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Abstract

Metabolic engineering has allowed the production of a diverse number of valuable chemicals using 

microbial organisms. Many biological challenges for improving bio-production exist which limit 

performance and slow the commercialization of metabolically engineered systems. Dynamic 

metabolic engineering is a rapidly developing field that seeks to address these challenges through 

the design of genetically encoded metabolic control systems which allow cells to autonomously 

adjust their flux in response to their external and internal metabolic state. This review first 

discusses theoretical works which provide mechanistic insights and design choices for dynamic 

control systems including two-stage, continuous, and population behavior control strategies. Next, 

we summarize molecular mechanisms for various sensors and actuators which enable dynamic 

metabolic control in microbial systems. Finally, important applications of dynamic control to the 

production of several metabolite products are highlighted, including fatty acids, aromatics, and 

terpene compounds. Altogether, this review provides a comprehensive overview of the progress, 

advances, and prospects in the design of dynamic control systems for improved titer, rate, and 

yield metrics in metabolic engineering.
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1. Introduction

In research laboratory settings, metabolic engineering has enabled the production of a vast 

array of metabolite products including fuels (Jiang et al., 2018, 2017; Yan and Pfleger, 

2020), chemicals (Bai et al., 2019; Bowen et al., 2016; Reed and Alper, 2018), medicines 

(Cao et al., 2020), and polymer precursors (Zheng et al., 2020), using dozens of microbial 

species from bacteria (Becker et al., 2018; Pontrelli et al., 2018) to eukarya (Abdel-

Mawgoud et al., 2018; Lian et al., 2018) and archaea domains (Crosby et al., 2019). 

However, commercial production of these compounds in industrial scales has been lagging, 

largely due to the inability of the engineered strains to maintain stable performance at large 

scales while meeting stringent titer, rate, and yield (TRY) requirements.

Metabolic engineers have faced a myriad of challenges in forcing engineered microbes to 

over-produce metabolite products. Engineered metabolic pathways utilize shared host 

machinery, including RNA polymerases, ribosomes, ATP, cofactors, and other native 

metabolites. Competition on cellular resources is sensitive to fermentation conditions and 

can cause metabolic burden (Kurland and Dong, 1996), improper cofactor balance (Bentley 

et al., 2016; Charusanti et al., 2010), or accumulation of metabolites to toxic levels (Kizer et 

al., 2008), all of which can interfere with the growth and desired metabolic objective of the 

engineered microbes. Additionally, cells growing in large-scale bioreactors often experience 

different and changing microenvironments, leading to heterogeneity in their performance 

(Delvigne et al., 2014; Pigou and Morchain, 2015). These issues constrain metabolite 

production and give advantage to fast-growing, yet non-productive isogenic cells or mutant 

strains (Rugbjerg et al., 2018a), which ultimately lowers overall TRY performance (Zhuang 

et al., 2013). Optimizing strain performance through design-build-test cycles is lengthy and 

costly. The cost of commercializing a metabolite product was estimated to range from $100 

million to $1 billion (Crater and Lievense, 2018; Wehrs et al., 2019).

Dynamic metabolic engineering seeks to address these challenges through the development 

of genetically encoded control systems which allow microbes to autonomously adjust their 

metabolic flux in response to the external environment and/or internal metabolic state. The 

concept is inspired by natural metabolic control systems which microbes use to maintain 

homeostasis, coordinate metabolic flux (Chubukov et al., 2014; Kochanowski et al., 2017), 

and adapt metabolism to changing environments (Chin et al., 2008) and stresses (Jozefczuk 

et al., 2010). These dynamic control systems are in contrast to static control systems 

traditionally used in metabolic engineering, where metabolic pathways are expressed 

constitutively and are tuned by the choice of promoters, ribosome binding sites, and gene 

copy numbers (Holtz and Keasling, 2010). Since the first demonstration of enhanced 

lycopene production two decades ago (Farmer and Liao, 2000), dynamic metabolic 

engineering has become a popular strategy. Recent advances in synthetic biology and 

systems biology have provided the tools for dynamic metabolic engineering while control 

theory has provided new design principles for expanding beyond natural control systems. 

There are multiple examples where dynamic metabolic control has provided microbes 

remarkable robustness in different fermentation conditions and improved TRY performance 

(Anesiadis et al., 2008; Cress et al., 2015; Liu et al., 2018).
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In this work, we seek to provide a comprehensive review of the theory and practice of 

dynamic metabolic engineering, focusing on its improvement to TRY metrics. In the first 

section, we will present theoretical works that discuss the benefits of incorporating dynamic 

metabolic control as well as works that provide guidance on design choices for the 

construction of control systems. In the second section, we will review the construction and 

engineering of sensors and control mechanisms, referred to as actuators, the two 

fundamental components of dynamic metabolic control systems. Finally, we will review 

metabolic pathways to which dynamic metabolic engineering has been applied with the 

focus on control topologies.

2. Theoretical insights and design choices for metabolic dynamic control

Several design choices need to be made before implementing a dynamic control system in a 

metabolic pathway. In this section, we summarize the theoretical concepts and benefits of 

three popular dynamic control strategies: two-stage metabolic switches, continuous 

metabolic control, and population behavior control. Additionally, for each section we 

highlight theoretical works which elucidate the design choices for improving TRY metrics.

2.1. Two-stange metabolic control systems

A two-stage metabolic switch is a straightforward yet effective dynamic control strategy for 

overcoming numerous trade-offs inherent in engineered metabolic bioprocesses (Burg et al., 

2016; Venayak et al., 2015). A two-stage metabolic switch decouples the competing tasks of 

biomass accumulation and metabolite overproduction. In the first stage, cells are engineered 

to focus on rapid cell growth, usually with minimal production of the product. In the second 

stage, cell growth is minimized while substrate fluxes are funneled into product formation. 

This contrasts with a one-stage process where biomass accumulation and product formation 

occur concurrently. One early example of two-stage process is the batch production of 

glycerol and ethanol in Escherichia coli (Gadkar et al., 2005). The work found that glycerol 

concentration could be improved by 30% with a flux switch during production as compared 

to maintaining constant glycerol flux throughout the batch process (Fig. 1A). In the modeled 

one-stage production, biomass accumulated more slowly than the optimal two-stage 

production, leading to slower volumetric productivity and a lower glycerol titer. This 

demonstrates the value of a two-stage production for optimizing productivity, which can be a 

critical consideration for commercializing a bioprocess (Zhuang et al., 2013).

2.1.1. Choosing between a two-stage or one-stage fermentation process—
Not all two-stage bioprocesses can outperform one-stage fermentation. Important factors 

that affect the decision to implement either a one-stage or two-stage bioprocess include 

strain performance during slow-growing or non-growing conditions, economic constraints 

(Klamt et al., 2018), as well as metabolic network dynamics (Jabarivelisdeh and Waldherr, 

2018). For example, slow-growing and stationary phase cells often have reduced glucose 

uptake rates which can decrease substrate utilization for product formation (Burg et al., 

2016; Harder et al., 2018). This trade-off in substrate utilization and growth was explored by 

Klamt et al. (2018). The model showed that reducing the glucose uptake rate in the 

production phase below approximately 4 mmol/gDW/h, which fell in the experimentally 

Hartline et al. Page 3

Metab Eng. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed range of 0.5–4.5 mmol/gDW/h, caused the two-stage process to have lower 

volumetric productivity than a comparable one-stage process with the same yield and initial 

conditions.

The mode of bioprocess operation (e.g. fed-batch versus batch) also affects the choice 

between one-stage and two-stage processes. Yegorov et al. developed a kinetic model to 

study cellular reactions governing both shared cell resources (e.g. transcription, translation) 

and bio-production (e.g. enzymatic reactions in an engineered pathway) (Yegorov et al., 

2019). The model was used to find the optimal RNA polymerase expression rate for 

maximizing either biomass or product formation under constant or limited substrate 

environments. This work uncovered that in the case of a constant nutritional environment, 

which can be found in fed-batch and continuous bioprocess, a high RNA polymerase activity 

to maximize both cell growth and production is preferred, motivating a one-stage 

fermentation. However, when the nutrient is limited, such as in a batch process, RNA 

polymerase activity needs to be reduced to shut down cellular replication and focus cellular 

resources on the expression of product formation enzymes. Thus, batch processes can 

benefit most from using a two-stage process.

2.1.2. Choosing valves for two-stage switch—To implement a two-stage process, 

appropriate metabolic reactions must be controlled. Although several well-known strain 

design algorithms are available for static genetic interventions (Burgard et al., 2003; 

Ranganathan et al., 2010), these may not be appropriate for two-stage switchable systems. 

An algorithm for identifying reactions that can be either knocked-out or controlled to 

achieve near theoretical maximum yield in two metabolic states was developed (Venayak et 

al., 2018b). This algorithm was applied to identify metabolic valves that can switch from 

90% maximum biomass yield to 90% maximum product yield. For 87 organic products that 

can be derived from E. coli metabolism, 56 of them can be switched using a single 

switchable valve. A small number of valves in glycolysis, the TCA cycle, and oxidative 

phosphorylation were found particularly useful for the decoupled production. Thus, this 

strategy could be highly beneficial for identifying appropriate control valves 

computationally.

2.1.3. Engineering bistability for two-stage switchable systems—While many 

biological control systems can be used to switch between two-state, systems which exhibit 

bistability have additional benefits (Ferrell, 2002; Mitrophanov and Groisman, 2008; Tiwari 

et al., 2011; Veening et al., 2008). One general property of bistable systems is hysteresis, a 

memory-like property where the threshold of the signal output response curve is different 

depending on the recent history of the input signal (Ferrell, 2002). Hysteresis can allow the 

input signal to be reduced without switching back to the growth state. Additionally, 

bistability enables a slow response to input signals that are near the switching threshold 

(Tiwari et al., 2011). This property allows bistable switches to filter out mild, transient 

changes in the input signal which may be typical of a heterogenous bioreactor. A general 

design principle for a bistable metabolic system is to have a positive feedback loop along 

with non-linear kinetics, such as using a cooperative promoter, or ultrasensitive enzyme 

kinetics (Angeli et al., 2004). One example of bistability in metabolic engineering is the 
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application of a metabolic toggle-switch, which uses mutually repressive transcription 

factors to lock cells in one of two metabolic states until a metabolic switching signal is 

applied (Bothfeld et al., 2017; Venayak et al., 2018a). Bistability in metabolic uptake rate 

could be useful for implementing a two-stage production since the extracellular nutrient 

concentration could be different in growth and production stage. Several positive feedback 

architectures for generating bistable metabolite uptake rate were explored (Oyarzún and 

Chaves, 2015). It was found that using an activator-repressor topology, where the metabolite 

activates its own uptake and represses its consumption, had the largest parameter space for 

generating bistability.

2.2. Continuous metabolic control systems

Continuous metabolic control is a dynamic metabolic control strategy where microbes 

continuously sense and respond to changing signals from its external environment or internal 

metabolic state. Continuous metabolic control has received increasing attention in recent 

years (He et al., 2016; Liu et al., 2018) due to its numerous potential benefits to metabolic 

engineering including automatic balancing of metabolic fluxes (Zhang et al., 2012), 

alleviating toxicity from intermediate accumulation, accelerating dynamic response (Liu and 

Zhang, 2018), reducing sensitivity to metabolic perturbation (Oyarzún and Stan, 2013), and 

making systems robust to parameter uncertainty (Dunlop et al., 2010). An early example of 

continuous metabolic control is the automatic balancing of free fatty acid (FFA) and ethanol 

flux in the production of fatty acid ethyl esters (FAEE) in E. coli (Zhang et al., 2012). The 

FAEE production system had numerous challenges, including ethanol toxicity, competition 

for metabolite intermediates with native pathways, and futile cycling of FFA activation. The 

work found that sensing acyl-CoA, a key pathway intermediate, and feedback to the ethanol 

and FFA producing modules allowed cells to maintain tight control over FAEE production, 

with a three-fold increase in yield compared to a strain without continuous metabolic 

control. Additionally, a kinetic model of the FAEE control system revealed that continuous 

metabolic control of the pathway modules could improve productivity compared to 

constitutive control over a wide range of parameters. Global sensitivity analysis indicated 

that the most important parameters are those associated with the accumulation of toxic 

intermediates and the synthesis of burdensome proteins. Due to the numerous potential 

benefits, continuous metabolic control could improve the performance of a large range of 

metabolic pathways.

2.2.1. Choosing valves for continuous dynamic control—Implementing a 

continuous metabolic control first requires choosing the metabolic reactions to be controlled. 

Currently, unlike in two-state switching, generally applicable algorithms for identifying the 

best metabolic reactions for dynamic control have not been developed. The challenge comes 

from the fact that the problems solved by continuous dynamic control are often pathway-

specific, such as to avoid the accumulation of a toxic pathway intermediate or to optimize 

the expression of a burdensome enzyme. Thus, implementation of continuous dynamic 

control requires preexisting knowledge on rate-limiting steps, pathway bottlenecks, and 

intermediate accumulation. Metabolic control analysis (MCA) can potentially be used to 

identify reactions that have a high degree of control over pathway flux, which would suggest 
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that tight control over these nodes may have the most impact on the pathway (for review of 

MCA see (He et al., 2016)).

2.2.2. Choosing control topology—Common control topologies in dynamic 

metabolic engineering are positive feedback, negative feedback, and feedforward. Deciding 

which topology to use is generally specific to the system and requires a detailed kinetic 

model to evaluate which topologies will provide the largest gains in TRY metrics. 

Simulating all possible topologies with many parameters was demonstrated as a method for 

choosing the best continuous control system (Stevens and Carothers, 2015). In this work, 

production of p-aminostyrene (p-AS) was simulated for 729 unique possibilities for the 

control topologies along with 2000 parameter values for each topology. The p-AS yield from 

each simulation was compared to the median yield from the static control topology to 

identify topologies which generally improve yields. This work found that only 19% of 

topologies had higher median yields than static control, however, the top 5% of architecture 

had median yields of nearly 3 times higher than static control. Although some topologies 

could generally improve yield, the spread of performance within a topology could be more 

than 100-fold. In general, there is no topology that will always outperform other topologies 

in dynamic metabolic control. Thus, choosing the best topology highly depends on the 

controlled system and would require extensive modeling to uncover the maximum 

performance.

2.2.3. Accelerating metabolite dynamics through engineered feedback 
control—In dynamic metabolic systems, rapid response to the switching signal is desired 

because it allows microbes to reach a productive metabolic state more rapidly, thus 

potentially improving overall TRY metrics. Incorporating continuous metabolic control into 

these systems has been recognized as a potential strategy for altering the metabolite 

dynamics (Schmitz et al., 2017). Several feedback architectures and their parameters have 

been explored at the theoretical level for accelerating response to metabolic signals.

Metabolic switching using a conventional open loop (OL) pathway topology in response to 

an input signal, such as induction of enzyme expression, is generally slow. It was found that 

for an OL topology, it takes 2.48 cell cycles for the metabolite concentration to rise to 50% 

of its steady-state concentration (defined as the metabolite rise-time) after the step-up input 

signal (Fig. 1B). Liu et al. built and studied three closed loop feedback systems of different 

topologies: a negative gene loop (NGL), a negative metabolic loop (NML), and a negative 

layered metabolic loop (NLML) (Liu and Zhang, 2018) (Fig. 1B). While all three loops had 

some ability to decrease the rise-time for metabolite concentrations compared to the OL, the 

NLML, where metabolite concentration is feedback through a genetic inverter then an 

enzyme controller, was capable of dramatically accelerating rise-times by 11.8-fold (Fig. 

1B). However, this rapid increase in rise-time was accompanied by a large metabolite 

concentration overshoot, where metabolite concentration rises above the steady-state before 

settling. Through tuning the many parameters, it was found that for NLML, faster rise times 

were generally correlated with larger overshoots. Using a high maximum promoter strength 

of the genetic inverter and a low threshold of the enzyme controller were found to be the 

most efficient for decreasing the rise-time.
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In addition to step-up inputs, rapid response to a step-down input signal, or removal of a 

step-up input signal, could be beneficial in allowing switching systems to recover to their 

initial states. The recovery dynamics of a metabolite uptake architecture were studied 

(Hartline et al., 2020). In this architecture, the enzyme for extracellular uptake is controlled 

by a positive feedback loop where the intracellular metabolite activates the expression of the 

uptake enzyme by sequestering the metabolite-responsive transcription factor (MRTF) 

during the step-up response. It was found that once the extracellular metabolite 

concentration drops, the expression of the uptake enzyme will continue due to the delay in 

dropping the intracellular metabolite concentration, thus leading to a long time to drop 

uptake pathway enzyme concentrations to 50% of its initial level, called the recovery time. 

The recovery dynamics can be accelerated by rapidly releasing the MRTF from 

sequestration. The rate of release of MRTF depends on the amount of MRTF stored during 

the high extracellular metabolite state and by the rate of consumption of the intracellular 

metabolite. MRTF promoter strength was identified as a key parameter for tuning pathway 

recovery time. Further, incorporating a negative autoregulatory loop could help reduce the 

overall resource utilization for actuating the recovery dynamics. These modeling results 

were additionally confirmed through re-engineering and testing of the E. coli fatty acid 

uptake system.

2.2.4. Improving metabolic robustness through engineered feedback control
—In designing a robust metabolically engineered bioprocess, two types of uncertainties 

should be accounted for: microbial environmental perturbation and parameter uncertainty. 

Engineering negative feedback in the metabolic control system has been explored as an 

avenue to make engineered microbes robust to both kinds of uncertainties.

Microbial environmental perturbation arises due to the dynamic and heterogeneous 

microenvironments that microbes encounter in a bioreactor (Lara et al., 2006). Such 

perturbations can cause major concentration changes for metabolites involved in an 

engineered pathway (Kresnowati et al., 2006; Taymaz-Nikerel et al., 2013). Metabolite 

feedback was shown to help make metabolite levels less sensitive to these metabolic 

fluctuations (Oyarzún and Stan, 2013, 2012). Using strong, tight promoters allowed the 

system to further minimize the decrease in product concentration, however, strong promoters 

could also lead to oscillatory dynamics. Although these theoretical studies are promising, 

experimental implementation of these control systems have not been performed. Compared 

to well-controlled lab-scale fermentation, effects from these control systems are probably 

more dramatic in large-scale fermenters, where microbial environmental uncertainties are 

more pronounced. Although, metabolic engineers currently focus on lab-scale optimizations, 

we expect these robust metabolic control systems to demonstrate experimental 

improvements in the near future.

Parameter uncertainty arises due to the use of biological parts, such as promoters and 

ribosome binding sites, which have uncertain performance characteristics, and therefore 

requires extensive fine-tuning to achieve desired system performance. Metabolite feedback 

has also been explored as a mechanism to make systems less sensitive to uncertainty in 

system parameters (Dunlop et al., 2010; Harrison and Dunlop, 2012). Toxic biofuel 

production was modeled as an example system, and the effects of feedback architecture on 
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parameter sensitivity were explored (Dunlop et al., 2010). In this model system, the biofuel 

product is toxic to cell growth, which hinders further biofuel production. Cellular efflux 

pumps were modeled to remove biofuel from the cell, reducing the biofuel toxicity. 

However, over-expression of membrane-bound efflux pumps can be toxic too, thus requiring 

careful balance of efflux pump expression and biofuel production. For the case of no 

feedback control in the expression of efflux pumps, the model revealed a narrow range of 

promoter strengths had a nearly maximal amount of biofuel production (Fig. 1C). Parameter 

sensitivity analysis of three other controller architectures demonstrated that including 

feedback in general reduced the sensitivity of biofuel production to system parameters 

variation. Further, it was found that the feedforward loop topology was robust to parameter 

uncertainty for all five model parameters (Fig. 1C). Based on this modeling work, an 

experimental library of feedback systems was constructed and tested for enhanced tolerance 

to the biofuel pinene (Siu et al., 2018). Several members of this library were shown to have 

enhanced tolerance to pinene, despite having varying promoter strengths and number of 

transcription factor binding sites in the promoter. These results highlight how incorporating 

feedback control into pathway design can make the system more robust to parametric 

uncertainties.

2.3. Control of metabolite heterogeneity

Metabolite heterogeneity, the cell-to-cell variation in metabolite levels in isogenic 

populations (Schmitz et al., 2017), has only recently been recognized to strongly affect 

overall TRY performance (Lv et al., 2019). Microbes have numerous stochastic mechanisms 

that give rise to cell-to-cell differences in mRNA, proteins, metabolic levels, and flux 

activities (Ackermann, 2015; Raj and van Oudenaarden, 2008; Takhaveev and Heinemann, 

2018). Here, we discuss theoretical insights on the impact of metabolic heterogeneity on 

metabolic bioprocesses and how dynamic metabolic control can reduce or exploit metabolite 

heterogeneity for improved bioprocess performance.

2.3.1. Stochasticity in metabolic pathways—Stochasticity in biology can lead to 

large heterogeneity in metabolic activity. Using experimental measurements of the single-

cell proteomic data (Taniguchi et al., 2010), the impact of cell-to-cell variation on protein 

concentration to E. coli population growth rate has been assessed by a genome-scale FBA 

model (Labhsetwar et al., 2013). The model produced a population with a broad distribution 

of growth rates. Cells at the extremes of the growth rate distribution had different metabolic 

fluxes, where the fast-growing cells tended to prefer using the Entner-Doudoroff pathway, 

while slow-growing cells utilized the glycolysis pathway more predominantly. These 

stochastic effects could be important for production, particularly if production is growth-

coupled or if the product is derived from a pathway intermediate which varies strongly 

between cells.

Additionally, large metabolite heterogeneity can arise from enzyme variation even within 

one metabolic reaction (Tonn et al., 2019). Stochastic analysis of a model metabolic pathway 

with reversible Michaelis-Menten kinetics revealed several regimes of bimodal metabolite 

distributions (Fig. 1D). In the first regime, promoters with slow switching but high 

expression rates generate a bimodal distribution in enzyme levels, leading to bimodality in 

Hartline et al. Page 8

Metab Eng. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metabolites. In the second regime, enzymes are unimodally expressed at a low level. 

Occasionally, enzyme concentration could reach near-zero, which caused the product to 

become depleted, so a bimodal distribution in metabolite levels was generated (Fig. 1D). In 

engineered systems, enzymes are typically highly expressed, making it unlikely for the 

second bimodality regime to occur. However, many products are derived from native 

metabolites, which could exhibit this mode of bimodality. In these cases, a cell may 

stochastically have low levels of production pathway substrate, which may impact 

bioprocess productivity. These theoretical studies have raised the concern that metabolite 

heterogeneity impacts bioprocess robustness (Delvigne and Goffin, 2014) and thus warrant 

strategies to cope with heterogeneity (Binder et al., 2017).

2.3.2. Controlling metabolite heterogeneity using feedback loops—Several 

papers have explored the impact of feedback on the amount of metabolite heterogeneity in 

the system (Borri et al., 2016, 2015; Oyarzún et al., 2015). In these papers, a metabolic 

enzyme is continuously controlled by a promoter and the enzyme converts a substrate into a 

final product. Two main feedback loop architectures have been considered: enzyme 

autoregulation or end-product feedback. Compared to a constitutive system with an identical 

mean product level, both enzyme autoregulation and end-product feedback could always 

reduce metabolite noise, with stronger feedback leading to stronger noise reduction (Borri et 

al., 2015). Additionally, feedback sensitivity was identified as a critical parameter to achieve 

large noise reduction for a wide range of promoters and feedback strengths (Borri et al., 

2016, 2015; Oyarzún et al., 2015). This body of work provides an excellent theoretical 

foundation for the engineering of feedback systems for reduction of metabolite 

heterogeneity in the one-step pathways.

2.3.3. Controlling metabolite heterogeneity using population behavior 
control—Population behavior control is an emerging dynamic metabolic control strategy 

for controlling metabolite heterogeneity in engineered microbes (Lv et al., 2019). In this 

control paradigm, metabolite concentration is measured by a sensor which transmits this 

signal into a growth-modulating actuator (Fig. 1E). The actuator can provide a growth 

advantage to high-producing cells or steer low-producers towards self-destruction. In one 

example (Xiao et al., 2016), a FFA-based sensor-actuator was used to drive the expression of 

tetracycline efflux pumps in FFA-producing E. coli. Cells that stochastically produced low 

intracellular concentrations of FFA were unable to express sufficient efflux pumps, which 

caused cell death in the presence of tetracycline. Under the control of FAA sensor-actuator, 

the cell population displayed an increase mean FFA concentration and a 4.5-fold 

enhancement in FFA titer in a fermenter (Fig. 1E). This control strategy also proved useful 

to reduce phenotypic heterogeneity caused by genetic instability (Rugbjerg et al., 2018b). 

Here, a mevalonic acid (MVA)-based sensor-actuator was used to drive the expression of 

folP and glm, which are growth-critical genes for E. coli in a broad context. This control 

system eliminated cells that had low mevalonic acid production due to genetic heterogeneity, 

thus extending the productive lifetime of the bioprocess to 95 cell generations. Given the 

demonstrated promise of this control paradigm, we expect future developments in control 

theory for biological systems to address the benefits and limitations of population behavior 

control for dynamic metabolic engineering.
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3. Sensors and actuation

Once a dynamic metabolic control topography has been selected, the individual parts and 

mechanisms need to be implemented. The essential parts of dynamic metabolic controls 

include sensors that detect metabolic or environmental signals, and actuators that change the 

output of the metabolic system in response to the sensor.

3.1. Sensing in metabolic control

Sensors are extremely useful in several metabolic engineering applications, which have been 

reviewed elsewhere (Liu et al., 2015a). This section will focus on sensors that have been 

demonstrated in dynamic metabolic engineering applications.

3.1.1. Sensing exogenous chemical signals

Common chemical inducers:  Chemical inducers are traditionally used in open-loop 

pathways to induce the expression of metabolic enzymes but are also useful in two-stage 

switchable systems (Fig. 2A). Generally, cells are grown in a bioreactor to accumulate 

biomass, and a chemical inducer is added to halt growth as well as upregulate flux to a 

desired pathway (Burg et al., 2016; Soma et al., 2014). While being easy to use, chemical 

inducers can be expensive, must be added at a pre-determined time, and can be difficult to 

remove if switching the metabolic state back is desired.

Nutrient sensing:  Many large scale bioprocesses choose to use various nutrients as the 

switching signal to reduce cost (Scalcinati et al., 2012). Glucose depletion, for example, is 

an attractive signal for two-stage fermentation. As glucose becomes completely consumed, 

cell growth ceases. Glucose-dependent promoters, such as those identified through genome-

wide transcription datasets (Maury et al., 2018), have been used to induce metabolite 

production (Bothfeld et al., 2017). Other nutrient-based switching systems include systems 

induced by nitrogen-starvation (Sonderegger et al., 2005), phosphorus-starvation (Chubukov 

and Sauer, 2014), maltose (Liu et al., 2017), and ammonia (Xiao et al., 2017).

Quorum sensing (QS):  QS is an attractive signal target for dynamic control since it 

naturally acts as a measure of cell population density which is linked to cell growth (Tan and 

Prather, 2017). When cell density passes a threshold, specific small molecules accumulate 

and can be used to induce a response to dynamically balance cell growth and target 

production while synchronizing cell activity in a population. Extensive work has been done 

to engineer QS for dynamic metabolic control. For example, in the gram-positive bacteria 

Bacillus subtilis, bifunctional and modular QS was engineered using the Phr60-Rap60-

Spo0A QS system to improve production of menaquinone-7, a type of vitamin K (Cui et al., 

2019). The quorum signal response can be tuned to different cell densities (He et al., 2017), 

thus enabling growth-to-production switching at different quorum for improved production 

of isopropanol (Soma and Hanai, 2015) (Fig. 2B), myo-inisitol (MI), and glucaric acid 

(Gupta et al., 2017).
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3.1.2. Environmental signals

Temperature switches:  Temperature-inducible systems have some benefits because the 

temperature of a vessel can be controlled externally, reducing the risk of contamination. 

Further, heat induction can be easily timed. Two heat-inducible systems extensively used in 

metabolic engineering are the λ phage promoters (i.e., PL and PR), both of which are 

regulated by the thermolabile cI857 repressor (Harder et al., 2018; Valdez-Cruz et al., 2010; 

Zhou et al., 2016, 2012) (Fig. 2C). Cold-inducible switches have also been developed via 

directed evolution (Zheng et al., 2019). Temperature induction also has limitations: (1) heat 

can alter protein folded structures and folding dynamics; (2) large or rapid change in 

temperature can trigger heat- or cold-shock responses and alter the global regulatory and 

metabolic networks; and (3) implementing temperature change in large fermenters uniformly 

can be slow due to heat transfer limitations.

Light switches:  Optogenetic switches allow control strategies using visible light signals 

which is low cost and generally non-toxic. Light sensors are often derived from the 

photoreceptors domain of specialized proteins that undergo a conformational change in 

response to light (Milias-Argeitis et al., 2016). In an engineered Saccharomyces cerevisiae 
system, the light-responsive Phy/PIF module was adapted to allow red and far-red light 

pulses to switch on and off transcription of Gal4-responsive genes, enabling in silico 
feedback control (Milias-Argeitis et al., 2011) (Fig. 2D). Another engineered S. cerevisiae 
system used light to control fermentation with the Erythrobacter litoralis EL222 optogenetic 

transcription system, switching from a light-induced growth phase to a dark-induced 

production phase (Zhao et al., 2018). In an engineered E. coli system, the light sensor 

histidine kinase CcaS was used to respond to red and green light to control growth in an 

automated optogenetic feedback control system (Milias-Argeitis et al., 2016). A limitation of 

optogenetic switches is the problem of light-delivery since dense cell cultures scatter light 

significantly.

Other environmental switches:  Several other environmental signals have also been used in 

dynamic metabolic controls. The Pgas promoter functions efficiently at pH 2.0 but becomes 

inactive above pH 5.0, thus was used to produce organic acid in Aspergillus niger, which 

further reduced pH of cell cultures (Yin et al., 2017) (Fig. 2E). The promoter of the cell wall 

glycoprotein CCW14 from S. cerevisiae was also engineered for a low-pH response to 

improve production of lactic acid (Rajkumar et al., 2016). Additionally, the oxygen-

inducible nar promoter from the narGHJI operon in E. coli responds to anaerobic conditions 

and was used to produce 2,3-butanediol and 1,3-propanediol in E. coli when cell culture was 

switched to anaerobic conditions (Hwang et al., 2017).

3.1.3. Metabolite sensing—There is a high demand for endogenous metabolite sensors 

when building dynamic metabolic control systems. When engineered microbes can adjust 

their metabolism according to their intracellular metabolic status, each cell is spontaneously 

controlled even without synchronization at the population level.

Metabolite-responsive transcription factors (MRTFs):  MRTFs are the most commonly 

used proteins for developing endogenous metabolite sensors. An MRTF usually binds to a 
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specific metabolite and undergoes a conformational change that alters its DNA binding 

activity. Using the MRTF’s cognate promoters or incorporating its operator sites into 

engineered promoters, transcription of metabolic genes can be controlled by the detected 

endogenous metabolite. Examples of MRTF-based sensors used in dynamic metabolic 

control include a FadR-based acyl-CoA sensor for FAEE production (Zhang et al., 2012) 

(Fig. 2F), FapR-based malonyl-CoA sensors for FFA and 3-hydroxypropionic acid (3-HP) 

production (Liu et al., 2015b; Xu et al., 2014; David et al., 2016), and a MexR-based pinene 

sensor for pinene production (Siu et al., 2018). The effector specificity of the MRTF can be 

altered through site-directed mutagenesis of the metabolite-binding pocket and screened by 

FACS as demonstrated in a HucR-based vanillin sensor for vanillin and ferulic acid 

production (Liang et al., 2020). Additionally, synthetic MRTFs can be created by fusing the 

DNA binding domain of a known TF with the ligand-binding domain from another enzyme 

(Chou and Keasling, 2013).

Stress-responsive promoters:  For metabolites that cause cellular stresses, native promoters 

up- or down-regulated by the accumulation of the metabolite can be used as sensors. In E. 
coli, the accumulation of farnesyl pyrophosphate (FPP) from the engineered isoprenoid 

pathway is toxic (Martin et al., 2003). Stress-responsive promoters identified by genome-

wide transcriptional analysis were used to control FPP-consuming enzymes, increasing 

amorphadiene production and improving growth (Dahl et al., 2013). Similarly, ergosterol-

responsive promoters were used to dynamically regulate the expression of ERG9 in S. 
cerevisiae, leading to increased amorphadiene production (Yuan and Ching, 2015).

Other types of sensing:  Besides MRTFs and stress-responsive promoters, aptamers present 

another mechanism by which a signal can be sensed (Liu et al., 2015a). While many 

aptamers exist and bind to a wide range of chemicals, the major hurdle is pairing metabolite-

binding of an aptamer to an actuating mechanism while enabling tight control over gene 

expression and without disrupting protein function (Stevens and Carothers, 2015). 

Additionally, some metabolite-responsive signal peptides (also called leader peptide), such 

as TnaC that regulate the expression of downstream tnaAB expression in response to 

tryptophan, have been used as sensors for dynamic metabolic engineering (Fang et al., 2016) 

(Fig. 2G).

3.2. Actuation in metabolic control

In metabolic engineering, actuation usually involves controlling the abundance or activity of 

pathway enzymes in response to signals from the corresponding sensor. This section will 

discuss actuation strategies at different levels and highlight advantages and disadvantages 

with respect to the speed of flux response, and cellular economy utilization.

3.2.1. Transcriptional actuation—In addition to chemical inducers that are mostly 

used in two-stage fermentation (Burg et al., 2016), MRTFs can be directly used to repress or 

activate gene expression from their cognate promoters, enabling transcriptional actuation 

according to sensor signals. To obtain desirable actuation objectives, which are usually low 

leaky expression and high dynamic range, the cognate promoters controlled by MRTF often 

need to be engineered. This engineering effort can be guided by a phenomenological model 
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that revealed the tunable parameters and constraints, such as the number and strength of 

repressor binding sites, in achieving the maximal dynamic range as well as low leakiness of 

sensor-actuators under various architectures (Mannan et al., 2017) (Fig. 3A). Another type 

of transcriptional control involves CRISPR interference (CRISPRi) or dCas9-mediated 

transcription repression. CRISPRi can be used to repress transcription of target genes upon 

binding to a sgRNAs, whose expression can be controlled by a sensor. For example, 

CRISPRi was integrated with glucosamine-6-phosphate (GlcN6P) sensors to enable sensing-

actuation to control the metabolic flux of the nutraceutical N-acetylglucosamine (GlcNAc) 

pathway in B. subtilis (Wu et al., 2020) (Fig. 3B). Multiple orthogonal sgRNAs can be 

implemented into one strain to allow for multiple gene repression (Tan and Prather, 2017). 

When regulating multiple native genes is required, CRISPRi has advantages over MRTFs as 

there is no need for genome modification to change promoters of target genes. A drawback 

of CRISPRi is that the dCas9 expression must be carefully tuned to avoid toxicity caused by 

dCas9 overexpression.

3.2.2. Post-transcriptional actuation—Gene expression can also be controlled post-

transcriptionally using either antisense RNAs or RNA interference (RNAi). RNA repression 

has been used to regulate proB, glnA, and argB for their role in regulating intracellular ATP 

concentration (Chen et al., 2015). Hybridization between the antisense RNA and the RBS or 

open reading frame of the mRNA prevents translation or enhances mRNA degradation, 

ultimately decreasing gene expression. Antisense RNAs have been employed in E. coli for 

simultaneous regulation of multiple genes, autonomously redistributing carbon flux between 

native metabolism and an engineered muconic acid (MA) biosynthesis pathway (Yang et al., 

2018) (Fig. 3C). In S. cerevisiae, the Argonaute (AGO1) and Dicer (DCR1) genes from 

yeast Saccharomyces castellii were used in conjunction with QS to degrade targeting 

mRNAs, enabling dynamic regulation of the shikimate pathway increasing para-

hydroxybenzoic acid (PHBA) production (Williams et al., 2015) (Fig. 3D).

3.2.3. Post-translation actuation—Post-translational control of enzyme activity by a 

metabolite of interest can provide rapid control over the flux of a pathway and can be ideal 

for dynamic metabolic systems (Venayak et al., 2015). However, engineering allosteric 

enzymes for specific reactions is extremely challenging because novel allosteric interactions 

require high selectivity and robust output upon metabolite binding. Existing post-translation 

actuation mechanisms mostly focus on regulating enzyme degradation rate by adding 

degradation tags to target enzymes. For example, a TevP protease-based dynamic regulation 

circuit was constructed to create an ON and OFF switch that accumulates and degrades 

target proteins, respectively, depending on the degradation tags used. The protease was 

placed under growth- or stationary-phase promoters, allowing the system to respond to the 

growth stage and improving shikimate production (Gao et al., 2019) (Fig. 3E).

4. Applications of dynamic metabolic control

As theories and molecular biology tools are developed, an increasing number of dynamic 

metabolic control systems were developed for numerous pathways to benefit bioproduction 

(Table 1). In this section, we will summarize the pathways and metabolic nodes being 

dynamically regulated.
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4.1. Applications in pathways branching from glycolysis

Glucaric acid is a precursor to detergents and nylons but has been proven difficult to produce 

in high quantities due to the carbon flux competition with glycolysis at the glucose-6-

phosphate (G6P) branching point. To solve this competition, phosphofructokinase (PFK), 

the flux controlling enzyme in the upper glycolysis, needs to be repressed in the glucaric 

acid production phase. A QS system was used to achieve this dynamic repression once the 

cells reach a desired density, thereby switching from a growth phase to a production phase 

(Gupta et al., 2017). Another problem in this pathway is the low stability and activity of MI 

oxygenase (MIOX) (Fig. 4A). To delay the activity decline of MIOX, a MI biosensor was 

then used to upregulate the expression of MIOX upon the buildup of sufficient MI (Doong et 

al., 2018). The two dynamic control strategies collectively led to improved glucaric acid 

production at a titer of nearly 2 g/L in E. coli.

Another important metabolic precursor from the central glycolysis is fructose-6-phosphate 

(F6P), which can be used to synthesize GlcNAc, a food supplement and nutraceutical. 

Dynamically downregulating PFK-1 in the glycolysis pathway and phosphoglucosamine 

mutase in the competitive peptidoglycan pathway was effective in GlcNAc overproduction 

(Niu et al., 2018; Wu et al., 2020). Controlling G6P dehydrogenase and GlcN6P N-

acetyltransferase in response to the GlcN6P level has also been demonstrated to enhance 

GlcNAc production (Wu et al., 2020).

4.2. Applications in pathways branching from the TCA cycle

Many platform chemicals are synthesized from pyruvate. Meanwhile pyruvate is also 

converted to acetyl-CoA, an essential metabolite for cell growth. To minimize the 

competition on pyruvate between bio-production and cell growth, two-stage metabolic 

switches were used to activate the transcription of pathway genes only in the production 

phase for several pyruvate-derived chemicals, such as lactate (Hwang et al., 2017; Zhou et 

al., 2012), 2,3-butanediol (Hwang et al., 2017), and iso-butanol (Zhao et al., 2018).

Slowing down the TCA cycle is another widely used dynamic control strategy. For example, 

repressing the citrate synthase dynamically has been used to enhance the production of 

chemicals derived from acetyl-CoA and oxaloacetate, such as isopropanol (Soma et al., 

2014; Soma and Hanai, 2015), poly-β-hydroxybutyrate (Gu et al., 2020; He et al., 2017), 

and lysine (Zhou and Zeng, 2015a, 2015b). Similarly, dynamically downregulating the 

isocitrate dehydrogenase was exploited by using a temperature-dependent system with PR 

and the repressor cI857 to increase itaconate production, a cis-aconitate derived product 

(Harder et al., 2018). Reactions in the TCA cycle can also be modulated by the 

concentration of the substrate in the target pathway. For example, 4-hydroxyisoleucine (4-

HIL) is synthesized from isoleucine and α-keto-glutarate. To enhance 4-HIL synthesis, the 

expression of α-ketoglutarate dehydrogenase complex was repressed by an attenuator when 

the level of isoleucine is high (Zhang et al., 2018) (Fig. 4B).

4.3. Applications in pathways involving shikimate and aromatics

The shikimate pathway provides the building blocks for the biosynthesis of various 

aromatics in microbes. To improve the production of shikimate or shikimate-derived 
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aromatics, several metabolic nodes have been regulated by dynamic control strategies. The 

shikimate pathway starts with the condensation of phosphoenolpyruvate (PEP) and 

erythrose-4-phosphate. Dynamic downregulation of the pathways from PEP to the TCA 

cycle through antisense RNAs can increase the flux of the shikimate pathway (Yang et al., 

2018) (Fig. 4C). Shikimate and chorismate are important intermediates in the biosynthesis of 

aromatic amino acids (AAAs, i.e., phenylalanine, tyrosine, and tryptophan), which are 

essential to cell growth and many other valuable aromatic acids. Additionally, shikimate is a 

key ingredient in the formulation of drug Tamiflu for the treatment of influenza. To 

accumulate shikimate, dynamic control has been used to block the expression of shikimate 

kinase in the production phase (Gao et al., 2020, 2019; Gupta et al., 2017). To enhance the 

production of other aromatic acids, dynamical control via repressing the conversion of 

chorismate to AAA biosynthesis and activating the target aromatic acid pathway has shown 

success in the production of MA (Yang et al., 2018) (Fig. 4C), PHBA (Williams et al., 

2015), salicylic acid (Dinh and Prather, 2019), and 4-hydroxyphenylacetic acid (Shen et al., 

2019). Many aromatics are secondary metabolites that can be toxic to the host when 

accumulated. Dynamic upregulation of the secondary biosynthetic pathway has also been 

applied to improve the production of these metabolites, such as naringenin (Dinh and 

Prather, 2019), vanillin (Liang et al., 2020), and vanillic acid (Lo et al., 2016).

4.4. Applications in pathways consuming Malonyl-CoA

Malonyl-CoA serves as a rate-limiting precursor in fatty acid chain elongation, and has 

received much attention as a node for dynamic metabolic engineering for the oleochemical 

family of compounds (David et al., 2016; Xu, 2020). In E. coli, malonyl-CoA is synthesized 

from acetyl-CoA by acetyl-CoA carboxylase (ACC) regulon. However, over-expression of 

ACC leads to significant toxicity, caused by either depletion of the acetyl-CoA metabolite or 

due to imbalanced expression of the ACC subunits, thus motivating the engineering of 

several dynamic control schemes. Sensing of malonyl-CoA is typically achieved through the 

MRTF FapR, whose binding site fapO can be incorporated into engineered promoters. In 

one control scheme, an engineered phage PA1 promoter with fapO operator was used to form 

a layered negative metabolic feedback loop, where the expression of ACC was negatively 

regulated by malonyl-CoA via a LacI intermediate (Liu et al., 2015b). The negative 

metabolic feedback improved both cell growth and FFA production compared to the 

unregulated strains. In another scheme, two engineered promoters with fapO operator were 

developed, which can be induced and repressed by malonyl-CoA respectively (Xu et al., 

2014). One promoter was used to activate ACC expression, leading to malonyl-CoA 

production whenever malonyl-CoA concentration was low, representing a negative 

metabolic loop. Another promoter was used to drive expression of the downstream fatty acid 

synthase (FAS) module, leading to FAS expression and malonyl-CoA consumption only 

when the malonyl-CoA level was high. This control scheme led to oscillatory malonyl-CoA 

dynamics and an improved fatty acid titer over the uncontrolled strain.

Downregulating fatty acid synthesis has emerged as a new strategy for producing many other 

malonyl-CoA-derived chemicals. An endogenous QS system coupled with CRISPRi that 

simultaneously downregulates key nodes in the TCA cycle, fatty acid and AAA synthesis 

pathways was applied to enhance rapamycin production in an industrial Streptomyces 
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species (Tian et al., 2020). In another example, fatty acid synthesis is negatively 

autoregulated through CRISPRi driven by fatty acid-inducible promoters to increase 

naringenin production in Yarrowia lipolytica (Lv et al., 2020) (Fig. 4D). A second layer of 

dynamic control was also developed to further improve genetic stability in long-term 

naringenin production. In this Y. lipolytica strain, 3-isopropylmalate dehydrogenase (LEU2), 

which is involved in leucine synthesis, was controlled by a naringenin-inducible promoter, 

which couples the naringenin production with cell growth (Fig. 4D).

4.5. Applications in pathways producing terpenes and terpenoids

Dynamic control has been widely used in terpene and terpenoid production. The building 

blocks of terpenes and terpenoids are isopentenyl pyrophosphate (IPP) and dimethylallyl 

pyrophosphate (DMAPP), which need to be synthesized from either acetyl-CoA through the 

MVA pathway, or from glyceraldehyde 3-phosphate and pyruvate through the 

methylerythritol phosphate (MEP) pathway. In E. coli, overexpression of the terpenoid 

pathway can lead to growth retardation (Farmer and Liao, 2000; Kim et al., 2017; Martin et 

al., 2003). Both the MVA (Kim et al., 2017) and MEP pathways (Farmer and Liao, 2000) 

have been dynamically activated to improve terpenoid production in E. coli. Intermediates of 

the terpenoid pathway, including 1-hydroxy-2-methyl-2-butenyl 4-diphosphate in the MEP 

pathway, 3-hydroxy-3-methyl-glutaryl-CoA in the MVA pathway, IPP, and FPP, are also 

toxic to host cells when accumulated to high concentrations (Li et al., 2017; Martin et al., 

2003). Dynamic control has been used to avoid accumulation of these intermediates (Cui et 

al., 2019; Dahl et al., 2013; Shen et al., 2016). Additionally, some terpenoids, such as sterol 

in fungi and undecaprenyl pyrophosphate in Bacillus species, are essential to the microbial 

hosts. Dynamic control has been used to balance the synthesis of both these essential 

terpenoids and the final products (Cui et al., 2019; Peng et al., 2018; Scalcinati et al., 2012; 

Xie et al., 2015; Yuan and Ching, 2015). For example, to increase monoterpene production, 

FPP synthase (Erg20p) was downregulated by ergosterol through protein degradation tag 

(Peng et al., 2018) (Fig. 4E). Synthesis of complex terpenoids, such as Taxol, requires 

oxygenation, which is often catalyzed by cytochrome P450. However, P450 expression is 

often burdensome to host cells. A stress-responsive promoter with a transcriptional switch 

has also been applied to optimize the P450 expression level, resulting in increased titers in 

oxygenated Taxol precursor (Glasscock et al., 2019). For a complex terpenoid pathway, 

multiple metabolic nodes can be simultaneously regulated, as shown in the production of 

menaquinone-7 using a bifunctional QS system (Cui et al., 2019).

4.6. Applications in pathways utilizing xylose

Bioproduction from renewable feedstock has led to developments in the utilization of xylan 

or xylose as a substrate. Xylan utilization was improved in E. coli by engineering both 

extracellular xylan degradation and intracellular xylose conversion (Gao et al., 2020). In this 

case, extracellular xylan degradation was first improved by tuning the expression of 

xylanases and xylose transporters. Xylose can be converted to xylulose, which can be further 

utilized in pentose phosphate pathway to support the cell growth. Xylose can also be 

converted to xylonate, a high-value platform chemical in industry. To increase xylonate 

production, a QS system was used to downregulate the xylose isomerase (encoded by xylA) 

and upregulate xylose dehydrogenase (encoded by ccxylB) once the cells reach a desired 
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density (Fig. 4F). Efficient xylose utilization is also hampered by carbon catabolite 

repression. To solve this problem, a protease-based inverter was used to block glucose 

utilization in the production phase for xylonate production (Gao et al., 2019). Another issue 

in xylonate production is pH homeostasis. Hydrolysis of xylonolactone to xylonate by 

lactonase can acidify the cell, impairing cell viability (Nygård et al., 2014). To achieve 

intracellular pH homeostasis, a protease-based oscillator was built to periodically slow down 

the hydrolysis, which further led to an improved xylonate titer (Gao et al., 2019). Xylose has 

also been used for 1,4-butanediol production in E. coli. The pathway from xylose to 1,4-

butanediol requires additional reducing equivalents from native metabolism. To delay the 

competition of reducing equivalents, a QS system was exploited for dynamic control of the 

1,4-butanediol biosynthesis pathway (Liu and Lu, 2015).

5. Conclusions

Dynamic control has been used for overcoming numerous challenges in metabolic 

engineering, including toxic metabolite accumulation, unbalanced pathway flux, and 

production heterogeneity, with new applications still being developed. Theoretical work has 

elucidated the fundamentals on the dynamics and robustness of controlled metabolic systems 

and has illustrated the choice of control valves and topology. Synthetic biology has provided 

delicate tools to construct sensors for detecting changing environments and actuators for 

precise control of cellular metabolism. Altogether, these models and tools have established a 

strong foundation for future research in dynamic metabolic engineering.

In the near future, we expect this field to continue to grow, especially along the lines of 

solving several unaddressed challenges. Firstly, current dynamic metabolic control often 

relies on extensive trial-and-error for choosing topology and tuning of the control 

parameters, which is labor-intensive. Although several control topologies may help to 

improve production, the most optimal topology can be difficult to predict. In addition, 

improved TRY performance is only seen within a narrow range of parameter settings. 

Addressing these challenges requires precise control design algorithms, which connect the 

dynamics of control systems with overall metabolite production metrics to quickly identify 

the desirable control topology and parameters for experimental implementation. Second, for 

control systems that are not performing adequately, there is a lack of diagnostic tools for 

assessing dynamic problems, for example long delays, overshoot, slow dynamics, and 

oscillations. This lack of diagnostic tools exacerbates the trial-and-error search for good 

control systems. Third, although a key advantage of implementing dynamic controls is to 

respond to heterogeneous microenvironments and metabolite heterogeneity, models of 

control system often do not account for these heterogeneities. These phenomena may be 

important in the choice of topologies and parameters. Additionally, methods for rapidly 

assessing the performance of control systems when subjected to these heterogeneities are 

lacking. Development of models and methods to account for heterogeneity could be critical 

for the scale-up and commercialization of many bioprocesses, where large heterogeneities 

exist. Finally, as the most important component of dynamic control, sensors are still lacking 

for many metabolites of interest, which limits the application of dynamic control. General 

methods to engineer sensors specific to a metabolite of interest are strongly needed. New 

design strategies beyond known MRTFs, responsive promoters, and riboswitches, are 
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particularly interesting. Solving these grand challenges will provide exciting avenues for 

research at the nexus of control theory, systems and synthetic biology, and metabolic 

engineering.
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Abbreviations

AAA aromatic amino acid

ACC acetyl-CoA carboxylase

DMAPP dimethylallyl pyrophosphate

FPP farnesyl pyrophosphate

FAEE fatty acid ethyl esters

FFA free fatty acid

GlcN6P glucosamine-6-phosphate

G6P glucose-6-phosphate

GOI gene of interest

IPP isopentenyl pyrophosphate

MCA metabolic control analysis

MRTF metabolite-responsive transcription factor

MA muconic acid

MEP methylerythritol phosphate

MVA mevalonic acid

MI myo-inisitol

MIOX myo-inisitol oxygenase

GlcNAc N-acetylglucosamine

NGL negative gene loop

NLML negative layered metabolic loop

NML negative metabolic loop

OL open loop
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p-AS p-aminostyrene

PHBA para-hydroxybenzoic acid

PFK phosphofructokinase

QS quorum sensing

RNAi RNA interference

TRY Titer, Rate, and Yield

3-HP 3-hydroxypropionic acid

4-HIL 4-hydroxyisoleucine
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Fig. 1. Overview of theoretical benefits of dynamic metabolic control.
(A) Comparison of one-stage control with two-stage dynamic control strategy. Lower graphs 

show theoretical biomass and product formation over time for each strategy (one-stage 

control, green line; two-stage control, blue line), with yellow and blue shaded regions 

marking the growth and production phases respectively (Gadkar et al., 2005). (B) 

Comparison of open loop strategy (green) with continuous dynamic control strategies 

(NML, blue; NLML, purple) for accelerating metabolic response to input (Liu and Zhang, 

2018). Blue oval shapes represent metabolite-responsive transcription factors. Graph shows 

metabolite concentration over time for each architecture with the desired metabolite 

concentration in red. (C) Comparison of open loop control (green) with a continuous 

dynamic control (blue) for reducing parametric sensitivity (Dunlop et al., 2010). Graph 

shows final titers for each architecture for a range of parameter values. A hypothetical 
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acceptable production titer (red line) is shown. (D) Stochastic gene expression and stochastic 

enzyme kinetics cause cell-to-cell variation in enzyme and metabolite levels. Lower graph 

shows parameter values for three distinct metabolite distribution regimes: one unimodal and 

two bimodal regimes (Tonn et al., 2019). Side graphs show single-cell distribution for 

enzyme (green) and metabolite (red) concentrations corresponding to each regime. (E) 

Comparison of static control (green) with population behavior control (blue) for selecting 

high-performing individual cells. Graph shows distribution of single-cell metabolite 

concentrations for each strategy (Xiao et al., 2016).
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Fig. 2. Overview of sensing mechanisms used in dynamic metabolic control.
(A) A chemical inducer binds to a repressor that undergoes a conformational change and 

releases itself from binding to DNA, thus allowing RNA polymerase to promote gene 

expression (Soma et al., 2014). (B) As cell density increases, more AHL molecules are 

released into the extracellular environment until the concentration is high enough to trigger a 

quorum response (Gupta et al., 2017). (C) Thermolabile repressor cI857 changes 

conformation and DNA binding activity in response to temperature (Zhou et al., 2012). (D) 

Light responsive transcription factors are created by fusing light-sensitive protein domains 

with DNA binding domains (Milias-Argeitis et al., 2016). (E) The Pgas promoter is able to 

detect and respond to low pH levels (Yin et al., 2017). (F) FadR is a repressor transcription 

factor that binds to acyl-CoA thus acting as a sensor for acyl-CoA (Zhang et al., 2012). (G) 

The L-Trp biosensor is based on a metabolite-responsive signal peptide TnaC (Fang et al., 

2016). Without L-Trp, the operon undergoes the Rho-dependent transcriptional termination. 

L-Trp can prevent the release of the ribosome at the tnaC stop codon, blocking Rho from 

binding to the mRNA, so that RNA polymerase can continue to transcribe the downstream 

GOI.
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Fig. 3. Overview of actuator mechanisms in dynamic metabolic control.
(A) MRTF-based transcriptional actuation (Mannan et al., 2017). (B) CRISPRi-based 

transcriptional actuation (Wu et al., 2020). (C) Antisense RNA-based post-transcriptional 

actuation (Yang et al., 2018). asRNA, antisense RNA. (D) RNA-interference-based post-

transcriptional actuation. In S. cerevisiae, RNA hairpins are cleaved by a Dicer protein to 

create fragments, which interact with the Argonaute protein to destroy target mRNAs, thus 

preventing translation (Williams et al., 2015). dsRNA, double-stranded RNA; siRNA, small 

interfering RNA. (E) A post-translation actuation mechanism based on the TevP proteinase 

(Gao et al., 2019).
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Fig. 4. Representative pathways with engineered metabolic regulation.
(A) Glucaric acid production in E. coli (Doong et al., 2018). AHL, N-acyl homoserine 

lactones; PFK-1, phospho-fructokinase-1; G6P, glucose-6-ph osphate; F6P, fructose-6-

phosphate; MI, myo-inositol; MIOX, myo-inositol oxygenase. (B) 4-HIL production in C. 
glutamicum (Zhang et al., 2018). α-KG, α-ketoglutarate; SUCC, succinyl-CoA; SUC, 

succinate; OAA, oxaloacetate; Ile, L-isoleucine; 4-HIL, 4-hydroxyiso leucine; OdhA, α-

ketoglutarate dehydrogenase complex E1 subunit. (C) MA production in E. coli (Yang et al., 

2018). E4P, erythrose 4-phosphate; PEP, phosphoenolpyruvate; DAHP, 3-deoxy-d-ara-bino-

heptulosonate-7-phosphate; MA, muconic acid; AAA, aromatic amino acid; EntC, 

isochorismate synthase; PchB, isochorismate pyruvate lyase; PykF, pyruvate kinase I; PykA, 

pyruvate kinase II; Ppc, phosphoenolpyruvate carboxylase. (D) Naringenin production in Y. 
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lipolytica (Lv et al., 2020). LEU2, 3-isopropylmalate dehydrogenase; FAS1, fatty acid 

synthetases Fas1p; FAS2, fatty acid synthetases Fas2p; FabD, malonyl-CoA-ACP 

transacylase. β-IPM, 3-isopropylmalate; KIC, α-ketoi-socarpoate (E) Monoterpene 

production in S. cerevisiae (Peng et al., 2018). DMAPP, dimethylallyl pyrophosphate; IPP, 

isopentenyl pyrophosphate; GPP, geranyl pyrophosphate; FPP, farnesol pyrophosphate; 

Erg20p, FPP synthase. (F) Xylonate production in E. coli (Gao et al., 2020). PPP, pentose 

phosphate pathway; XylA, xylose isomerase; CcxylB, xylose dehydrogenase from 

Caulobacter crescentus; Dashed line, multiple enzymatic steps; blue line, engineered 

regulatory interaction; Circle, the signal molecule in the dynamic control system. Pathways 

and metabolites in bold are essential to the host.
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