those that have already been inoculated to those under development (mRNA vaccines,
DNA vaccines, virus vector vaccines, inactivated vaccines, recombinant protein vaccines,
peptide vaccines, etc.) [9]. In particular, the results of a large placebo-controlled trial of
vaccines from Pfizer and Moderna have shown that two repeated doses of the vaccine are
highly effective in preventing COVID-19 (more than 90%) [10,11]. Based on the results of
these clinical trials, vaccination with multiple types of COVID-19 vaccines developed by
several pharmaceutical companies began worldwide at the end of 2020 or in early 2021 [12].
While hopes for pandemic containment through vaccination are increasing, the emergence
of SARS-CoV-2 variants with amino acid mutations in the antigenic determinants of spike
proteins, as described above, has been reported worldwide. Further, since there is a
possibility that unknown SARS-CoV-2 variants may emerge in the future, it is necessary to
continue with basic infection control measures without overconfidence in the effectiveness
of vaccines.

Currently, drugs such as Remdesivir, Dexamethasone, Baricitinib and Heparin are
used as treatments for COVID-19; however, there are still few specific and effective treat-
ments for COVID-19 [13,14]. This is because there are still many unanswered questions
regarding the pathogenic mechanism of COVID-19. Elucidating the pathogenic mechanism
of COVID-19 is thus essential to establish effective treatment for patients with severe
disease and to develop novel therapeutic agents. In this regard, epigenetics status such as
histone modification of host cells is known to be altered upon infection with RNA viruses
including coronaviruses, and the importance of epigenetics in the pathogenic mechanism
of SARS-CoV-2 infection in humans and COVID-19 was recently pointed out.

Epigenetics is commonly defined as the study of heritable phenotypic changes without
altering the DNA sequence. The Greek prefix epi- (

Biomedicines 2021, 9, x FOR PEER REVIEW 2 of 16 
 

South Africa, P.1 (Gamma variant), first detected in Japan among returnees from Brazil, 
and B.1.617.2 (Delta variant), first detected in India, are of global concern [7,8]. 

Under these circumstances, the development of vaccines aiming to provide acquired 
immunity to humans against SARS-CoV-2 has been progressing, and as of July 2021, mul-
tiple vaccines with varying methods and manufacturers have been developed, ranging 
from those that have already been inoculated to those under development (mRNA vac-
cines, DNA vaccines, virus vector vaccines, inactivated vaccines, recombinant protein vac-
cines, peptide vaccines, etc.) [9]. In particular, the results of a large placebo-controlled trial 
of vaccines from Pfizer and Moderna have shown that two repeated doses of the vaccine 
are highly effective in preventing COVID-19 (more than 90%) [10,11]. Based on the results 
of these clinical trials, vaccination with multiple types of COVID-19 vaccines developed 
by several pharmaceutical companies began worldwide at the end of 2020 or in early 2021 
[12]. While hopes for pandemic containment through vaccination are increasing, the emer-
gence of SARS-CoV-2 variants with amino acid mutations in the antigenic determinants 
of spike proteins, as described above, has been reported worldwide. Further, since there 
is a possibility that unknown SARS-CoV-2 variants may emerge in the future, it is neces-
sary to continue with basic infection control measures without overconfidence in the ef-
fectiveness of vaccines. 

Currently, drugs such as Remdesivir, Dexamethasone, Baricitinib and Heparin are 
used as treatments for COVID-19; however, there are still few specific and effective treat-
ments for COVID-19 [13,14]. This is because there are still many unanswered questions 
regarding the pathogenic mechanism of COVID-19. Elucidating the pathogenic mecha-
nism of COVID-19 is thus essential to establish effective treatment for patients with severe 
disease and to develop novel therapeutic agents. In this regard, epigenetics status such as 
histone modification of host cells is known to be altered upon infection with RNA viruses 
including coronaviruses, and the importance of epigenetics in the pathogenic mechanism 
of SARS-CoV-2 infection in humans and COVID-19 was recently pointed out. 

Epigenetics is commonly defined as the study of heritable phenotypic changes with-
out altering the DNA sequence. The Greek prefix epi- (ἐπι) in epigenetics implies a func-
tion “above” or “in addition to” the traditional genetic base [15]. Over the past two dec-
ades, epigenetic regulators have been implicated as critical factors in many pathways re-
lated to the development and progression of cancer and other diseases, including cell cy-
cle regulation, invasiveness, signaling pathways, chemotherapy resistance, and immune 
evasion [16–27]. The three basic systems of epigenetic regulation are DNA methylation of 
gene regulatory regions; histone protein modifications such as methylation, acetylation, 
phosphorylation, and sumoylation; and non-coding RNAs [15]. Many techniques for epi-
genetics analysis have already been developed, and this field is steadily undergoing tech-
nological innovation [15,28,29]. In this review, we present the latest findings on the im-
portance of epigenetics in the mechanisms of human infection with SARS-CoV-2 and 
pathogenesis of COVID-19, and discuss future diagnostic and therapeutic strategies for 
COVID-19 targeting epigenetics. 

2. The Life Cycle of SARS-CoV-2 
The SARS-CoV-2 genome is composed of single-stranded RNA [30]. SARS-CoV-2 

shares 96% genome sequence identity with BatCoV RaTG13 [31]; 90% identity with Pan-
golin-CoVs [32]; 88% genome sequence identity with two bat-derived coronaviruses, bat-
SL-CoVZC45 and bat-SL-CoVZXC21; 79% identity with SARS-CoV; and 50% with Middle 
East respiratory syndrome coronavirus [31,32]. Although SARS-CoV-2 has highly identi-
cal sequences with the above viruses, SARS-CoV-2 only has a functional furin cleavage 
site at the spike (S) protein [33,34]. 

The S protein expressed on the surface of the viral particles is essential to the initial 
steps of coronavirus infection. The S protein comprises the receptor-binding subunit S1 
and the membrane-fusion subunit S2 [35–37]. The receptor binding S1 consists of two sub-
domains, an N-terminal domain and a C-terminal domain [38,39]. 

πι) in epigenetics implies a function
“above” or “in addition to” the traditional genetic base [15]. Over the past two decades,
epigenetic regulators have been implicated as critical factors in many pathways related
to the development and progression of cancer and other diseases, including cell cycle
regulation, invasiveness, signaling pathways, chemotherapy resistance, and immune eva-
sion [16–27]. The three basic systems of epigenetic regulation are DNA methylation of
gene regulatory regions; histone protein modifications such as methylation, acetylation,
phosphorylation, and sumoylation; and non-coding RNAs [15]. Many techniques for
epigenetics analysis have already been developed, and this field is steadily undergoing
technological innovation [15,28,29]. In this review, we present the latest findings on the
importance of epigenetics in the mechanisms of human infection with SARS-CoV-2 and
pathogenesis of COVID-19, and discuss future diagnostic and therapeutic strategies for
COVID-19 targeting epigenetics.

2. The Life Cycle of SARS-CoV-2

The SARS-CoV-2 genome is composed of single-stranded RNA [30]. SARS-CoV-
2 shares 96% genome sequence identity with BatCoV RaTG13 [31]; 90% identity with
Pangolin-CoVs [32]; 88% genome sequence identity with two bat-derived coronaviruses,
bat-SL-CoVZC45 and bat-SL-CoVZXC21; 79% identity with SARS-CoV; and 50% with
Middle East respiratory syndrome coronavirus [31,32]. Although SARS-CoV-2 has highly
identical sequences with the above viruses, SARS-CoV-2 only has a functional furin cleav-
age site at the spike (S) protein [33,34].

The S protein expressed on the surface of the viral particles is essential to the initial
steps of coronavirus infection. The S protein comprises the receptor-binding subunit S1
and the membrane-fusion subunit S2 [35–37]. The receptor binding S1 consists of two
subdomains, an N-terminal domain and a C-terminal domain [38,39].
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The viral S protein binds to angiotensin I converting enzyme 2 (ACE2) as entry
receptor. In addition, the S protein of SARS-CoV-2 cleaves by transmembrane serine
protease-2 (TMPRSS2) and furin protease, key factors in its host cell entry [37,40,41].
Interestingly, studies have attempted to explain the global pandemic of COVID-19 based
on hardness and phylogenetic analysis of the outer shell (M protein) of SARS-CoV-2, and
there may be other factors besides the S protein of the virus that characterize SARS-CoV-
2 [42]. SARS-CoV-2 is hypothesized to use clathrin-dependent endocytosis [43–45], the
most common endosomal pathway, to facilitate viral entry. Caveolae-dependent uptake,
which is the other pathway, is considered controversial regarding coronavirus entry into
host cells and is potentially dependent on cell type [46,47]. Following genome release
into the cytosol, viral genomic RNA is uncoated and translated for the synthesis of non-
structural viral proteins. Importantly, this intrinsic disorganization of viral proteins is an
inherent feature and a strategy of viruses to disrupt host nucleocytoplasmic transport to
benefit their own replication [48]. Viral RNA is then replicated and subgenomic RNAs
are translated in double-membrane vesicles, as previously reported in several viruses,
including coronavirus [49–52]. Multiple components, such as host membrane-derived
double-membrane spherules, convoluted membranes, and the endoplasmic reticulum (ER),
are used to protect and support the transcribed genomic RNA and are hallmarks of viral
infections. Translated structural proteins then translocate into the ER and transit through
the ER-to-Golgi intermediate compartment, wherein N-encapsidated, newly produced
genomic RNA is packaged in the lumen of secretory vesicles [53,54]. Viruses are then
secreted from the infected cells by exocytosis, and the aforementioned process is repeated
in new cells (Figure 1). Notably, D614G substitution in the receptor-binding domain of
the S protein of SARS-CoV-2 results in the change of a single amino acid, which enhances
binding affinity to the ACE2 receptor and increases viral entry into host cells [55]. Thus, to
enhance host cell defenses, it is important to understand how viral RNA infects host cells.
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components are replicated. Viral proteins are assembled for maturation, and the newly packaged viral particles are released.
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3. RNA Modifications of the SARS-CoV-2 Genome

RNA editing induces substitution in the viral genome and can potentially affect viral
infection. RNA epigenetics can be divided into two main categories according to the
mechanisms involved. One occurs when RNA modifications are catalyzed by methyl-
transferases (known as “writer proteins”) such as METTL3, and the other occurs when
RNA editing is catalyzed by editing enzymes. RNA editing by host deaminases is an
innate restriction process used as a defense mechanism against viral infection [56]. RNA
sequencing of SARS-CoV-2 isolated from the bronchoalveolar lavage fluid of patients with
COVID-19 revealed instances of RNA editing, such as A to G and U to C substitutions,
and was accompanied by evidence of adenine to inosine (A-to-I) reactions catalyzed by
RNA-specific adenosine deaminase (ADAR). In addition, restriction of viral replication
was observed with C to U and G to A substitutions by apolipoprotein B mRNA editing
enzyme catalytic polypeptide [57].

Furthermore, using RNA antisense purification and quantitative mass spectrometry
in SARS-CoV-2-infected human cells, ADAR was found to interact with SARS-CoV-2
RNA [58]. The authors identified 699 proteins, of which 583 were detected with multiple
peptides using liquid chromatography with tandem mass spectrometry. Viruses are known
to utilize the host RNA editing machinery, and the resulting substitutions can lead to
both proviral and antiviral effects. Recent studies have described the distribution of RNA
substitution in the SARS-CoV-2 genome, and have provided insights into the random
mutation and the specific substitutions induced by editing enzymes [59,60].

4. ACE2 Gene Expression

As ACE2 is an essential intracellular receptor that binds to the S protein encoded by
SARS-CoV-2 to cause an infection, understanding the status and mechanism of ACE2 gene
expression is essential. Generally, ACE2 is expressed in various human organs, and its
organ- and cell-specific expression suggests that it is involved in regulating cardiovascular
and renal function and fertility [61]. Interestingly, single-cell RNA sequence datasets
revealed that ACE2 was coexpressed with TMPRSS2 within lung type II pneumocytes,
ileal absorptive enterocytes, and nasal goblet secretory cells [62]. It is also known that
young children exhibit lower ACE2 expression compared to the adults [63]; the low risk of
infection in children may thus be attributed to this age-dependent ACE2 expression [64].

Studies using biochemical approaches have examined the binding of transcription
factors to DNA sequences upstream of the transcription start site (TSS) of ACE2. Using
the human embryonic kidney cell line HEK293, it has been suggested that there is a
functional hepatocyte nuclear factor 1β (HNF1β) binding site in the promoter region and
HNF1β in turn promotes ACE2 transcription [65]. Furthermore, HNF1α and HNF1β,
which bind to three HNF1-binding motifs that are highly conserved among mammalian
species, cooperatively regulate ACE2 activity in insulinoma cells [66]. The ACE2 gene is
known to produce various transcripts that are stimulated by interferons and has several
different TSSs, wherein the selection of TSSs varies from organ to organ [67–69].

As the ACE2 gene is located on the X chromosome, a gene dosage effect potentially
regulates gene expression. However, new evidence indicates that COVID-19 is a gender-
biased disease influenced by myriad variables ranging from biological to social factors, and
it is thus difficult to determine the relationship between SARS-CoV-2 infection and sex [70].

5. Effect of DNA Methylation on ACE2 Expression

DNA methylation is an epigenetic modification reported to be associated with various
clinical conditions, such as cancer and asthma [71–73]. The level of DNA methylation
around promoters is thought to regulate the expression of proximal genes by altering the
affinity of transcription factor binding. As mentioned above, Pedersen et al. performed
promoter deletion analysis for ACE2 and identified two regulatory promoter regions,
the distal promoter region and proximal promoter region at −1509 bp to −928 bp and
−454 bp to −1 bp from the TSS, respectively [66]. These promoter regions contain several
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transcription factor binding motifs such as HNF1α, HNF1β, GATA, FOXA, YY1, and
C/EBPβ [66,74–76] (Figure 2a). The binding motif of C/EBPβ contains a CpG site, and
the hypomethylation of the C/EBPβ binding motif is reported to induce angiotensinogen
expression [77]. Therefore, DNA methylation status around the ACE2 promoter may be
involved in regulating ACE2 gene expression. Comparative analysis of DNA methylation
in various tissues has revealed that several CpG sites are hypomethylated in lung epithelial
cells, which exhibit high ACE2 expression [78] (Figure 2b). Further, Cardenas et al. reported
multiple methylation sites in the vicinity of the TSS and ACE2 gene body with variable
degrees of methylation dependent on sex and race and a higher level of hypomethylation
in females compared to that in males [79]. Although the platform used for the analysis
was from a previous generation, Yang et al. reported that patients with asthma showed
differentially methylated CpG sites in similar locations [80]. Wang et al. systematically
analyzed the aberrant expression of ACE2 and TMPRSS2 in multiple human cancers and
found that colorectal cancers with elevated gene expression had reduced DNA methylation
levels. Since cancer is considered a risk factor for COVID-19, the outbreak of COVID-19
may require additional care, especially for colorectal cancer patients [81].
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Figure 2. The effect of chromatin organization and DNA methylation on angiotensin I converting enzyme 2 (ACE2) gene
expression in patients with coronavirus disease 2019 (COVID-19). (a) ACE2 gene expression is subject to a variety of
epigenetic controls. Here, we focus on transcription factors that bind to the ACE2 promoter region, factors that convert
chromatin structure (HMGB1), histone deacetylases (SIRT1), and DNA methylation. (b) In cells with low ACE2 expression,
such as intestinal epithelial cells and vascular endothelial cells, CpG sites around the promoter are hypermethylated. On the
contrary, in lung epithelial cells with high ACE2 expression, the CpG sites surrounding the promoter are hypomethylated,
suggesting that DNA methylation regulates ACE2 gene expression. (c) Differentially methylated regions (DMRs), located
around the promoters of interferon-related genes, are hypomethylated in patients with COVID-19 and are hypermethylated
in patients without COVID-19. Balnis et al. performed a quantitative real-time polymerase chain reaction to estimate the
expression of IFI27 and OAS2 and found that their expression was high in patients with COVID-19 and low in patients
without COVID-19. This suggests that the interferon-related genes DMRs are hypomethylated in patients with COVID-19,
resulting in the activation of these genes and pathways.
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6. Alteration of DNA Methylation in Patients with COVID-19

The DNA methylation status in the host is reported to change with bacterial and
viral infections [82], and analysis of the DNA methylation state is expected to aid in
estimating the infection history and future disease severity [83]. Balnis et al. performed a
comprehensive DNA methylation analysis using blood from hospitalized patients (COVID-
19 and non-COVID-19) and healthy individuals [84] (Figure 2c) and found that although
global DNA methylation levels did not differ between healthy and hospitalized individuals,
1089 hypo-differentially methylated regions (DMRs) and 416 hyper DMRs were found [84].
In addition, a comparison between patients with and without COVID-19 revealed 47
COVID-19 patient-specific DMRs, 36 of which were inversely correlated with the expression
of neighboring genes. Moreover, gene ontology analysis of these 36 DMRs showed that
ontologies involving defense response to the virus (27/36 DMRs) and interferon signaling
(19/36 DMRs) were enriched [84]. Furthermore, 77 DMRs were identified by comparing
patients with mild and severe COVID-19. The results of hierarchical cluster analysis of these
77 DMRs were consistent with the severity assessment indicated by the COVID-GRAM
score [85], indicating that these DMRs can potentially act as biomarkers [84].

7. Histone Modifications Related to ACE2 Gene Expression and COVID-19

Histone modifications are involved in human health conditions, aging, neurological
diseases, and cancer development, which have been described in the great reviews [86–88].
An association between ACE2 gene expression and histone modifications was reported
previously [89]. Although core histones in nucleosomes are tightly arranged, histone-
modifying enzymes can modify their tails. The counteracting action of various enzymes
results in reversible epigenetic modifications. As described in other reviews, the action of
enzymes, such as histone acetyltransferases, are balanced by those of histone deacetylases
and the action of histone methyltransferases are countered by the action of histone demethy-
lase, to maintain the epigenome [90,91]. Silent information regulator T1 (SIRT1), a histone
deacetylase, is reported to be involved in the transcriptional regulation of ACE2 expres-
sion [92], and this role is thought to be related to the protective role of SIRT1 against cellular
stress. Therefore, nonsteroidal anti-inflammatory drugs that inhibit SIRT1 deacetylase
activity are expected to exert unexpected anti-infective effects [93]. Notably, administration
of atorvastatin to rabbits on a high cholesterol diet has been reported to upregulate ACE2
expression via tissue-specific and promoter-specific histone modifications compared to that
in their corresponding controls [94]. Importantly, the elevated ACE2 expression in the lungs
of patients with severe COVID-19-related complications may be due to histone modifica-
tions of several genes such as HAT1, HDAC2, and lysine demethylase 5 B (KDM5B) [89]. In
particular, KDM5B affects chromatin accessibility by removing activated chromatin marks
such as the dimethylation and trimethylation of histone H3 (H3K4) from lysine 4, thereby
contributing to transcriptional regulation and DNA repair [95]. Inhibition of KDM5B in
breast cancer cells has been shown to induce an interferon response, making the cells
less susceptible to DNA and RNA viral infection [96]. Therefore, KDM5 demethylase is
expected to be a potential target for COVID-19 prevention. Furthermore, diarylheptanoids,
also known as diphenylheptanoids have been reported to induce epigenetic silencing of
the ACE2 gene mediated by HMGB1 [97–101], and this has attracted attention as a possible
way to prevent COVID-19 infection. Intriguingly, it has been reported that the expression
of TMPRSS2 and ACE2 was decreased by therapies directly targeting androgen receptor
(AR) and inhibitors of bromodomain and extra terminal domain (BET) proteins, which are
known epigenetic regulators of AR transcriptional activity. Furthermore, these treatments
reduced SARS-CoV-2 infection in a cellular model. Therefore, these findings support
further research on AR and BET inhibitors as potential treatments for COVID-19 [102,103].

Histone modifications are not only involved in the transcriptional regulation of ACE2,
but also have important pathophysiological functions in COVID-19. Elevated citrullination
of histone H3 (Cit-H3) in the serum of COVID-19 patients was recently reported [104].
Citrullination (deamination) of arginine residues in histones leads to generation of un-
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charged citrullines, facilitates chromatin decondensation, and enhances the accessibility
of chromatin [105–107] (Figure 3). Histone citrullination is catalyzed by the enzyme pep-
tidylarginine deiminase, a family of calcium-dependent enzymes that regulate immune
activity and are involved in neutrophil extracellular traps (NETs) [106,107]. Pathologically,
NETs are a biological defense response of neutrophils, which are triggered by infection;
cell death via NETosis, which is different from cell necrosis and apoptosis, results in the
release of neutrophil DNA into the extracellular space to form net-like structures [108].
As there is a positive correlation between Cit-H3 levels and platelet counts, Cit-H3 may
contribute to abnormal platelet counts. Furthermore, a recent report suggested that NETs
could be markers of COVID-19 severity [104]. Therefore, in the future it will be imperative
to investigate the prognostic impact of histone Cit-H3 conversion on SARS-CoV-2 infection
and venous thrombosis from both molecular biological and clinical perspectives.
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8. ACE2 Gene Regulation Mediated by miRNAs, lncRNAs, and circRNAs

Recently, the number of reports regarding the role of microRNAs (miRNAs) in regu-
lating the ACE2 gene has been increasing. miRNAs are non-coding, single-stranded, small
RNAs that function by post-transcriptionally inhibiting the expression of target genes in
various organisms, from viruses to higher eukaryotes [109–114]. These small RNAs func-
tion by complementarily binding to the 3′-untranslated region (UTR) and sometimes the
5′-UTR or coding regions of their target mRNAs. miRNAs are involved in numerous dis-
ease and physiological functions, such as cancer [115], degenerative neuro disorders [116],
cardiovascular disease [117], and immunity [118]. miRNAs are also often identified as
biomarkers of viral infections, and their contribution to host–pathogen interactions during
viral infections is being investigated [119–121]. Recently, ACE2 mRNA and ACE2 pro-
tein levels were reported to be repressed by miR-200c in primary rat cardiomyocytes and
human-induced pluripotent stem cell-derived cardiomyocytes, suggesting a direct link
between miR-200c and the regulation of ACE2 expression [122]. Many other miRNAs are
thought to have the potential to regulate ACE2, but most of them have not been carefully
investigated [123,124]. Furthermore, it has been suggested that TMPRSS2 transcription is
regulated by miR-98-5p in two human endothelial cell types, derived from the lung and
from the umbilical vein, suggesting strict control by the miRNA-target network [125].

Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have also been
implicated in SARS-CoV-2 infection [126–128]. Like miRNAs, lncRNAs and circRNAs are
a class of non-coding RNAs, but lncRNAs are typically 1000–10,000 residues in length, and
circRNAs are circular RNAs processed by back splicing [129,130]. Comparison analysis
between normal human bronchial epithelial cells and SARS-CoV-2 infected cells identified
several differentially expressed lncRNAs, and the differences of the expression were also
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confirmed among COVID-19 patients [126]. Involvement of circRNAs in several viral
infections such as hepatitis B virus and human papillomavirus were recently reported [128].
For infection of SARS-CoV-2, the two circRNAs, Ppp1r10 and C330019G07RiK, were
reported as a part of quintuple competing endogenous RNA networks consisting of miRNA,
lncRNA, circRNAs, mRNA, and transcription factor by in silico study [127].

9. Identification of SARS-CoV-2 Infection Factors Using Genome-Wide
Screening Analysis

The cutting-edge technologies such as next-generation sequencing (NGS) and CRISPR
systems have been contributing to the finding of new insights and development of new
diagnostic methods for COVID-19 [131–133]. The studies using NGS revealed the whole
sequences of SARS-CoV-2 at just 4 months from the COVID-19 pandemic [134], and the
sequences were beneficial for understanding the virus genomic variants and pathogenetic
mechanisms [131–133]. These innovative technologies are useful for understanding not
only the virological features of SARS-CoV-2 but also the response of patients in a molecular
biological aspect. A series of reports have identified factors associated with SARS-CoV-2 in-
fection using genome-wide screening analysis [97,135,136]. Wei et al. identified epigenetic
regulatory genes involved in diverse biological processes, such as chromatin remodeling,
histone modification, intracellular signaling, and RNA regulation, as candidate host genes
that affect SARS-CoV-2 infection. For example, HMGB1 appears to play a novel role in
epigenetically regulating ACE2 expression, thus increasing susceptibility to SARS-CoV-2
infection (Figure 2a). HMGB1 encodes a non-histone nuclear DNA-binding protein, belong-
ing to the high mobility group-box superfamily, that regulates transcription and is involved
in DNA organization [137,138]. This protein is also known to act as a danger-associated
molecular pattern molecule that amplifies immune responses during tissue injury [139].
Notably, HMGB1 regulates ACE2 expression in a cell-intrinsic manner rather than function-
ing as a cytokine or alarmin, suggesting a precise mechanism for HMGB1 involvement in
SARS-CoV-2 infection [97].

Furthermore, the gene encoding the SWI/SNF chromatin remodeling complex was
identified as a SARS-CoV-2 provirus, demonstrating the importance of this complex as a
pathogen [97]. Previously, the SWI/SNF complex has been reported to be composed of
the ATPase subunits SMARCA2 or SMARCA4, and it catalyzes non-catalytic scaffold core
expression via ARID1A, which has no inherent DNA sequence specificity [140,141]. Its
target specificity is thought to be conferred by the recruitment of DNA-binding proteins to
target sites on the genome and by sliding nucleosomes to regulate chromatin accessibility
and gene expression.

However, TMPRSS2, TMPRSS4, and FURIN [142,143], which are considered proviral
genes for SARS-CoV-2 infection, were not identified in this screening. This discrepancy
may be due to technical difficulties, such as the use of CRISPR libraries and variation in
gRNA expression levels in the cell type used.

10. Discussion

In this review, we presented the latest findings on the mechanisms of SARS-CoV-2
infection and COVID-19 pathogenesis with a focus on epigenetics. Since the discovery of
the double helix structure of DNA by J.D. Watson and F.H. Crick in 1953 [144], molecular
biology has emerged and various life mechanisms have been elucidated at the genetic level.
In addition, with the completion of the Human Genome Project in 2003 and the elucidation
of the human whole genome, there has been a growing momentum for the application of
genomic information to medicine, known as genomic medicine [15,27,28]. U.S. President
Barack Obama announced the Precision Medicine Initiative in 2015, leading to a worldwide
push for precision medicine, wherein patients are selected for optimal treatment based on
genomic mutations [145].

On the contrary, since the latter half of the 20th century, the importance of changes
in gene expression or cellular phenotype that are inherited after cell division without
changes in DNA sequence has been indicated, and a new research field called epigenetics
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has developed [15]. In fact, when elucidating the mechanisms of diseases such as can-
cer, it is difficult to determine the entire pathogenesis based on genetic mutations alone,
and the importance of conducting epigenetics research at the same time has been recog-
nized worldwide. Further, considering the ongoing promotion of precision medicine, it is
difficult to adequately screen patients based on genetic mutations alone, and epigenetic
information must also be used appropriately. In clinical practice, DNA methylation is used
for diagnosis [146], and HDAC inhibitors and DNA methylation inhibitors are used as
therapeutic agents [147,148]. Furthermore, clinical research and clinical trials of new drug
types, such as histone methyltransferase inhibitors and histone demethylase inhibitors,
are currently underway worldwide for clinical application [149–152]. Considering these
developments, it is important to conduct research focusing on epigenetics to elucidate
pathological mechanisms and to develop new diagnostic and therapeutic methods for
COVID-19. In this article, we also introduced the observation of DMRs unique to patients
with COVID-19, which may serve as biomarkers for predicting the disease severity and the
possibility of functioning as a novel therapeutic agent by epigenetically regulating ACE2
expression. Since the involvement of epigenetics factors such as histone deacetylase in
ACE2 expression has been indicated, there is a possibility of more effective treatment for
COVID-19, for example, by combining HDAC inhibitors, which are already approved by
the FDA, with Remdesivir or Dexamethasone.

Since COVID-19 was first reported in December 2019, it has only been one year and
eight months, and many unanswered questions remain regarding its pathological mecha-
nisms. It is hoped that COVID-19 will be controlled as vaccination progresses, but with
SARS-CoV-2 variants being reported consecutively, the situation remains unpredictable.
We thus believe that it is of global importance to continue elucidating the pathological
mechanisms of COVID-19 and to develop new diagnostic methods and therapeutic strate-
gies to free people worldwide from the threat of COVID-19 and to enable them to lead safe
and secure daily lives. Epigenetics is also an important subject of research, and we hope
that the clinical importance of epigenetics in the pathogenesis of COVID-19 will be further
clarified in the future by conducting analyses using larger clinical samples.
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