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Abstract

cd T cells are a small population of mostly tissue-resident
lymphocytes, with both innate and adaptive properties. These
unique features make them particularly attractive candidates for
the development of new cellular therapy targeted against tumor
development. Nevertheless, cd T cells may play dual roles in
cancer, promoting cancer development on the one hand, while
participating in antitumor immunity on the other hand. In mice,
cd T-cell subsets preferentially produce IL-17 or IFN-c. While
antitumor functions of murine cd T cells can be attributed to IFN-
c+ cd T cells, recent studies have implicated IL-17+ cd T cells in
tumor growth and metastasis. However, in humans, IL-17-
producing cd T cells are rare and most studies have attributed a
protective role to cd T cells against cancer. In this review, we will
present the current knowledge and most recent findings on cd T-
cell functions in mouse models of tumor development and human
cancers. We will also discuss their potential as cellular
immunotherapy against cancer.
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INTRODUCTION

cd T cells constitute non-MHC-restricted innate-
like T-cell populations, poised to be activated
rapidly within seconds to minutes, rather than
days, and bridge the innate and adaptive immune
systems.1 Although cd T cells make up only a
minor proportion of the CD3+ compartment in the
circulation and most tissues, because of their
rapid cytokine production following activation,
they constitute an important first line of defence
against infections and are important players in
antitumor defence.2,3 Innate recognition of tumor
cells and subsequent activation of cd T cells are
mediated by a range of cellular and molecular

determinants, including tumor-derived stress
ligands and cytokine signals (Figure 1). Despite
their well-documented innate properties, the
adaptive features of cd T cells are also essential in
their development and function.4–6 Unlike ab T
cells, activation of cd T cells through their TCR is
generally thought not to be restricted to
presentation of peptide by MHC molecules,
although a human cd T-cell clone capable of
recognising melanoma tumor antigens MART-1
and gp100 in a MHC I-restricted fashion was
recently generated in an artificial experimental
system.7 The identification of cd TCR ligands and
the antigen-presenting molecules they recognise
remains a long-standing quest, although several
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candidates, linked to specific cd T-cell subsets,
have been identified. Among these are non-
peptidic phosphorylated metabolites, or
phosphoantigens (PAgs), recognised by human
Vc9Vd2 T cells and expressed not only by
pathogens but also by tumor cells (Figure 1).8 In
addition, human and murine cd T cells are
thought to be capable of activation by cytokines,
independent of TCR–cognate antigen recognition.

cd T cells can be found in the circulation and in
secondary lymphoid organs, but they are mainly
resident in barrier tissues, such as the mucosae and
the skin, and in adipose tissue. cd T cells expressing
specific Vc and Vd chains are enriched in particular
locations within the body as illustrated in Table 1.
This suggests that tissue-specific factors trigger
clonal selection, possibly as a result of infection,
cytokine milieu or endogenous antigens,
highlighting how little is known about factors
controlling activation and expansion of human cd
T-cell subsets. In mice, it is clear that two
functional subsets of cd T cells can be found, one
producing IL-17 and one producing IFN-c. These

two subsets can be functionally defined based on
differential surface expression of CD27. CD27 is a
member of the TNF receptor family and binds to
CD70. CD27 is expressed not only on activated
lymphocytes but also on tumor cells. While CD27 is
present on murine IFN-c+ cd T cells, it is absent on
the surface of the IL-17+ cd T cells.9 On the
contrary, IL-17 cd T cells preferentially express CCR6
and the transcription factor PLZF, which is
considered to confer innate-like properties to
lymphocytes.10–13 Whereas murine cd T cells
acquire TCR-dependent functional maturity during
thymic ontogeny, human cd thymocytes are
functionally immature and instead acquire their
effector functions in response to peripheral
cytokine signals.14–16 Nevertheless, human thymic
cd T cells exhibit de novo expression of type 1
transcription factors T-bet and eomesodermin,
reflecting their capacity to rapidly differentiate
into cytotoxic effectors producing IFN-c in response
to cytokines IL-2 and IL-15.15 Unlike in mice, the cd
T-cell compartment in humans cannot be
functionally defined based on differential

Figure 1. cd T cells express an array of activating receptors for tumor cell recognition. Many of these mechanisms rely on the upregulation of

stress ligands by tumor cells, including MICA/B (humans), Rae-1/H-60 (mouse) and ULBPs. cd T cells also display an NK-like phenotype in their

expression of NCRs (NKp30, NKp44 and NKp46), particularly following activation. LFA-1, lymphocyte function-associated antigen 1; NKG2D,

natural killer group 2 member D; PLZF, promyelocytic leukaemia zinc finger protein; Rae1, retinoic acid early inducible-1; TCR, T-cell receptor;

TRAIL, TNF-related apoptosis-inducing ligand; ULBP, UL16-binding proteins. * denotes expression on some clones only.
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expression of CD27 and the functional distinction
among the different subsets is less clear.9 Human
cd T cells can be divided into 3 main subsets
based on TCRd-chain usage, Vd1, Vd2 and Vd3,
which does not allow for clear discrimination of
their different effector functions. Interestingly,
Vd4+, Vd5+ and Vd6+ populations of cd T cells
have also been found in patients with diverse
infections, but they remain rare and no
commercially available antibodies exist for these
subsets.17 Thus, most of the studies of human cd
T cells have focused on the Vd1, Vd2 and Vd3
subsets. While tissue-resident cd T cells are mostly
Vd1+ (and probably Vd3+, as they are sometimes
described as Vd1�Vd2�), the majority of our
current knowledge on the biology of human cd T
cells comes from blood-circulating cells, which
are mainly Vd2+ (Table 1). Recent studies
concerning the human cd TCR repertoire have
revealed distinct innate and adaptive roles for cd
T-cell subsets, depending on TCRc- and TCRd-
chain usage. In cord blood, the Vd1+ TCR repertoire
is highly diverse and private, but undergoes
postnatal clonotypic focusing throughout
adulthood,18 as evidenced by the enrichment of
discrete Vd1+ clonotypes during cytomegalovirus
(CMV) and human immunodeficiency virus (HIV)19

infection. Within the Vd2+ subset exist highly
clonal adaptive populations expressing a Vc9�Vd2+

TCR, which undergo differentiation and clonal
expansion during acute CMV infection, in contrast
to the innate-like Vc9+Vd2+ TCR with limited
recognition kinetics and CDR3 diversity.20 The Vd2+

subset constitutes an heterogeneous population of
cells, producing a range of pro-inflammatory

cytokines including IFN-c, IL-17, TNF-a, IL-9, but
also IL-10 depending on the setting.21–24

While IFN-c-producing cd T cells are abundant
in peripheral blood, IL-17 production by human cd
T cells is rare at homeostasis. However, significant
inflammatory insult such as that seen in some
cancers and infections can polarise cd T cells
towards a type 17 phenotype.24,37,39,40 A recent
extensive study sequencing bulk transcriptomes of
18 000 human tumors revealed that, among all
leucocytes present in the tumors, cd T cells were
most strongly associated with good prognosis.41

However, the computational approach used to
characterise these cells has since been disputed.40

There have also been reports of cd T cells having a
potential tumor-promoting role in various human
malignancies,37,40,42 likely attributable to their
functional plasticity in various inflammatory
microenvironments, although determination of a
direct immunosuppressive role for human cd T
cells in situ is difficult. Thus, although cd T cells
may still provide good prognostic and therapeutic
value in human cancers, more research is required
into understanding the balance between pro- and
antitumor effector functions, and how this is
regulated in the tumor microenvironment.

cd T CELLS IN TUMOR IMMUNE
SURVEILLANCE AND ANTITUMOR
IMMUNITY

Antitumor functions of murine cd T cells

Initial studies performed in murine models of
cancer have found protective roles for cd T cells

Table 1. The relative anatomical distribution and primary effector functions of different cd T-cell subsets in humans and mouse

Subset

Common c-d

chain pairings Anatomical localisation Context for the production of IFN-c or IL-17 Other effector molecules

Mousea

Vc1 Vc1Vd6.3/6.4 Liver, secondary lymphoid organs IFN-c – cancer,25 viral infection26 TNF, IL-427

Vc2 Undefined Liver, lung (rare) Undefined Undefined

Vc4 Vc4Vd4 Lung, liver, dermis, lamina propria,

secondary lymphoid organs

IFN-c – cancer,28 IL-17 – skin injury29 TNF, IL-2230

Vc5 Vc5Vd1 (DETC) Epidermis IFN-c – cancer, TLR signalling,31 NKG2D ligation31 TNF, IL-2232

Vc6 Vc6Vd1 Uterine epithelia, lung IL-17 – bacterial infection,33 cancer34 IL-2235

Vc7 Vc7Vd4/5/6 Gut epithelia IFN-c – bacterial infection27 IL-4, IL-1027

Human

Vd1 Undefined Gut epithelia, liver, dermis IFN-c – cancer,36 IL-17 – colorectal cancer37 TNF,36 IL-1023

Vd2 Vc9Vd2 Peripheral blood IFN-c – cancer, phosphoantigen stimulation8

IL-17 – bacterial infection24
TNF,21 IL-9,22 IL-1023

Vd3 Undefined Gut epithelia, liver IFN-c – glycolipids38 TNF, IL-438

aHeilig and Tonegawa nomenclature.
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against tumor growth.43,44 Several mechanisms,
through which they mediate their antitumor
effects, have been described, including not only
direct killing of tumor cells mediated by cytolytic
proteins or NKG2D-dependent mechanisms, but
also indirect effects mediated by their production
of IFN-c, as illustrated in Figure 2. In this section,
we summarise the current knowledge on the
different antitumor functions attributed to
murine cd T cells.

Early studies on the protective role of cd T cells
in mice have been conducted in murine models
of skin cancers, induced chemically or by
subcutaneous transfer of melanoma or carcinoma
cell lines. In all models, crucial roles for cd T cells
in antitumor immunity have been described, and
studies have shown a NKG2D-mediated
mechanism by tissue-resident Vc5+ dendritic
epidermal T cells (DETCs) as a main player in cd
T-cell antitumor function.43–46 DETCs are dendritic-
shaped cd T cells, which express a largely invariant
Vc5+Vd1+ TCR, and are considered to be a unique
and unusual subset of cd T cells, which restricts
the extent of findings on these cells to other
populations of cd T cells. DETCs constitute the
majority of T cells in the murine epidermis, but cd

T cells are far less abundant in human skin, and
DETC equivalents are not present in humans,
although evidence for antitumor function of skin
cd T cells also exists in humans.47 Interestingly,
in vivo studies of skin cancer performed in cd T-
cell-deficient mice (TCRd�/� mice) did not allow
for discrimination between DETCs and other
populations of cd T cells, and might have
underestimated the role of dermal Vc4+ cd T cells
or other subsets infiltrating the skin.43,44 Indeed,
TCRd�/� mice reconstituted with Vc4+ cd T cells
had a restored antitumor response against B16
melanoma cells, which relied on IFN-c and
perforin production, two important mediators in
antitumor immunity by cd T cells and other
lymphocytes (Figure 2).45,48,49 Importantly, a
protective role for cd T cells in antitumor response
in mice has been described in other models of
cancer and notably in a spontaneous model of B-
cell lymphoma.49 While both perforin and IFN-c
induce tumor cell death, IFN-c additionally
promotes the recruitment and activation of other
cytotoxic lymphocytes such as Th1 cells, NK cells
and cytotoxic CD8+ T cells (CTLs), while inhibiting
the differentiation of Th2, Th17 and Treg cells.
IFN-c also drives a pro-inflammatory phenotype in
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Figure 2. Pro- and antitumor effect of cd T cells. (1) Antitumor immunity of cd T cells by direct killing of tumor cells via perforin, granzymes,

granulysin and cytokines. (2) Vc5+ cd T cells induce B-cell class switching to autoreactive antitumor IgE. (3) IFN-c production by cd T cells

promotes the recruitment of NK, Th1 and CTLs and induces the differentiation of antitumor macrophages. Additionally, IFN-c enhances the

presentation capacities of APCs and MHC I expression by tumor cells, while inhibiting pro-tumor T helper cells. (4) cd T cells producing IL-17

promote angiogenesis and suppress antitumor CTL and Th1 cells. (5) Production of IL-22 and amphiregulin by cd T cells induces direct tumor cell

proliferation. The dashed line separates mouse and human cd T cells. cd T cells depicted in red are the cells with antitumor functions, while cd T

cells depicted in green are the cells that promote tumor growth.
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macrophages and enhances the antigen
presentation capacities of professional APCs.50

Interestingly, IFN-c production by cd T cells also
enhances MHC I molecule expression at the
surface of B16 melanoma cells, thereby promoting
their recognition by CTLs (Figure 2).51 A recent
study in a mouse model of gastrointestinal
stromal tumor describes a protective role for cd T
cells mediated through the secretion of GM-CSF.
This cytokine promoted the maturation of CD103+

CD11b� dendritic cells, which were associated
with infiltration of effector CD8 T cells within the
tumor.52

Tumor immune surveillance by activated murine
cd T cells has been linked to their surface
expression of the C-type lectin receptor NKG2D,
ligands for which Rae-1 and H-60 (MICA and MICB
in humans) are expressed at the surface of
stressed cells.43,46 In mice, DETCs together with
Langerhans cells (epidermal dendritic cells) and
tissue-resident CD8+ memory T cells form a
network integrated within the epidermis.53

Upregulation of Rae-1 by epidermal cells induces
activation and remodelling of DETCs from
dendritic- to round-shaped cells, leading to a
reorganisation of the epidermal architecture. Rae-
1 upregulation also promotes expression of the
activation marker CD69 on the DETCs within the
epidermis and the killing of tumor cells through a
NKG2D-mediated pathway.43,46 While expression
of NKG2D ligands in humans is associated with
better outcome in several types of cancers, NKG2D
ligands are often internalised by tumor cells or
secreted as soluble forms during immune evasion,
but are promoted following exposure to different
factors including chemotherapy.54 Interestingly, a
recent study by Sheppard and colleagues has
identified an unexpected tumor-promoting role
for NKG2D in a model of hepatocellular
carcinoma. The authors proposed that, while
NKG2D has evident antitumor function in early
stages of cancer, it could exacerbate the pro-
inflammatory microenvironment of the tumor at
later stages, leading to tissue damage and
enhanced cell proliferation, which promoted
tumor progression in the liver environment.55

While the authors did not look at the implication
of cd T cells in this process, these cells could
nevertheless play a role, given their enrichment in
the liver and their robust cytokine expression in
response to many inflammatory signals.56

The engagement of the cd TCR in tumor
recognition and elimination by murine cd T cells is

also likely, and this is also true in humans.57

Indeed, Girardi et al.43 showed that incubation of
murine DETCs with a cd TCR-blocking antibody
resulted in impaired lysis of the PDV tumorigenic
keratinocyte cell line. However, Dutta et al.58

have recently shown that blockade of cd TCR with
antibodies can induce apoptosis in those cells,
which could account for the decrease in killing
capacity observed. Recently, Crawford et al.59

showed that skin-resident intraepithelial cd T cells
also induced a rapid adaptive immune response to
chemically induced skin carcinogenesis by
promoting class switching and secretion of high
levels of protective IgE by B cells, indicating that
the impact of cd T cells on other cell types might
be broader than expected (Figure 2).

Role of human cd T cells in antitumor
immunity

The Vd2+ subset

Vd2+ cd T cells are the predominant subtype in the
blood, accounting for 2–5% of circulating CD3+

lymphocytes.60 These cells express a TCR with
preferential pairing of Vd2 and Vc9 chains, and
mediate effective antitumor immunity directly
through cytotoxicity via perforin and granzymes,
or indirectly through IFN-c and TNF production
(Figure 2).3 Recognition of tumor cells by
Vc9+Vd2+ T cells can occur through a host of cell
surface receptors for self and non-self ligands,
including TCR recognition of tumor antigen and
stress ligand receptors. These include NKG2D,
FCcIII (CD16), FasL, TRAIL and DNAM-1 (CD226).61–65

Vc9+Vd2+ T cells recognise tumor-derived
phosphorylated prenyl metabolites in a TCR-
dependent manner, which may accumulate
intracellularly as a by-product of dysregulated
tumor metabolism (Figure 1). One well-studied
PAg, isopentenyl pyrophosphate (IPP), can
accumulate in cancer cells as a result of the
elevated metabolic flux through the mevalonate
pathway of cholesterol biosynthesis.21,28,66 These
non-peptidic antigens are not presented in the
context of classical MHC and are instead
presented through a non-polymorphic type I
transmembrane protein called butyrophilin 3A1
(BTN3A1). BTN proteins of the immunoglobulin
(Ig) superfamily consist of a B30.2 intracellular
domain and two extracellular Ig domains.67 The
mechanism of activation of Vc9+Vd2+ T cells by
BTN3A1-bound PAg remains controversial,
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although it is thought to be triggered by initial
intracellular binding of PAg to a positively
charged surface pocket within the intracellular
B30.2 domain.68–71 The resultant conformational
change within BTN3A1 has been proposed to
confer recognition by the Vc9Vd2 TCR in an
‘inside out’ signalling mechanism whereby surface
BTN3A1 is sensitive to the intracellular concentration
of prenyl pyrophosphate metabolites.72,73 These
non-MHC-restricted, innate-like recognition kinetics
of Vc9+Vd2+ T cells are an attractive candidate for
cancer immunotherapy and have been targeted in
clinical settings using aminobisphosphonate drugs.
Aminobisphosphonates are clinically approved
potent inhibitors of the mevalonate pathway,
thereby not only promoting direct antitumor effects
but also leading to a build-up in endogenous
isoprenoid metabolites. Zoledronate is an
aminobisphosphonate drug that directly inhibits
farnesyl pyrophosphate synthase (FPPS), an
enzymatic mediator of the mevalonate pathway,
leading to a build-up in endogenous IPP.74 This, in
combination with mitogenic IL-2, induces activation
and proliferation of type 1 cytotoxic effector cd T
cells with antitumor potential producing IFN-c, TNF,
perforin and granzymes.75 Thus far, all clinical trials
using cd T cells as an autologous cellular therapy for
cancer have focused on ex vivo or in vivo activation
and expansion of Vc9+Vd2+ T cells with
aminobisphosphonates, with satisfactory safety
profiles observed.76,77 This highlights the need for a
better understanding of how Vc9+Vd2+ T cells
become activated in cancer, how their effector
functions are regulated and how this may be
exploited for therapeutic gain in cancer
immunotherapy.

The Vd1+ subset

Vd1+ T cells are a minor population in the blood
but represent the predominant tissue-resident
population of cd T cells.57 These cells are mainly
found at mucosal sites such as the dermis and
intestinal epithelia where they can comprise
20–50% of the tissue-resident lymphoid
compartment.3 Unlike their Vd2+ counterparts,
Vd1+ cd T cells do not often preferentially pair
with a specific Vc chain (although clonal
expansion can be seen in some organs, which can
be different among individuals). Vd1+ cd T are not
activated by PAgs, but can display an NK-like
phenotype in their expression of natural
cytotoxicity receptors, (NCRs) NKp30, NKp44 and

NKp46, depending on the protocol used to
expand them.62 Although a unique ligand for the
Vd1+ TCR has yet to be identified, recent studies
have elucidated some cognate TCR recognition
properties of Vd1+ T cells. A crystallographic study
revealed sequential recognition kinetics of the
MHC class I homologue MICA by NKG2D and Vd1+

TCR, thereby providing both TCR and
costimulatory signals from the same ligand.65

Some Vd1+ cell lines have been reported to
recognise the lipid antigen a-galactosylceramide
(a-GalCer) presented by CD1d.78–80 Furthermore,
Vd1+ TCR-mediated recognition of glycolipids
presented in the context of CD1c facilitates target
cell lysis, Th1 cytokine production and dendritic
cell maturation by Vd1+ T cells (Figure 1). Indeed,
as with ab T cells, TCR-mediated recognition of
host stress ligands by cd T cells may require
costimulatory signals. This is exemplified by the
TCR-mediated recognition of endothelial protein
C receptor (EPCR) expressed on CMV-infected
endothelial cells by a cd T-cell clone bearing a
Vc4Vd5 TCR, which required CMV-induced
upregulation of ICAM-1 by target cells for an
optimal response.81 Similar to Vd2+ cells, Vd1+ cd T
cells induce tumor cell death through soluble
cytotoxic machinery (perforin, granzymes and
granulysin) and cytokine secretion (IFN-c and TNF).
The cytolytic function of Vd1+ T cells has been
shown for a range of haematological and solid
malignancies, including acute lymphoblastic
leukaemia (ALL), acute myelogenous leukaemia
(AML), B-cell chronic lymphocytic leukaemia (B-
CLL), neuroblastoma, melanoma and pancreatic,
lung and colorectal cancers (CRC).36,57,60,82–84 Vd1+

T cells seem to outclass Vd2+ cells in most in vitro
and in several in vivo pre-clinical cancer models in
terms of cytotoxicity and durability,57,85 which may
have important implications in the development of
next-generation cd-based immunotherapies. One
advantage Vd1+ cells may have for use in
immunotherapy is their resistance to activation-
induced cell death (AICD),86 which has posed
significant problems in clinical trials following
chronic stimulation of Vc9+Vd2+ T cells with
aminobisphosphonate drugs.77 Although the
cytotoxic capacity of both Vd1+ and Vc9+Vd2+ T
cells makes them attractive targets for the
development of next-generation immunotherapies,
a broader understanding of how these effector
functions are regulated and how they may be
polarised towards a pro-tumor phenotype, and
whether, like conventional T cells, they become
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inhibited and exhausted in the tumor
microenvironment, is required.

cd T CELLS AS DRIVERS OF TUMOR
GROWTH

Pro-tumor function of murine cd T cells

Studies performed in mouse models indicate that
pro-tumor functions of cd T cells can be largely
attributed to the IL-17+ cells (Figure 2). This is in
line with the majority of reports on IL-17
production by other innate and adaptive immune
cells, although the impact of IL-17 on tumor
growth might depend on the type of cancer
studied.87 We and others have found that IL-17+

cd T cells are enriched not only in a variety of
murine solid tumor models induced by
implantation of tumorigenic cells, but also in
spontaneous models of HPV-related carcinogenesis
and breast cancer models, for which they are
associated with metastasis.34,88–92 In murine
models of ovarian, pancreatic and lung cancers,
IL-17-producing cd T cells in tumors were highly
proliferative and displayed an activated
phenotype.34,89,93 They induced angiogenesis and
the recruitment of neutrophils, generally
associated with poor prognosis in cancer.92,93

Indeed, neutrophils secrete different tumor-
promoting agents, such as growth factors,
metalloproteinases (MMPs), neutrophil elastase
(NE) and reactive oxygen species (ROS), which
directly enhance tumor growth and invasion,
promote angiogenesis and suppress antitumor
immune cells. Nevertheless, neutrophils display
phenotypical and functional plasticity depending
on the tumor microenvironment, and have been
found to also contribute to antitumor immune
response, notably through antibody-dependent
cellular cytotoxicity (ADCC) and recruitment of
other immune cells.94 IL-17-producing cd T cells
also promoted the recruitment of
immunosuppressive neutrophils and small
peritoneal macrophages, which inhibit CTL
response and enhance tumor growth.34,88,90,93 In a
model of pancreatic ductal adenocarcinoma
(PDA), IL-17+IL-10+ cd T cells were also directly
suppressive of T-cell responses. Here, IL-17+ cd T
cells expressed the checkpoint inhibitors PD-L1
and Galectin-9, both of which prevented the
activation of ab CD4+ and CD8+ T cells, indicating
that cd T cells can directly inhibit adaptive
antitumor immunity (Figure 2).89 A direct role of

IL-17+ cd T cells on tumor cell proliferation is also
possible as IL-17+ cd T cells from lung tumors
expressed IL-22 and amphiregulin, both of which
can directly promote tumor cell proliferation
(Figure 2).93 Nevertheless, as IL-17-producing cd T
cells are rarely found in humans at steady state,
further studies are needed to fully grasp the
relevance of these findings for human cancers.

The tumor microenvironment provides favorable
conditions for the enrichment of IL-17-producing
cd T cells, notably through enhanced levels of the
cytokines IL-1b, IL-6, IL-23 and IL-7, which favor
CD27� cd T-cell survival and promote IL-17
expression.34,88,92

Jin et al.93 showed that in a spontaneous model
of lung adenocarcinoma, tumor development
alters the local microbiota, which induces the
production of IL-1b and IL-23 by myeloid cells
resulting in highly proliferative tissue-resident IL-
17+ Vc6+Vd1+ cd T cells. Interestingly, the IL-17
production in cd T cells via IL-1b axis is also
described in promoting tumor metastasis in a
spontaneous model of breast cancer metastasis.92

Interestingly, IL-1b and IL-6 additionally drive the
expression of NOS2, associated with tumor
evasion, in pro-tumorigenic cd T cells.95 IL-17+ cd
T-cell recruitment is supported by tumor
chemokine secretion, such as CCL2/MCP-1, a
molecular target for anticancer therapy and
ligand for CCR2, which is highly expressed on
tumor-infiltrating cd T cells.89,91,96–98 The
chemokine receptor CCR6, involved in the
trafficking of IL-17+ cells to tissues at steady state,
is also expressed by IL-17+ cd T cells in the tumor
bed of PDA and hepatocellular carcinoma.89,90

Indeed, CCR6 and its ligand CCL20 are associated
with tumor progression in models of CRC and
pancreatic cancer.99,100 Interestingly, in other
models, recruitment of IL-17+ cd T cells to the
subcutaneous B16 melanoma tumors and HPV-
induced skin lesions, respectively, is associated
with a downregulation of CCR6 expression,91,96

indicating that the environmental setting in which
the tumor develops might influence the
phenotype of the immune cells recruited.

Intrinsic metabolic pathways are another
parameter that may influence the recruitment and
survival of cd T cells within the tumor bed. In fact,
as cancer progresses, tumor cells override
lymphocytes in competition for nutrients,
especially glucose, which is essential for T-cell
effector functions. Thus, nutrient availability
might favor or limit the survival of particular
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immune cells. Our unpublished work suggests that
CD27� and CD27+ cd T cells have different
metabolic requirements, which might partially
explain the enrichment of the IL-17+ subset over
the IFN-c+ one in the tumor, observed in a
number of cancer models. In addition, tumor cells
and other cells infiltrating the tumor niche
express enzymes and excrete products, which can
inhibit normal T-cell metabolism. For instance, in
models of hepatocellular carcinoma and
peritoneal B16 tumor, tumor-infiltrating IL-17+

Vc6+ cd T cells express low amounts of the
antioxidant glutathione, which make them highly
susceptible to ROS produced by tumor-associated
neutrophils.101 These recent insights of the effect
of metabolic state of the tumor microenvironment
on the promotion of pro- or antitumor immune
cells require further investigation.

Pro-tumor function of human cd T cells

One potential caveat of the functional plasticity
and innate response kinetics of cd T cells is their
susceptibility to polarisation by a particular
inflammatory milieu. Although human cd T cells
rarely produce IL-17, several groups have reported
an elevated frequency of IL-17+ cd T (cdT17) cells
in response to a combination of Th17-polarising
cytokines IL-1b, IL-6, IL-23 and TGF-b in some
disease settings.24,39 Many of these cytokines are
elevated in the tumor microenvironment of
certain cancers, and indeed, there have been
some reports of IL-17-producing cd T cells having
a pro-tumor role in various human malignancies.

The first report of IL-17-producing cd T cells
having a pro-tumorigenic role in humans was
reported by Wu et al.37 in patients with CRC. They
showed that breach of the gut epithelial barrier
by tumor dysplasia induced an influx of
commensal microbial products, resulting in the
accumulation and activation of IL-23-producing
inflammatory dendritic cells. This was sufficient to
induce cdT17 polarisation of Vd1+ intraepithelial
lymphocytes, with cd T cells identified as being
the main cellular source of IL-17 in human CRC.
Production of IL-8 and GM-CSF by cd T cells
resulted in an influx of immunosuppressive
neutrophils, which have well-established pro-
tumor roles in an array of cancer types in both
humans and mice.

McAllister et al.102 used a murine model of
pancreatic intraepithelial neoplasia (PanIN), a
histological precursor of PDA, to show that the

oncogene Kras can induce the expression of IL-17
receptors on PanIN cells and infiltration of IL-17+

lymphocytes into pancreatic stroma. Within the
pancreatic tumor microenvironment exists an
abundance of type 17-polarising cytokines such as
IL-6 and TGF-b.103 They showed an increase in the
frequency of RORct+ cells in PanIN lesions,
primarily produced by Th17 (10% IL-17+) and cd
(50% IL-17+) T cells. It has later shown that human
PDA consists of a unique inflammatory infiltrate,
with cd T cells making up to 75% of infiltrating T
cells,89 although Gunderson et al.104 have
reported a much lower proportion of cd T cells in
the PDA inflammatory infiltrate (< 5%). Using a
transgenic murine model of PDA, they identified a
substantial population of cd T cells, which
produced IL-10 and IL-17 and restrained ab T-cell
activation through expression of immune
checkpoint ligand PD-L1. Although the role of IL-
17 in human pancreatic tumorigenesis remains
uncharacterised, ablation of cd T cells resulted in
enhanced ab T-cell tumor infiltration with
superior antitumor effector function in TCRd�/�

mice, perhaps highlighting the need for a better
understanding of how cd T-cell anticancer
function is regulated in the tumor
microenvironment.

A pathological role has also been described for
cdT17 cells in human gallbladder cancer (GBC),
with an increased frequency of cd TCR+ cells in the
blood and TIL of patients with GBC.40 Here,
cdT17-derived IL-17 induced expression of vascular
endothelial growth factor (VEGF) and other pro-
angiogenic factors by GBC cells, facilitating tumor
growth and survival. A common feature of the
cancer types for which a pro-tumorigenic role of
cd T cells has been described is their resistance to
conventional chemotherapeutic treatments and
poor 5-year survival rates, exemplifying the need
for alternative therapies. With the recent clinical
success of immunotherapies such as checkpoint
blockade and chimeric antigen receptor (CAR) T
cells, an argumentative case can be made for
targeting cd T cells; however, the factors that
govern the pro- versus anticancer phenotype in
the tumor microenvironment must first be further
explored.

APPLICATIONS OF cd T CELLS IN
IMMUNOTHERAPY

Immunotherapy is a rapidly expanding and
diversifying field of clinical oncology, which has

2019 | Vol. 8 | e1080

Page 8

ª 2019 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology Inc.

cd T cells in cancer M Raverdeau et al.



shown unprecedented success in the clinic. The
emergence of immune checkpoint inhibitors and
CAR T-cell technology has revolutionised the
treatment of malignancy. However, the efficacy of
these treatments is limited, for the most part, to
haematological neoplasms and solid tumors with
high mutational burdens (e.g. metastatic
melanoma and MSI-high colon cancer).105 While
current T-cell-based therapies have shown great
success in the clinic, several pitfalls in their use
still persist. Checkpoint inhibitors are only
effective in a minority of patients, acquired
resistance and tumor relapse with resistant clones
is an increasingly worrying problem. The time and
expense involved in the expansion and conversion
of patient cells to CAR T-cell products means there
is a limited treatment window available to
patients with advanced disease. In some cases, this
expansion protocol fails completely, leaving few
options for further treatment. Similar to
checkpoint therapy, the use of CAR T-cells in solid
tumors has proven disappointing. This is believed
to be in large part by difficulty in drawing them
to the affected tissues. Homing to effected tissues
requires the expression of a range of chemokine
receptors and adhesion molecules, which are not
normally expressed by peripheral blood T cells.106

Successful elimination of tumors is dependent on
the persistence of transferred T cells, which can
become exhausted. Conversely, some patients
suffer detrimental side effects, such as
autoimmune colitis and cytokine release
syndrome. These side effects can even result in
increased morbidity and mortality.107 Therefore,
an off-the-shelf cellular immunotherapy is an
attractive proposition. Innate immune cells, such
as cd T cells and NK cells, appear to have an
improved safety profile with minimal off-target
effects.108 Furthermore, since these cells are not
MHC-restricted cell products can be prepared from
a pool of healthy donors and expanded, reducing
the costs and unpredictability associated with
rapid expansion of patient-derived products. The
innate nature of cd T cells and their ability to
recognise a wide range of tumors makes them
potentially excellent candidates for cellular
therapy.

A pan-cancer analysis of the TCGA database
identified cd T cells as the strongest immune
prognostic available in solid tumors.41 However,
the analysis showed wide variability in the
infiltration of tumors by cd T cells. In addition, the
computational algorithm used to deconvolute

these tumor microarrays, CIBERSORT, has then
shown to inaccurately distinguish cd T cells
from other lymphoid populations.109 This
computational-based identification was later
optimised by Tosolini et al.,109 allowing for more
accurate assessment of cd TILs from bulk tumor
transcriptomes. Moreover, cd T cells are diverse
and often plastic so identifying the most suitable
subset and maintaining this phenotype in vivo
remains a challenge to be addressed in coming
years. For example, the presence of IL-17-
producing cd T cells in colon cancer has been
associated with poor prognosis.37,110 Interestingly,
though a pan-cancer analysis of the TCGA
database identified a combined Th1/Th17 immune
signature as the most beneficial for patient
survival, this group showed the most pronounced
Th17 gene signature but appeared balanced by
the presence of a Th1 response.111 This study
requires further dissection to determine the
relative contribution of Th1 and Th17 genes to
this signature. IL-17 has previously been
considered pro-tumorigenic, with many IL-17-
mediated diseases eventually leading to
malignancy. However, this study indicates that IL-
17 in context of a Th1 response may be beneficial,
but the source and localisation of IL-17
production cannot be identified in current
transcriptomic data sets with reasonable certainty.
Therefore, this question may benefit from a new
approach, and using single-cell transcriptomic
analysis to identify the source of this potentially
beneficial IL-17 is worth investigation. Homology
between murine and human cd T-cell subsets is
poor and makes translation of murine studies to
humans a difficult proposition.

Vd1+ T cells make up a small proportion of the
circulating cd T-cell population. However, they are
highly enriched in mucosal tissues including the
skin, gut, lung and liver (Table 1). Residing in
tissues, Vd1+ T cells adapt to lower nutrient
availability and decreased oxygen levels, which is
similar to the tumor microenvironment.
Incubation in hypoxia ex vivo has been shown to
enhance cd T-cell cytotoxicity. However, tumors in
hypoxic environments begin to secrete soluble
NKG2D ligands, rendering cd T cells incapable of
killing these cells.112 Having previously homed to
target organs, adoptively transferred Vd1+ T cells
should be capable of homing again to a target
organ containing a tumor. Furthermore, protocols
have been developed that allow the rapid
expansion of highly cytotoxic donor Vd1+ T cells
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(DOT cells), which are able to control leukaemic
cell growth.57 These cells acted against a broad
range of tumor clones and did not select for
resistant strains.113 It is thought that this is
mediated through innate NK receptors in addition
to TCR recognition of tumor cells. Vd1+ cd T cells
express a range of germ-line-encoded receptors,
which recognise cellular stress (NKG2D) as well as
tumor- and viral-associated antigens (NKp44 and
NKp46; Figure 1). This is consistent with previous
reports, showing that expanded Vd1+ T cells
possess broad cytotoxic potential in solid tumors,
including colon cancer.114 This provides a unique
advantage for cd T cells over conventional ab T
cells. Their ability to recognise a broad range of
tumor signals through NK receptors and their TCR
allows them to avoid some of the most potent
immune evasion mechanisms available to tumors.
However, Vd1+ T cells have been poorly
characterised in solid tumors. Despite their
enrichment in specific organs (Table 1), tumors
nonetheless develop in these tissues, indicating
many tumors are capable of evading recognition
by Vd1+ T cells. cd T cells may also succumb to
inhibition through checkpoint molecules. cd T
cells have been shown to express PD-1 transiently
after activation; however, the expression of PD-1
and other immune checkpoints such as CTLA-4,
TIM3, LAG3 and TIGIT has been poorly
characterised on cd T cells in human tumors and a
combination of these molecules may inhibit TCR
and NK-receptor recognition of tumors.115

Vd2+ cells are the majority of circulating cd T
cells in humans, and the vast majority of literature
surrounding Vd2+ T cells has focused on a subset
expressing the TCR Vc9 chain. The transcriptional
profile of Vc9+Vd2+ T cells appears to be an
amalgamation of ab T cells and NK cells, giving
them aspects of both cells’ functions. Vc9+Vd2+ T
cells have adaptive features such as a somatic
recombination of receptors, memory formation
and professional antigen presentation, alongside
innate features such as an absence of MHC
restriction, recognition of conserved microbial and
self-antigens and ability to perform ADCC.116–118

A wide range of germ-line-encoded activating
receptors are also expressed by Vc9+Vd2+ T cells,
which are essential for their antitumor function,
including NKG2D, which recognise MICA/B.61,113

Vc9+Vd2+ T cells have been detected in over 30
solid and haematological malignancies.109 In this
study, Vc9+Vd2+ T cells were associated with
prolonged overall survival in CLL, AML, colon and

prostate cancers. Interestingly, Vc9+Vd2+ T-cell
infiltration was independent of ab T-cell
accumulation, indicating that infiltration by cd T
cells is via a different mechanism to conventional
ab T cells. Vc9+Vd2+ T cells account for about 5%
of peripheral blood T cells, so are readily available
for in vivo and ex vivo expansion. The drug
zoledronate has been used in several clinical trials
to promote the in vivo expansion of Vc9+Vd2+ T
cells. While this proved a safe treatment, the
efficacy was disappointing and failed to prevent
progression in most patients.119 Ex vivo expansion
of cd T cells using zoledronate and IL-2 has also
been trialled in a number of studies, improving
disease progression but failing to achieve
improved overall survival in a number of solid
tumor types (renal cell carcinoma, lung cancer,
hepatocellular carcinoma).119,120 These early trials
should be interpreted with caution as they were
designed for assessing safety of cd T-cell products
and not their efficacy. As of March 2019, there
are currently 13 active clinical trials
(clinicaltrials.gov) involving the use of cd T cells to
treat a broad range of cancers including
leukaemia and breast, pancreatic, ovarian, liver,
kidney, lung and brain cancers. These trials
involve combinations of in vivo expansion using
drugs such as zoledronate and alendronate,
infusions of ex vivo-expanded cd T cells and
surgical interventions such as cryosurgery or
irreversible electroporation (NanoKnife; Table 2).
However, these trials utilise techniques used in
previous trials with low rates of success. Perhaps
then, new approaches to cd T-cell-based
immunotherapy are required.

While the current trend in immunotherapy
involves the use of checkpoint inhibitors to
release the suppression of T cells, this therapy may
not drive antitumor responses in innate T cells,
such as cd T cells. As many cd T cells are not MHC-
restricted, the co-inhibitory pathways associated
with antigen presentation, such as PD-1 and CTLA-
4, may be redundant in their tumor recognition.
Therefore, cd T cells may require release of
additional immune checkpoints such as TIGIT, a
potent inhibitor of NK cells.121–123 The expression
of immune checkpoints such as TIGIT, TIM3, LAG3
and NKG2A remains poorly characterised in
tumor-infiltrating cd T cells and may provide
synergistic targets to combine with conventional
T-cell targets such as PD-1.

Recently, cd T cells have been incorporated into
CAR therapy, producing sufficient cells from Vd1+
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and Vd2+ subsets for clinical studies.124,125 An
additional perquisite of using cd T cells for
immunotherapy lies in their ability to cross-
present processed tumor antigen to ab T cells, and
this process is retained in CAR-cd T cells, further
enhancing their antitumor effects.124

FUTURE DIRECTIONS

With the advancement of chimeric antigen
receptor (CAR) engineering, interest in cellular
therapies has increased dramatically. Furthermore,
robust expansion protocols for the production of
cd T cells en masse have made their use in the
clinic feasible.32,57,114 The safety profile of innate
lymphocytes compared to conventional T cells and
their lack of MHC restriction makes them an
attractive target for off-the-shelf cell therapy.
However, further fundamental research is needed
to grasp fully the pleiotropic roles of cd T cells in
cancer. In addition, inhibitory pathways used by
tumors to evade recognition by cd T cells have
been poorly characterised and warrant further
investigation. Additional and more advanced-
phase clinical trials are required to determine the
efficacy of cd T-cell-based therapies. cd T cells are
a strong positive prognostic in most cancers. They
naturally infiltrate tissues throughout the body,
including lung, liver and the gut, some of the
most difficult organs in which to treat
malignancies. They recognise a broad range of
tumors, not only through their TCR but also
through NK receptors. Furthermore, they fail to

induce graft-versus-host disease and autoimmune
complications. This potent effector function,
broad range of activity and safety profile make
them an ideal potential cellular therapy to
enhance current immunotherapy strategies and
improve the treatment of solid malignancies.
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