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Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal
disorders, also known as disorders of the gut–brain interaction; however, the
pathophysiology of IBS remains unclear. Early life stress (ELS) is one of the most
common risk factors for IBS development. However, the molecular mechanisms by
which ELS induces IBS remain unclear. Enterochromaffin cells (ECs), as a prime
source of peripheral serotonin (5-HT), play a pivotal role in intestinal motility, secretion,
proinflammatory and anti-inflammatory effects, and visceral sensation. ECs can sense
various stimuli and microbiota metabolites such as short-chain fatty acids (SCFAs) and
secondary bile acids. ECs can sense the luminal environment and transmit signals to
the brain via exogenous vagal and spinal nerve afferents. Increasing evidence suggests
that an ECs-5-HT signaling imbalance plays a crucial role in the pathogenesis of ELS-
induced IBS. A recent study using a maternal separation (MS) animal model mimicking
ELS showed that MS induced expansion of intestinal stem cells and their differentiation
toward secretory lineages, including ECs, leading to ECs hyperplasia, increased 5-HT
production, and visceral hyperalgesia. This suggests that ELS-induced IBS may be
associated with increased ECs-5-HT signaling. Furthermore, ECs are closely related
to corticotropin-releasing hormone, mast cells, neuron growth factor, bile acids, and
SCFAs, all of which contribute to the pathogenesis of IBS. Collectively, ECs may play
a role in the pathogenesis of ELS-induced IBS. Therefore, this review summarizes the
physiological function of ECs and focuses on their potential role in the pathogenesis of
IBS based on clinical and pre-clinical evidence.

Keywords: enterochromaffin cells (ECs), irritable bowel syndrome (IBS), early life stress (ELS), brain–gut–
microbiota axis, 5-hydroxytryptamine
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INTRODUCTION

Enterochromaffin cells (ECs) are the most abundant type of
enteroendocrine cells throughout the gastrointestinal (GI) tract
(Lund et al., 2018). They account for only 1% of enteric
epithelial cells, however, they secrete 90% of serotonin (5-
hydroxytryptamine or 5-HT) in the body (Mawe and Hoffman,
2013). Considering 5-HT content in the gut alone, approximately
95% is synthesized in ECs, whereas 5% is synthesized in enteric
neurons and other cell types (Banskota et al., 2019). The rate-
limiting enzyme for 5-HT biosynthesis is tryptophan hydroxylase
(TPH), which includes TPH1 in ECs and TPH2 in neurons of the
enteric nervous system (ENS) and central nervous systems (CNS)
(Walther et al., 2003).

ECs are located on the intestinal mucosal surface and
the epithelial layer (Mawe and Hoffman, 2013). 5-HT, as a
paracrine modulator produced, stored, and released from ECs,
is delivered to neighboring cells and neurons (Wood, 2020)
and exerts its function through various 5-HT receptors (5-
HTR) (De Deurwaerdère et al., 2020). 5-HT is an important
neurotransmitter in the CNS and ENS and plays a key role in
regulating visceral sensations and emotions, such as anxiety and
depression. There are seven 5-HTR (5-HT1−7R), and at least 14
subtypes are widely distributed in the intestine and brain (De
Deurwaerdère et al., 2020). ECs link epithelial cells, goblet cells
(Wood, 2020), afferent vagal neurons (Bellono et al., 2017), and
myenteric neurons in the mucosa (Neunlist et al., 1999), and also
link the ENS, spinal afferent terminals (Wood, 2020), and enteric
mast cells (Wang et al., 2013) in the lamina propria through the
interaction of 5-HT and 5-HTR.

Importantly, ECs are the major enteroendocrine cells
(Kim and Camilleri, 2000) that can synthesize and secrete
various signaling molecules and hormones, such as 5-HT,
corticotropin-releasing hormone (CRH) (Kawahito et al., 1994),
cholecystokinin (Fakhry et al., 2017), glucagon-like peptide-1
(GLP-1) (Lee et al., 2012), peptide YY (Reynaud et al., 2016),
and substance P (SP) (Nøhr et al., 2013). With the endocrine
potential, ECs are involved in modulating GI motility and
metabolic disorders (Martin et al., 2017b). Furthermore, ECs
contain various receptors, which are used by ECs to sense
nutritive metabolites, such as glucose, fructose, amino acids,
lipid amides, oleoylethanolamides (Martin et al., 2017a), ketones,
niacin, aromatic acids, acyl-amides, and lactate (Lund et al.,
2018), and microbial metabolites, such as short-chain fatty acids
(SCFAs) (Martin et al., 2017a) and secondary bile acids (SBAs)
(Lund et al., 2018). Moreover, ECs can sense mechanical forces
with the mechanosensitive ion channel Piezo2 to synthesize 5-
HT (Alcaino et al., 2018). More recently, ECs have been reported
to sense fecal single strand RNA with the mechanosensitive ion
channel Piezo1, which is essential for systemic 5-HT synthesis
(Sugisawa et al., 2020). Accordingly, ECs act as intestinal
sentinel cells and play an important role in regulating intestinal
homeostasis. They can sense the luminal environment and
transmit signals to the brain via exogenous vagal and spinal nerve
afferents. Likewise, signals from the brain can be transmitted to
the ECs through the vagus nerve and spinal cord. ECs may play
an essential role in the brain–gut–microbiota axis.

Irritable bowel syndrome (IBS) is the most common
functional GI disorder, also known as disorders of the gut–brain
interaction (Vasant et al., 2021). It is characterized by recurrent
episodes of abdominal pain/discomfort and changes in bowel
movements, with high morbidity in adults (Enck et al., 2016)
and children worldwide (Korterink et al., 2015), resulting
in a considerable disease burden and severely affecting the
physical and mental well-being and quality of life of patients.
Unfortunately, the etiology of IBS remains unclear (Chong et al.,
2019). However, brain–gut–microbiota interaction disorder,
visceral hypersensitivity, increased intestinal permeability,
intestinal motility dysfunction, immune activation, low-grade
inflammation, and somatic and psychiatric comorbidities are
involved in the pathogenesis of IBS (Enck et al., 2016).

Early life stress (ELS) and its role in the pathogenesis of IBS
have gradually attracted increasing attention (Ju et al., 2020).
ELS is a risk factor for IBS development (Jones et al., 2020;
Ju et al., 2020; Low et al., 2020), and is more common in
IBS patients than in healthy controls (Bradford et al., 2012).
Furthermore, ELS is correlated with the severity of IBS symptoms
(Park et al., 2016). However, the precise molecular mechanisms
by which ELS induces IBS remain unclear, and dysbiosis in
the composition of commensal bacterial communities, increased
intestinal permeability, irregular intestinal motility, visceral
hypersensitivity, and anxiety/depression-like behaviors may be
implicated (Labus et al., 2017; Fukui et al., 2018; Cojocariu
et al., 2020; Sugiyama and Shiotani, 2020; Lingpeng et al., 2021).
Recently, studies have shown that ELS increases susceptibility
to IBS in later life (Wong et al., 2019; Low et al., 2020), which
is associated with an increased number of ECs (Wong et al.,
2019). Increasing evidence indicates that ECs play a crucial role
in the pathogenesis of ELS-induced IBS (Chow et al., 2019; Qin
et al., 2019a; Wong et al., 2019), as ECs bidirectionally (top-down
or down-top) mediate signaling transmission of the brain–gut–
microbiota axis (Stasi et al., 2012).

Considering the unique features of ECs, this review aims
to investigate the pathogenesis of ELS-induced IBS from a
new perspective, namely ECs, and hopes to provide novel
insights into future in-depth studies and explore new therapeutic
strategies for IBS.

PHYSIOLOGY OF ENTEROCHROMAFFIN
CELLS ORIGIN AND LOCATION OF
ENTEROCHROMAFFIN CELLS IN THE
GUT

Intestinal epithelial cells originate from multipotent intestinal
stem cells (ISCs). ISCs are differentiated into four distinct
intestinal cell types, namely enterocytes, goblet, enteroendocrine,
and Paneth cells, by the interaction of wingless/integrated (Wnt),
Notch, and bone morphogenetic protein signaling pathways
(Smith et al., 2017). ECs are a major intestinal enteroendocrine
cell type. They mature and migrate up the villous tips where
they are eventually extruded (Schonhoff et al., 2004). Generally,
normal ECs are terminally differentiated and non-proliferating.
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However, ECs are constantly being renewed. The turnover rate
of ECs varies substantially, ranging from 16 (approximately 60–
65%) to 150 days (35–40%), which is considerably slower than
that of the surrounding enterocytes (de Bruïne et al., 1992).

ECs are located on the intestinal mucosal surface, the epithelial
layer. Additionally, ECs connect with the nerve endings of the
vagal and spinal afferents (Mawe and Hoffman, 2013). Locally, in
the lamina propria, ECs-derived 5-HT acts as a major paracrine
signal through G protein-coupled 5-HTR on neighboring cells to
affect epithelial growth (Tackett et al., 2017), enterocyte secretion,
and intestinal barrier function (Akiba et al., 2017), as well as to
activate immune cells (Margolis et al., 2014) and enteric nerves
(Mawe and Hoffman, 2013). Location of enterochromaffin cells
and their association with neighboring cells and neurons are
summarized in Figure 1.

RECEPTORS ON ENTEROCHROMAFFIN
CELLS

ECs contain various receptors, which are useful for sensing
both nutritive metabolites, such as glucose, fructose, amino
acids, lipid amides, oleoylethanolamides (Martin et al., 2017a),
ketones, niacin, aromatic acids, acyl-amides, lactate (Lund et al.,
2018) and microbiota generated metabolites, such as SCFAs
(Fukumoto et al., 2003; Nøhr et al., 2013; Akiba et al., 2015;
Martin et al., 2017a), and SBAs (Alemi et al., 2013; Lund
et al., 2018). Importantly, free fatty acid receptor 2 (FFAR2)
and FFAR3 (Martin et al., 2017a) of ECs can directly sense
SCFAs in the intestinal tract and provide the media for the
interactions of the brain–gut–microbiota axis (Dalile et al., 2019).
However, receptors expressed on ECs differ in the intestine.
For example, ECs from the small intestine do not express G
protein-coupled receptor (GPCR) sensors for lipid and protein
metabolites, such as FFAR1, GPR119, G protein-coupled bile
acid receptor 1 (GPBAR), G protein-coupled receptor 5 (TGR5),
calcium-sensing receptor, and GPR142, however, they express
GLP-1. In contrast, colonic ECs express various types of GPCR
sensors of microbial metabolites, including three receptors for
SCFAs, namely olfactory receptor (OLF) 78, OLF558, and FFAR2,
and a receptor for aromatic acids, GPR35, a receptor for SBA,
GPBAR, and the receptor for acyl-amides and lactate, GPR132.
This indicates that nutrient metabolites do not directly stimulate
ECs in the small intestine, but through a paracrine mechanism
involving GLP-1 secreted from neighboring enteroendocrine
cells. Alternatively, colonic ECs are capable of sensing a multitude
of different metabolites generated by the gut microbiota and gut
hormones, including GLP-1 (Lund et al., 2018).

Moreover, ECs have taste and olfactory receptors that
can sense odorous metabolites, including allyl isothiocyanate
(Bellono et al., 2017) and isovalerate (Lund et al., 2018),
thereby establishing connections with microbiota. Additionally,
ECs include abounding endocrine hormone receptors, such
as GLP-1, glucose-dependent insulinotropic polypeptide (Lund
et al., 2018), and somatostatin (Kidd et al., 2009; Lund
et al., 2018), enabling them to regulate glucose homeostasis,

lipid metabolism, bone density, and metabolic syndrome-
associated diseases, such as obesity and type 2 diabetes (Martin
et al., 2017b). Furthermore, ECs express adrenergic receptors,
including dopamine, epinephrine, and norepinephrine receptors
(Bellono et al., 2017), and CRH receptor 1 (CRH-R1) (Wu et al.,
2011), which may enable them to respond to environmental
stress (Wong et al., 2019). Notably, ECs have IL-1β receptors
and toll-like receptor (TLR)-2,4, indicating that ECs play a role
in inflammatory diseases, such as inflammatory bowel disease
(IBD) (Kidd et al., 2009). In addition, EC hyperplasia and 5-
HT production are immunologically controlled by IL-13 by
acting on the IL-13 receptor of ECs (Manocha et al., 2013). IL-
13 overexpression in the inflamed mucosa of ulcerative colitis
is a unique characteristic of this IBD (Mannon and Reinisch,
2012). Moreover, IL-13 plays a critical role in the pathogenesis
of experimental colitis, and ECs-derived 5-HT is an important
mediator of IL-13 driven intestinal inflammation (Shajib et al.,
2013). This indicates that, in certain cases, ECs serve as pro-
inflammatory cells in the gut. More importantly, by suppressing
the tumorigenicity 2 receptor (ST2), the unique receptor of IL-
33, ECs can detect immune signals for rapid neuroendocrine
responses to regulate intestinal homeostasis and host defense
against enteric infection (Chen et al., 2020). This suggests that
ECs serve as anti-inflammatory cells by sensing immune signals.
Owing to the rapid response of ECs to IL-33 via IL-33-ST2
signaling, IL-33 triggers calcium influx for 5-HT release via
a PLC-γ1-TRPA1 signaling pathway (Chen et al., 2020). By
activating enteric neurons, increased 5-HT enhances intestinal
motility and promotes the expulsion of toxins and dead cell
bodies from the gut (Bercík et al., 2002; Chen et al., 2020).

ECs can sense the hypoxic environment of the intestines and
respond to hypoxia through hypoxia inducible factor 1α (HIF-
1α). The GI mucosa is a richly perfused vascular bed directly
juxtaposed with an anaerobic and non-sterile lumen in the gut. As
such, intestinal epithelial cells, which line the mucosa, experience
a uniquely steep physiologic oxygen gradient compared with
that of other bodily cells (Taylor and Colgan, 2007). This
physiological phenomenon might explain the possibility that ECs
become hypoxic sensory cells. Hypoxia induces phosphorylation
and activation of TPH1 and promotes 5-HT synthesis (Haugen
et al., 2012) via hypoxia transcriptional response element (HRE)-
mediated signaling, as HRE is a promoter region for TPH1
(Pocock and Hobert, 2010). Localized hypoxia occurs as a result
of chronic inflammation in the gut during pathophysiological
processes, including IBD (Taylor and Colgan, 2007). During IBD,
increased tissue metabolism and vasculitis render the chronically
inflamed mucosa, particularly the epithelium hypoxic, giving
rise to the activation of the hypoxia-responsive transcription
factor HIF, thus promoting the production of 5-HT (Taylor and
Colgan, 2007). Furthermore, ECs express adenosine receptors
(Pocock and Hobert, 2010). Hypoxia is associated with increased
extracellular adenosine, and increased adenosine hypoxia-
induced 5-HT synthesis and secretion is amplified by adenosine
receptor 2B signaling and TPH-1 activation (Dammen et al.,
2013). Taken together, this indicates that ECs participate in the
pathogenesis of intestinal inflammation (Linan-Rico et al., 2016)
via HIF-1α and adenosine receptors.
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FIGURE 1 | Location of enterochromaffin cells and their association with neighbor cells and neurons. Located on the intestinal mucosal surface, the epithelial layer,
ECs have a relationship with neighboring cells, including epithelial and goblet cells, and connect with the submucosal neuron, the myenteric neuron projecting into
the submucosal, and nerve endings of the vagal and spinal afferents. In addition, ECs are linked with various immune cells, such as mast cells, monocytes, dendritic
cells, T cells, and B cells. ECs, enterochromaffin cells; 5-HT, 5-hydroxytryptophan/serotonin; MCs, mast cells; DC, dendritic cells.

Furthermore, ECs can sense mechanical forces with a
mechanosensitive ion channel (Wang et al., 2017; Alcaino et al.,
2018). Piezo2 is an important mechano-gated ion channel that
is involved in light touch sensitivity and inflammatory allodynia
(Yang et al., 2016; Szczot et al., 2018). Recent studies have
revealed that mechanical forces in the form of stretching,
poking, or stroking of the mucosa stimulated 5-HT release,
with the involvement of Piezo2 (Wang et al., 2017; Alcaino
et al., 2018). Furthermore, Piezo proteins have been shown to
play an important role in mechanical stimulation to induce
visceral pain. In patients with IBS, Piezo2 expression in the colon
significantly correlates with visceral sensitivity, indicating that
Piezo2 is a candidate biomarker for visceral hypersensitivity in
IBS (Bai et al., 2017). In rats, Piezo2 knockdown in the dorsal
root ganglion (DRG) attenuated visceral sensation to innocuous
stimuli in control rats and both innocuous and noxious stimuli
with neonatal irritation (Yang et al., 2016). These results suggest
a potential mechanism of Piezo2 in visceral hypersensitivity in
IBS. More interestingly, a recent study revealed that RNA sensing
by ECs Piezo1 is essential for systemic 5-HT synthesis. Piezo1
signaling is a positive regulator of 5-HT production in ECs.
However, Piezo1 is dispensable for mechanical force-induced 5-
HT production in the gut (Sugisawa et al., 2020). The significant
findings regarding the important role of Piezo2 and Piezo1 might
provide important perspectives to investigate novel mechanisms
of ECs-related diseases, such as IBS.

Notably, ECs also expressed 5-HTR. Studies have indicated
that stimulatory 5-HT1AR, 5-HT2R, 5-HT3R, and inhibitory

5-HT4R are present on ECs of porcine and human intestinal
mucosa (Schwörer and Ramadori, 1998). This suggests that
these contradictory roles of 5-HTR in ECs may regulate 5-HT
production via an autocrine mechanism.

ENTEROCHROMAFFIN CELLS-DERIVED
5-HYDROXYTRYPTAMINE SYNTHESIS,
SECRETION, AND METABOLISM

ECs account for only 1% of enteric epithelial cells but secrete 90%
of 5-HT in the body (Mawe and Hoffman, 2013). Considering 5-
HT content in the gut alone, approximately 95% is synthesized
in ECs, whereas 5% is synthesized in enteric neurons and other
cell types (Banskota et al., 2019). ECs produce 5-HT from its
precursor, L-tryptophan (Trp). The first rate-limiting step of
5-HT biosynthesis is the transformation of L-Trp into 5-hydroxy-
L-tryptophan (5-HTP) catalyzed by TPH. The second step is
the decarboxylation of 5-HTP by L-amino acid decarboxylase,
leading to 5-HT production (Banskota et al., 2019). The rate-
limiting enzyme for 5-HT biosynthesis is TPH, which includes
TPH1 in ECs and TPH2 in the ENS and CNS (Walther et al.,
2003). 5-HT, as a paracrine modulator produced, stored, and
released from ECs, is delivered to neighboring cells through
5-HTR (Wood, 2020). Upon release by ECs, 5-HT may take
several possible routes. First, 5-HT is released into the lumen or
taken up by epithelial cells via the 5-HT reuptake transporter
(SERT) (Bertrand and Bertrand, 2010). 5-HT released into the
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lamina propria, where 5-HT may act with 5-HTR in epithelial
cells, enteric neurons, and mast cells (MCs), to exert intestinal
motility, secretion, proinflammatory, and anti-inflammatory
effects (Martel et al., 2003), may also be taken up into the
enterocytes by SERT or enter the blood (Bertrand and Bertrand,
2010). 5-HT is present as free 5-HT in the blood or taken up
by platelets via SERT. The portal circulation is first processed
by the liver before the blood enters the systemic circulation.
Free 5-HT in the blood is rapidly degraded by monoamine
oxidase A (MAOA) to 5-HIAA or by glucuronidases in the liver,
while 5-HT in platelets is protected from degradation. Therefore,
only 5-HT stored in platelets enters the general circulation
(Bertrand and Bertrand, 2010). After 5-HT acts on one of its
receptors, 5-HT must be removed rapidly to prevent excessive
activation and/or receptor desensitization. 5-HT inactivation
requires transmembrane transport because 5-HT cannot be
catabolized extracellularly, and 5-HT is charged at a physiological
pH and, therefore, scarcely traverses plasma membrane lipid
bilayers (Gershon and Tack, 2007). Thus, the inactivation of 5-HT
requires the mediation of a selective plasmalemma, sodium-
dependent SERT (Blakely et al., 1994). Epithelial cells and
enteric serotonergic neurons express SERT (Wade et al., 1996),
which take up and inactivate 5-HT (Bertrand and Bertrand,
2010). All of the epithelial cells in the intestinal lining appear
to express SERT, therefore, these transporters act as selective
sponges to remove 5-HT from the interstitial space after release
by ECs. Therefore, SERT serves as a critical molecule in the
local regulation of 5-HT availability and action in the intestines
(Mawe and Hoffman, 2013). Studies on the intestine during early
postnatal development and adulthood revealed that decreased
SERT function, via reduced expression levels or pharmacological
blockade (Bian et al., 2007), leads to high extracellular 5-HT
levels. SERT inhibition or deletion reinforces 5-HT-mediated
responses, while increasing SERT activity diminishes responses
to 5-HT (Margolis et al., 2016). Alternatively, 5-HT in the lamina
propria can be taken up by SERT-expressing cells, such as T cells
and B cells, which also activate the immune response (Spohn and
Mawe, 2017). Consequently, the effects of 5-HT in the gut are
balanced by 5-HT secretion, catabolism, and uptake mechanisms.
In contrast to neurons, ECs-5-HT is conceivably stored in large
dense core vesicles in complex with large acidic chromogranin
proteins (Machado et al., 2010). ECs synthesis of serotonin and
its metabolism and excretion are summarized in Figure 2.

FUNCTIONS OF ENTEROCHROMAFFIN
CELLS-DERIVED
5-HYDROXYTRYPTAMINE IN THE GUT

5-HT, which plays a key role in regulating intestinal motility,
intestinal permeability, and visceral sensation, and participates
in emotional regulation, such as anxiety and depression (De
Deurwaerdère et al., 2020), is an important neurotransmitter in
the CNS and ENS. 5-HT activates 5-HTR to exert its biological
functions. There are seven types of 5-HTR (5-HT1−7R), and at
least 14 subtypes are widely distributed in the intestine and brain
(De Deurwaerdère et al., 2020).

The GI wall consists of mucous, submucous, muscular, and
serosal layers (Matsumura et al., 2020). Epithelial cells, M-cells,
ECs, goblet cells, and other enteroendocrine cells are located in
the mucous layer. Inflammatory cells, MCs, blood vessels, and
afferent nerve terminals are located in the submucous, namely
the lamina propria. These cells and neurons express various 5-
HTR (Wood, 2020). 5-HT released from ECs mediates numerous
GI functions, including peristalsis, secretion, vasodilation, and
perception of pain or nausea, through activation of a diverse
family of 5-HTR on intrinsic and extrinsic afferent nerve fibers
located in the lamina propria (Mawe and Hoffman, 2013).
Mucosal ECs release 5-HT as a paracrine signaling molecule that
acts on neighboring cells and neurons (Pan and Gershon, 2000).
For example, 5-HT acting on 5-HT4R stimulates epithelial cells
to secrete electrolytes and H2O into the intestinal lumen and
stimulates goblet cells to secrete mucus (Mawe and Hoffman,
2013; Wood, 2020). ECs have been shown to directly interact
with afferent vagal GPR65-neurones expressing 5HT3R (Bellono
et al., 2017). Morphological studies have demonstrated that
myenteric Dogiel type 2 neurons project into the mucosa with
nerve endings in close proximity to ECs (Neunlist et al., 1999).
Additionally, 5-HT spreads under the epithelial layer and enters
the lamina propria. 5-HT acting on 5-HT1AR induces MC
adhesion, migration, and degranulation (Wang et al., 2013;
Wood, 2020). Released mediators from MCs become paracrine
signals to the ENS, spinal afferents, and secretory glands (Wang
et al., 2013). Clinical studies have shown that, compared with
healthy controls, patients with IBS-D exhibited a significant
increase in 5-HT release and correlated with MC counts.
A significant correlation was found between mucosal 5-HT
release and the severity of abdominal pain in patients (Cremon
et al., 2011). 5-HT released from ECs stimulates intestinal motor
and secretomotor reflexes by activating 5-HTR on terminals of
intrinsic primary afferent neurons (IPANS), the cell bodies of
which are located in the enteric nerve plexuses. IPANS synapse
with interneurons and activate other enteric neurons to initiate a
reflex response. ECs-derived 5-HT was also applied at 5-HTR on
extrinsic sensory nerve terminals to convey nociceptive signals to
the CNS (via spinal afferents) or to initiate GI reflexes via vagal
afferents (Galligan, 2017). In addition, 5-HT acting on 5-HT3R
of spinal afferent nerve terminals (Kozlowski et al., 2000) or
ENS is involved in processes associated with emotion, cognition,
memory, pain perception, and GI functions, including secretion
and motility (Kato, 2013). When acting on 5-HT3R of vagal
afferent nerve terminals, 5-HT engages in several physiological
and pathophysiological conditions (Glatzle et al., 2002), including
distention- and chemical-evoked vagal reflexes, nausea, vomiting,
and visceral hypersensitivity (Browning, 2015). 5-HT acting
on 5-HT7R in immune cells, such as monocytes, lymphocytes,
and dendritic cells, may play a crucial role in inflammation
signaling (Quintero-Villegas and Valdés-Ferrer, 2019; Wu et al.,
2019). Furthermore, 5-HT acting on 5-HT1AR in monocytes and
dendritic cells has anti-inflammatory effects (Hernández-Torres
et al., 2018).

ECs secrete 5-HT basally and act on adjacent exciting
cells and enteric neurons. Conversely, it also secretes 5-HT
apically to the gut lumen (Fujimiya et al., 1997). The gut
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FIGURE 2 | Enterochromaffin cells synthesis of serotonin and its metabolism and excretion. Trp is converted to 5-HTP by TPH1 of ECs. 5-HTP is then metabolized
to 5-HT by AADC. Upon production, 5-HT is stored in large dense core vesicles of ECs and prepared for release when required by the body. 5-HT acts on objective
cells to exert nutrition, intestinal motility, secretion, and proinflammatory and anti-inflammatory effects. 5-HT is released into the lumen and lamina propria and can
enter the blood in the lamina propria. 5-HT must be rapidly removed to prevent excessive activation and/or receptor desensitization. 5-HT is taken up by almost all
epithelial cells, nerves, immune cells, and platelets via SERT. 5-HT is inactive and converted to 5-HIAA by enterocytes and enteric neurons with MAOA. The portal
circulation is first processed by the liver before the blood enters the systemic circulation. Free 5-HT in the blood is rapidly degraded by MAOA or ALDH in the liver,
while 5-HT in platelets is protected from degradation. Thus, generally, only 5-HT stored in platelets enters the general circulation. 5-HIAA in the general circulation is
finally excreted through the urine. Conversely, 5-HT can also be further metabolized to melatonin by SNAT and HIOMT. Trp, tryptophan; 5-HTP,
5-hydroxy-L-tryptophan; TPH1, tryptophan hydroxylase 1; AADC, aromatic amino acid decarboxylase; 5-HT, serotonin; SERT, serotonin reuptake transporter;
MAOA, monoamine oxidase A; 5-HIAA, 5-hydroxyindole acetic acid; ALDH, aldehyde dehydrogenase; SNAT, serotonin N-acetyltransferase; HIOMT,
hydroxyindole O-methyltransferase.

microbiota regulates 5-HT levels in the intestinal epithelium
and lumen (Reigstad et al., 2015). However, whether 5-HT
in the intestinal lumen acts on the intestinal microbiota has
been unclear until recently. A recent study demonstrated that
elevated intestinal luminal 5-HT levels by oral supplementation
or genetic deficiency of SERT in the host increases the relative
abundance of spore-forming members of the gut microbiota.
The study identified Turicibacter sanguinis as a gut bacterium
that expresses a neurotransmitter sodium symporter-related
protein with sequence and structural homology to mammalian
SERT (Fung et al., 2019). Coincidentally, Kumar et al. (2020)
indicated that 5-HT secreted into the lumen can decrease
virulence gene expression in enterohemorrhagic Escherichia coli
and Citrobacter rodentium. They stated that the membrane-
bound histidine sensor kinase CpxA is a bacterial 5-HT receptor.
5-HT induces dephosphorylation of CpxA, which inactivates
the transcription factor CpxR and controls the expression of

virulence genes. Therefore, repurposing 5-HT agonists to inhibit
CpxA may represent a potential therapeutic intervention for
enteric bacteria. These results suggest the vital role of ECs in
the communication between the gut and enteric microbiota.
ECs action on various neighbor cells, neurons, and intestinal
microbiota are summarized in Figure 3.

FACTORS AFFECTING
ENTEROCHROMAFFIN CELLS
SYNTHESIS OF
5-HYDROXYTRYPTAMINE

ECs regulation and 5-HT release have been studied since their
discovery in the 1950s, however, progress has been slow due to
methodological problems in diligently measuring 5-HT release
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FIGURE 3 | Enterochromaffin cells action on various neighbor cells, neurons, and intestinal microbiota through released 5-HT. 5-HT acting on 5-HT4R stimulates
epithelial cells to secrete electrolytes and H2O into the intestinal lumen and stimulates goblet cells to secrete mucus. Moreover, 5-HT acting on 5-HT3R of terminals
of the spinal and vagus afferent nerves, and enteric nerves are involved in processes associated with emotion, cognition, memory, pain perception, distention- and
chemical-evoked vagal reflexes, nausea, vomiting, visceral hypersensitivity, and intestinal functions, including secretion and motility. Furthermore, 5-HT acting on
5-HT1AR induces mast cell adhesion, migration, and degranulation. In addition, 5-HT acting on 5-HT7R in immune cells, including monocytes, lymphocytes, and
dendritic cells, may be implicated in inflammation signaling. In contrast, 5-HT acting on 5-HT1AR in monocytes and dendritic cells has an anti-inflammatory role. In
addition to these functions, 5-HT action on 5-HT receptors of enteric bacteria, sodium symporter-related protein of Turicibacter sanguinis, and membrane-bound
histidine sensor kinase of enterohemorrhagic Escherichia coli and Citrobacter rodentium, play a crucial role in modulating bacterial colonization and virulence of
enteric pathogens. 5-HT, serotonin; 5-HTR, serotonin receptor.

and the fact that ECs, like other enteroendocrine cell populations,
are a minor population of cells scattered and outnumbered by
other cell types (Lund et al., 2018). Moreover, it was found that
a large proportion of ECs renewed relatively rapidly, with a
turnover rate of approximately 16 days in the gut (de Bruïne
et al., 1992). Although these disadvantages severely impede
the in-depth study of ECs physiology (Wang et al., 2020), in
addition to the selection of human pancreatic neuroendocrine
tumor cell line (BON) cells (Christofi et al., 2004; Wu et al.,
2011) and the malignant ECs carcinoid cell line (Siddique
et al., 2009), the ECs model has performed well, despite the
fact that tumor cell lines have not proven to be suitable
mimics of intestinal ECs physiological responses (Wang et al.,
2020). In addition, a study revealed that a human pancreatic
endocrine cell line, one islet carcinoma cell line (QGP-1), also
expressed various ECs marker genes, including TRPA1 and
TPH1, suggesting that QGP-1 is a new model for the investigation
of ECs (Doihara et al., 2009). Therefore, multiple subsequent
studies used this model to conduct ECs-related research (Kalbe
et al., 2016; Herrera-Martínez et al., 2020). In addition, the
milestone emergence of intestinal organoids (Sato et al., 2009;
Buske et al., 2012) enables a broad in vitro study of ECs
from cell to tissue levels (Tsuruta et al., 2016). Currently, the
technology of single-cell sequencing has moved ECs-related

research into a new era (Fischer et al., 2019; Gehart et al.,
2019).

ECs are located at the forefront of the gut and link with
the adjacent intestinal epithelial cells, enteric neurons, vagus
nerve afferent terminals, and spinal nerve afferent terminals, and
express numerous functional receptors. In addition, TPH1 is
a rate-limiting enzyme in the synthesis of 5-HT. Accordingly,
intraluminal-, intestinal-, enteric neuron-, vagus nerve afferent
terminal-, and spinal nerve afferent terminal-derived stimuli may
directly or indirectly promote or inhibit ECs to produce 5-HT
by increasing or decreasing the number of ECs and upregulating
or downregulating TPH1 expression. In contrast, novel ion
channels were found to be important for ECs excitability
and 5-HT release (Bellono et al., 2017; Strege et al., 2017).
Mechanistically, the combination of ligands and receptors on ECs
caused Ca2+ influx, elevation of intracellular free Ca2+ levels,
and, consequently, 5-HT release (Braun et al., 2007). The factors
and potential mechanisms that regulate the ECs synthesis of
5-HT are summarized in Figure 4.

Glucose activates the secretion of various cell types and is
the leading absorbed form of carbohydrates in the gut. Zelkas
et al. (2015) reported that primary ECs respond to acute changes
in glucose availability through increases in intracellular Ca2+

activation of 5-HT secretion, but respond to chronic changes
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FIGURE 4 | Factors and potential mechanisms of regulating enterochromaffin cells synthesis of 5-HT. Various factors activate or inhibit ECs synthesis of 5-HT,
including nutritive ingredients (glucose, dietary proteins, western diet, high Trp diet, casein, vitamin D, vitamin A, and zinc), neurotrophic factors (NGF and GDNF),
microbiota (spore-forming bacteria and Clostridium ramosum), metabolites (SCFAs, such as acetate, propionate, butyrate, and secondary bile acids), immunity
(IL-33, IL-13, TH1, and TH2), mechanical force, fecal ssRNA, as well as others (germ-free, Rfx6, Lmx1a, and antibiotic treatment). These are marked with red and
green dotted arrows for activation and inhibition, respectively. The potential mechanisms of factors that act on ECs are involved in the effects on TPH1 expression,
ECs hyperplasia, intracellular Ca2+, and MAOA. Factors that increase and decrease 5-HT levels are marked with red up and green down arrows, respectively. ECs,
enterochromaffin cells; NGF, neuron growth factor; GDNF, glial cell-derived neurotrophic factor; ssRNA, single-stranded RNA; TPH1, tryptophan hydroxylase 1;
MAOA, monoamine oxidase A; SCFAs, short chain fatty acids; Trp, tryptophan; Th, T helper.

in glucose levels through the upregulation of TPH1 expression.
A previous study in mice with oral polysaccharide administration
that increased carbohydrate availability promoted intestinal 5-
HT synthesis (Kashyap et al., 2013), however, the underlying
mechanism was not elucidated.

In rats, a western diet (high-fat diet; HFD) significantly
increased ECs and TPH1 mRNA and decreased SERT mRNA
levels and protein expression in the small intestine (Bertrand
et al., 2011; Crane et al., 2015). Furthermore, mice fed a HFD
showed increased body weight, hyperglycemia, and impaired
glucose tolerance, and generated anxiogenic-like/depressive-
like symptoms. This phenotype is associated with decreased

extracellular 5-HT levels in the hippocampus (Zemdegs et al.,
2016). However, the precise mechanism of action is unclear.
It is well known that two main pathways of 5-HT synthesis,
the gut and the brain, are separate (Bader, 2020). A HFD
increases the number of ECs and the TPH1 mRNA level, thus
implying elevation of 5-HT secretion in the gut, which might
mean a reduction in the synthesis of 5-HT in the brain in the
case of the same total amount of Trp entering the gut. The
traditional view that 5-HT synthesis in the gut and brain is
separate has been challenged (Zemdegs et al., 2016) despite the
lack of more convincing evidence. Existing evidence indicates
that the regulation of ECs producing 5-HT might affect 5-HT
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generation in the brain. Similarly, Porter et al. (2008) revealed
that TPH1 is associated with the regulation of peripheral Trp
levels and, therefore, the availability of Trp to the brain. Evidence
from studies on germ-free (GF) and antibiotic-treated mice also
supports this view. In the body, serum, plasma, colonic, and fecal
concentrations of 5-HT are substantially reduced compared to
conventionally raised controls (Uribe et al., 1994; Wikoff et al.,
2009; Sjögren et al., 2012; Yano et al., 2015), and are associated
with decreases in TPH1 expression and ECs density, particularly
in the colon (Uribe et al., 1994; Yano et al., 2015). In parallel,
GF mice had reduced anxiety compared to specific pathogen-free
(SPF) mice with a normal gut microbiota (Diaz Heijtz et al., 2011;
Lukić et al., 2019; Pan et al., 2019), and a significant elevation
in the concentration of 5-HT and 5-hydroxyindoleacetic acid
in the medial prefrontal cortex and hippocampus accompanied
by increased concentrations of Trp in the plasma (Clarke et al.,
2013; Lukić et al., 2019). However, no increased TPH2 expression
was detected, which was responsible for the synthesis of 5-
HT from Trp in the brain, suggesting the possibility of altered
intrinsic activity of this enzyme in GF animals (Clarke et al.,
2013). However, Lukić et al. (2019) suggested higher TPH2
expression in the dorsal raphe nucleus of GF mice than in
that of SPF mice.

Dietary proteins can also regulate 5-HT biosynthesis. Xie et al.
(2020) showed that emulsion-type sausage protein and cooked
pork protein diets increase TPH1 mRNA expression and 5-
HT levels, but reduce the number of ECs. In contrast, a soy
protein diet increases the number of ECs and TPH1 mRNA
levels, but decreases the MAOA mRNA level and 5-HT content.
Casein, particularly alpha and beta casein proteins, is beneficial in
stimulating enteroendocrine cell lines, STC-1 cells, proliferation,
and GLP-1 secretion (Gillespie and Green, 2016). STC-1 cells
also secrete 5-HT (Ripken et al., 2016). In addition, caseinate
hydrolysate, lead functional compound-25 (LFC25), significantly
increases calcium signaling in STC-1 (O’Halloran et al., 2018),
demonstrating the promotion of 5-HT secretion by LFC25. In
addition, beta-lactoglobulin and alpha-lactalbumin may also play
functional roles (Gillespie et al., 2015).

Trp, the precursor of 5-HT, is an essential amino acid
for animals and humans and is mainly derived from diet
(Gao et al., 2020). After entering the gut, 5-HT synthesis
and kynurenine degradation are the main pathways for Trp
metabolism (Gao et al., 2020). In pregnant rats fed a high-
Trp diet, hyperserotonemia was detected in experimental pups
compared to controls, suggesting increased 5-HT production
in ECs (Musumeci et al., 2014). However, formula feeding
reduced the number of ECs and 5-HT concentration, but
increased tryptamine levels relative to sow feeding, indicating
that the formula diet driving microbiota shifted Trp metabolism
from 5-HT to tryptamine in the neonatal porcine colon
(Saraf et al., 2017).

In addition to the nutritional components that affect ECs
release of 5-HT, certain specific microbiota also promote EC
secretion of 5-HT. Yano et al. (2015) revealed that indigenous
spore-forming bacteria from the mouse and human microbiota
promote 5-HT biosynthesis from colonic ECs with increased
TPH1 expression. This suggests that microbiota primarily

modulate 5-HT metabolism by affecting the host colonic ECs.
Mandić et al. (2019) reported that Clostridium ramosum regulates
ECs development and 5-HT release, including upregulation of
TPH1 expression. Additionally, certain probiotic Lactobacillus
strains, such as Lactobacillus casei 327, can indirectly promote
colonic 5-HT synthesis by increasing TPH1 expression (Hara
et al., 2018). Interestingly, certain commensal microbiota can
directly utilize luminal Trp for 5-HT synthesis, such as
Lactococcus, Lactobacillus, Streptococcus, E. coli, and Klebsiella,
which produce 5-HT by expressing TPH (O’Mahony et al., 2015).
These microbiota may indirectly inhibit ECs to synthesize 5-
HT (Saraf et al., 2017). Furthermore, intestinal flora metabolites
potently influenced the ECs synthesis of 5-HT. Accumulating
evidence has shown that SCFAs promote 5-HT production
(Fukumoto et al., 2003; Akiba et al., 2015; Reigstad et al.,
2015) by acting on SCFA receptors of ECs (Nøhr et al., 2013;
Martin et al., 2017a). Moreover, SCFAs are the major products of
microbial carbohydrate metabolism and can suppress kynurenine
production from Trp (Kennedy et al., 2017; Gao et al., 2018),
and therefore, indirectly promote 5-HT production from Trp
(Gao et al., 2020). In addition, adding indigestible carbohydrates,
such as fructo-oligosaccharide and resistant starch, increases
carbohydrate availability and leads to increased SCFA production
(Zhou et al., 2017), thus enhancing 5-HT synthesis.

Importantly, intestinal homeostasis requires a tightly
regulated balance between ISC proliferation and differentiation
(Santos et al., 2018). ECs are differentiated by ISC via a specific
signaling pathway (Schonhoff et al., 2004). Thus, alteration of this
pathway may lead to changes in ECs. A recent study showed that
ELS triggers nerve growth factor (NGF) elevation, which directly
targets ISC, stimulating their expansion and differentiation
by trans-activating Wnt/β-catenin signaling, thus leading to
intestinal ECs hyperplasia and 5-HT increase (Wong et al., 2019).
Furthermore, Lin et al. (2020) showed that glial cell-derived
neurotrophic factor (GDNF) rearranged during transfection
is crucial for regulating ISC and ECs differentiation in wrap-
restraint stress mice and in vitro. GDNF treatment amplifies
Wnt signaling and increases 5-HT levels in colonic organoids in
a dose-dependent manner. This robust evidence suggests that
NGF and GDNF affect ISC differentiation toward the Wnt signal,
inducing ECs hyperplasia; thus, inhibition of this process might
help to restore intestinal homeostasis (Koch et al., 2011; Metidji
et al., 2018). Additionally, a recent study using single cell and
bulk RNA sequences showed that enteroendocrine progenitors
differentiated into two main cell trajectories, ECs and peptidergic
enteroendocrine cells, the differentiation programs of which
are differentially regulated by regulatory factor X-box binding
transcriptional factor 6 (Rfx6) transcription. Rfx6 represses LIM
homeobox transcription factor 1 alpha (Lmx1a) and TPH1,
two genes essential for 5-HT biosynthesis. In the absence of
intestinal Rfx6, the number of 5-HT-producing ECs and mucosal
5-HT content increases (Piccand et al., 2019). Indeed, Gross et al.
(2016) showed that the transcription factor Lmx1a is expressed in
ECs and is considered a novel ECs marker, which is also essential
for the production of the 5-HT biosynthetic enzyme TPH1.

In addition, the immune system is related to the ECs-5-
HT signal, indicating that the neuroendocrine axis plays a
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role in this process (Chen et al., 2020). As mentioned above,
Chen et al. (2020) revealed that IL-33-ST2 signaling selectively
promoted ECs-derived 5-HT secretion. IL-33 triggers calcium
influx for 5-HT release via the PLC-γ1-TRPA1 signaling pathway.
Their study highlighted the importance of establishing an
immune-neuroendocrine axis in calibrating rapid 5-HT release
for intestinal homeostasis. In addition, as mentioned above,
BON cells express the IL-13 receptor and produce more 5-
HT in response to IL-13 (Manocha et al., 2013). In dextran
sulfate sodium (DSS)-induced colitis in a mouse model, IL-
13−/− mice administered DSS exhibited significantly reduced
colitis severity compared to that of wild-type (WT) mice,
accompanied by downregulation of ECs number and colonic 5-
HT content. These results demonstrate that IL-13 plays a critical
role in the pathogenesis of experimental colitis, and 5-HT is
an important mediator of IL-13-driven intestinal inflammation
(Shajib et al., 2013). In another study, both severe combined
immunodeficient (SCID) mice and WT controls were infected
with the nematode Trichuris muris. After infection, the number
of ECs and the amount of 5-HT were significantly lower in
SCID mice than in WT mice. The number of ECs and the level
of 5-HT were significantly increased after reconstructing SCID
mice with CD4+ T cells from infected mice, accompanied by
an upregulation of colonic CD3+ T cells and T helper 2 (Th2)
cytokines. These results showed an important immunoendocrine
axis in the gut, where secretory products from CD4+ T cells
interact with ECs to heighten 5-HT production in the gut via
Th2-based mechanisms. Moreover, increased ECs number and 5-
HT content were found in mice treated with in vitro polarized
Th2 cells or in mice with impaired T helper (Th) 1 cytokine
production, indicating that ECs number is closely correlated with
intestinal Th1/Th2 balance (Motomura et al., 2008). In vitro
studies also revealed that the key cytokines of the Th1 response,
such as interferon-γ and interferon-β, significantly inhibit the
proliferation of ECs models, including BON and QGP-1 cells
(Detjen et al., 2002; Höpfner et al., 2004; Vitale et al., 2006). This
evidence indicates that the number of ECs might be influenced
by Th1 or Th2 cytokine-predominant environments. It appears
that Th2-related cytokines might contribute, and Th1-related
cytokines may inhibit, the development of ECs hyperplasia in the
gut. Moreover, a recent study indicated that TLR-2 plays a vital
role in mediating mucosal 5-HT production in the gut. Antibiotic
treatment reduced the number of ECs and 5-HT levels in naive
C57BL/6 mice, which was associated with TLR-2 downregulation.
TLR-2-deficient mice express lower numbers of ECs and 5-
HT levels. Besides, excretory-secretory products from T. muris
induce increased 5-HT production in BON-1 cells via TLR-2 in a
dose-dependent manner (Wang et al., 2019). The results provided
novel insights into the potential benefits of targeting TLR-2 in
various gut disorders that exhibit aberrant 5-HT signaling, such
as IBS. Together, manipulating specific immune systems can
regulate ECs function.

Mechanically, the ion channels of ECs are decisive factors
for the release of 5-HT. Strege et al. (2017) demonstrated that
Na(V)1.3 is critical for generating action potentials in ECs,
and is also important for regulating 5-HT release by these
cells. Na(v)1.3 knockdown in the lumbar 4 DRG results in the

attenuation of nerve injury-induced mechanical allodynia in a
spared nerve injury animal model (Samad et al., 2013). Besides,
single ECs function analysis revealed that Ca2+ enters ECs
upon stimulation and triggers quantal 5-HT release via L-type
Ca2+ channels. Local 5-HT levels are likely to be maintained
around the activation threshold for mucosal 5-HT receptors,
which is dependent upon stimulation and location within the
GI tract (Raghupathi et al., 2013). Moreover, in BON or
ECs isolated from human gut surgical specimens, uridine-5′-
triphosphate activates a predominant P2Y4R pathway to trigger
Ca2+ oscillations via internal Ca2+ mobilization through a
PLC/IP3/IP3R/SERCA Ca2+ (voltage-sensitive Ca2+ currents,
ICa) signaling pathway to stimulate 5-HT release (Liñán-Rico
et al., 2017). While chemical ion channels, such as Na(v)1.3,
L-type Ca2+, and ICa, play a crucial role in 5-HT release
under different conditions, the mechanical ion channel plays
a role in transferring mechanical force to 5-HT release (Chin
et al., 2012; Wang et al., 2017; Alcaino et al., 2018). Piezo2
is an important mechano-gated ion channel involved in light
touch sensitivity and inflammatory allodynia (Yang et al., 2016;
Szczot et al., 2018). In recent years, mechanical stimulation
using a rhythmic flex model induced transcription and activation
of TPH1 and vesicular monoamine transporter 1 and the
release of 5-HT in IBD human ECs and neoplastic ECs (Chin
et al., 2012). However, the underlying molecular mechanism
is unclear. Recently, Wang et al. (2017) first reported that the
mechanosensitive ion channel Piezo2 was specifically expressed
in human and murine small bowel ECs. Activation of Piezo2
by mechanical forces results in a characteristic ionic current,
the release of 5-HT, and stimulation of GI secretion. Piezo2
is critical for ECs mechanotransduction. Later, Alcaino et al.
(2018) suggested that Piezo2 was expressed in a subset of murine
enteroendocrine cells and ECs, and it was distributed near 5-HT
vesicles by super-resolution microscopy. Mechanical stimulation
induces a Piezo2-dependent increase in intracellular Ca2+ and 5-
HT release. Whereas, conditional knockout of intestinal epithelial
Piezo2 results in a significant decrease in mechanically stimulated
epithelial secretion. Furthermore, Bai et al. (2017) used post-
infectious IBS mice to show that Piezo2 was more abundant in
the colon than in the small intestine. Piezo2 expression in the
colon is significantly correlated with visceral sensitivity rather
than mucosal inflammation, indicating that Piezo2 is a candidate
biomarker for visceral hypersensitivity in IBS. Piezo2 knockdown
in the DRG attenuates visceral sensation to innocuous stimuli
in control rats and both innocuous and noxious stimuli in rats
with neonatal irritation (Yang et al., 2016). As with Piezo2,
Piezo1 plays a pivotal role in 5-HT release. Recently, the study
of Piezo1 with ECs has attracted considerable attention. Sugisawa
et al. (2020) revealed the molecular mechanisms by which
intestinal microbiota control 5-HT production. They identified
that ssRNA is a natural Piezo1 ligand, where stimulation of Piezo1
with ssRNA induces Piezo1-dependent calcium flux, TPH1
upregulation, and, thus, elevation of serum 5-HT levels. Mice that
lacked Piezo1 in the intestinal epithelium reduced 50% serum
and intestinal levels of 5-HT due to decreased TPH1 expression,
without changes in the quantities of ECs. However, mechanical
force-induced Piezo2 activation occurs in a Piezo1-dispensable
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manner (Matute et al., 2020; Sugisawa et al., 2020). This study
was the first to show that a classic mechanotransducer could
also act as an ssRNA extracellular receptor (Matute et al., 2020).
This profound result, a novel ssRNA-Piezo1-TPH1-5-HT axis,
may provide new insights into disorders of microbiota–gut–brain
interactions.

In addition, certain micronutrients also affect ECs function.
Oral zinc supplementation is considered an effective treatment
for acute diarrhea in children (Dalfa et al., 2018), and the WHO
recommends oral zinc supplementation for rotavirus (RV)-
induced diarrhea management (Gandhi et al., 2016). RV induces
ECs production of 5-HT (Hagbom et al., 2011), thus zinc might
act on ECs. Indeed, in vitro piglet small intestinal epithelium,
serosal zinc attenuates 5-HT and vasoactive intestinal peptide
(VIP)-induced secretion (Carlson et al., 2008). Additionally, a
recent study revealed that ZnT8, a zinc transporter, is expressed
in enteroendocrine cells, particularly in 5-HT positive ECs.
The lack of ZnT8 results in an elevated circulating 5-HT level
owing to enhanced TPH1 expression (Mao et al., 2019). This
suggests that ZnT8 expression in ECs plays a role in the balance
of TPH1 expression, which might be due to the inhibition
effect. Oral zinc supplementation might bind ZnT8 in ECs
and act to downregulate TPH1. However, the evidence remains
insufficient, and further studies are required. Moreover, Guo
et al. (2018) demonstrated that vitamin A supplementation
significantly reduces the mRNA expression of TPH1 and 5-HT in
children with autism. Retinoic acid (RA) is the main derivative
of vitamin A. RA targets the RA receptor (RAR) to mediate
signal transduction. RAR has three isoforms: RAR α, β, and
γ. It was confirmed using Genomatix1 that TPH1 contained a
putative binding site for RARγ in the promoter region of TPH1,
and vitamin A was considered to regulate the mRNA level of
TPH1 via RARs. In addition, vitamin D regulates 5-HT synthesis.
A large in silico and microarray-based study previously identified
putative DR3 vitamin D response elements (VDREs) upstream of
the TPH1 promoter regions (Wang et al., 2005). Vitamin D acts
on the VDRE and inhibits the transcription of TPH1 in tissues
outside the blood–brain barrier, thus decreasing the production
of 5-HT in ECs (Patrick and Ames, 2014).

EVIDENCE FOR EARLY LIFE
STRESS-INDUCED IRRITABLE BOWEL
SYNDROME

Early childhood is a critical developmental period, and ELS may
increase the predisposition to GI diseases, including IBS, in
later life (Wong et al., 2019; Jones et al., 2020; Ju et al., 2020;
Low et al., 2020). Bradford et al. (2012) investigated different
early adverse life events and their association with IBS, and
demonstrated that IBS patients had higher incidences of general
trauma, physical punishment, and emotional abuse compared
with controls. Moreover, emotional abuse was identified as the
strongest predictive factor of IBS. Furthermore, ELS is correlated
with the severity of IBS symptoms (Park et al., 2016). In addition,

1http://www.genomatix.de/

a recent study suggested that resilience, the ability to adapt
positively to stress and adversity, was lower in IBS patients
(n = 820) than in the general population (n = 1026; P < 0.001) and
was associated with more severe IBS symptoms. ELS decreases
the ability to overcome adversity in both IBS patients and the
general population (Parker et al., 2020). Together, these results
provide evidence for the potent role of ELS in the pathogenesis
of IBS. However, the molecular mechanisms remain to be
elucidated. Dysbiosis in the commensal bacterial communities,
increased intestinal permeability, irregular intestinal motility,
visceral hypersensitivity, and anxiety/depression-like behaviors
have been observed in animal models (Labus et al., 2017; Fukui
et al., 2018; Cojocariu et al., 2020; Sugiyama and Shiotani, 2020;
Lingpeng et al., 2021). Accumulating evidence indicates that ECs
play a crucial role in the pathogenesis of ELS-induced IBS (Bian
et al., 2011; Chow et al., 2019; Qin et al., 2019a; Wong et al.,
2019) as ECs bidirectionally (top-down or down-top) mediated
signaling transmission of the brain–gut–microbiota axis (Stasi
et al., 2012). The potential role of ECs in ELS-induced IBS is
summarized in Figure 5.

LINKS BETWEEN ENTEROCHROMAFFIN
CELLS, CORTICOTROPIN-RELEASING
HORMONE, AND EARLY LIFE
STRESS-INDUCED IRRITABLE BOWEL
SYNDROME

Early life (<3 years of age) represents a particularly important
developmental period for the gut microbiota (Osadchiy et al.,
2019), CNS (Codagnone et al., 2019), intestinal barriers (Selma-
Royo et al., 2020), ENS (Joly et al., 2020), and immune, endocrine,
metabolic, and other host developmental pathways (Robertson
et al., 2019). This period is of key importance, and once
disturbed, may have long-lasting effects (Codagnone et al., 2019).
Stress, in particular, can significantly influence the brain–gut–
microbiota axis at all stages of life (Cryan et al., 2019) through the
hypothalamic–pituitary–adrenal (HPA) axis (Farzi et al., 2018).
The HPA axis is the major neuroendocrine system in the body
that controls diverse body processes in response to stress and
closely interacts with the gut microbiota (Farzi et al., 2018).

Evidence has shown that ELS leads to HPA axis activation
(Wong et al., 2019). This hyperactivity is related to increased
CRH signaling and impaired glucocorticoid receptor-mediated
negative feedback (van Bodegom et al., 2017). The initiation of
HPA axis activation is CRH released from the hypothalamus (Vale
et al., 1981), which stimulates the release of adrenocorticotropic
hormone (ACTH) from the pituitary. There are two CRH
receptors (CRH-R): CRH-R1 and CRH-R2. In the brain, CRH-
R1 is highly expressed, whereas in peripheral tissues, it is
unremarkably expressed. In contrast, CRH-R2 is less expressed
in the brain and more highly expressed in peripheral tissues
(Ketchesin et al., 2017). Brain sites of CRH are known to
alter gut motility, encompassing the locus coeruleus complex,
paraventricular nucleus of the hypothalamus, and the dorsal
motor nucleus, while those modulating visceral pain are
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FIGURE 5 | Potential role of enterochromaffin cells in early life stress-induced irritable bowel syndrome. ELS chronically activates the HPA axis and increases the
levels of neuropeptides, such as CRH, CGRP, VIP, and ACTH. Furthermore, ELS disrupts intestinal homeostasis and the microbiota–gut–brain axis through various
pathways including neuroendocrine and immune activation (such as degranulation of mast cells), differentiation of ISC toward secretory lineages including ECs,
alterations in the composition of intestinal microbiota (decreased abundance of SCFAs producers, such as Bifidobacterium), and thus, changes in metabolites
(including reduced SCFAs and increased SBA). Moreover, hyperplasia of ECs and upregulation of TPH1 result in excessive 5-HT release. 5-HT acts on various 5-HT
receptors in neighboring cells and nerves, inducing visceral hypersensitivity, excessive secretion, increased motility, hyperpermeability, and the genesis of anxiety or
depression. ECs play a vital role in the pathogenesis of ELS-induced IBS. ECs, enterochromaffin cells; ELS, early life stress; HPA, hypothalamic–pituitary–adrenal;
CRH, corticotropin releasing hormone; CGRP, calcitonin gene-related peptide; VIP, vasoactive intestinal peptide; ACTH, adrenocorticotropic hormone; ISC, intestinal
stem cell; IEC, intestinal epithelial cell; SCFAs, short chain fatty acids; SBA, secondary bile acids; TPH1, tryptophan hydroxylase 1; 5-HT, serotonin; MCs, mast cells;
DC, dendritic cell; Hrh, histamine H receptor; TGR5, G protein-coupled receptor 5; FFAR, free fatty acid receptor; NGF, neurotrophic factors.

localized in the hippocampus and central amygdala. Brain CRH
actions are mediated through the autonomic nervous system
(decreased gastric vagal and increased sacral parasympathetic
and sympathetic activities) (Tache et al., 2018). Importantly,
CRH is a critical neuropeptide in the gut–brain axis and
can regulate various biological activities (Wei et al., 2020).
First, neuropeptides are components of the autonomic nervous
system and act locally at peripheral sites as neurotransmitters.
Second, neuropeptides act on central regulatory centers as
neuromodulators. Finally, neuropeptides can reach the immune
system, peripheral vessels, organs, and glands through the
circulatory system as a neurohormone and hormone (Lotti
et al., 2014). Accumulating evidence has shown that CRH
release causes bowel dysfunction through multiple pathways,
either through the HPA axis, the autonomic nervous system,
or directly on the bowel itself (Chang et al., 2014). Moreover,
CRH influences the composition of the gut microbiota (de
Punder and Pruimboom, 2015). Activation of both brain

and peripheral CRH-R1 reduces the pain threshold for
colonic distention and increases colonic motility. Furthermore,
activation of the corticotropin releasing factor receptor 1
(CRF-R1) signaling pathway has been implicated in the
development of anxiety-like behaviors (Taché et al., 2004).
Moreover, intraperitoneal injection of corticotropin releasing
factor (CRF), subcutaneous injection of lipopolysaccharide,
and repeated water avoidance stress (WAS) all lead to
visceral allodynia and increased colonic permeability, which
is CRH-R1 dependent, while activation of CRH-R2 inhibits
CRH-R1-triggered responses (Nozu et al., 2018). Together,
these results indicate that CRH acting on CRH-R1 mediates
visceral hypersensitivity, colonic permeability, and intestinal
motility, while CRH acting on CRH-R2 has the opposite effect
(Tache et al., 2018).

CRH-R1 is expressed in intestinal myenteric neurons
(Fukudo, 2007), MCs (D’Costa et al., 2019), and dendritic cells
(Lee et al., 2009), and is also expressed in ECs (Wu et al.,
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2011). Using in vitro experiments, Wu et al. (2011) revealed that
exposure of BON cells to CRH for 24 h upregulated TPH1 mRNA
levels and activated CRH-R1-dependent pathways leading to 5-
HT synthesis and release. Furthermore, CRF receptor antagonists
have been proven to be useful in attenuating intestinal ECs
hyperplasia (Qin et al., 2019a). These results suggest that ECs
may be involved in ELS-induced IBS. In a recent study using
an established maternal separation (MS) animal model and
intestinal organoid culture, Wong et al. (2019) demonstrated that
ELS led to increased CRF and induced elevated ISC expansion
and their differentiation toward secretory lineages, including
ECs and Paneth cells, leading to ECs hyperplasia, increased 5-
HT production, visceral hyperalgesia, and intestinal motility.
In addition, results from an experimental study suggested that
ELS induced ECs hyperplasia in the gut of adult animals (Bian
et al., 2011). TPH1 expression was markedly upregulated in
the MS animal model and was associated with visceral pain
(Distrutti et al., 2013). The increased synthesis of 5-HT by ECs
or disrupted 5-HT uptake resulted in increased bioavailability
of 5-HT, which is involved in the generation of IBS symptoms,
such as intestinal motility alteration, increased secretion, visceral
hypersensitivity, and increased permeability (Qin et al., 2019a,b).
Additionally, higher 5-HT content, higher TPH1 expression,
and lower SERT mRNA were detected in both children and
adults with IBS, compared with that of the controls (Faure
et al., 2010; Yu et al., 2016; Fu R. et al., 2019). Furthermore,
TPH1 inhibition and colonic 5-HT content was significantly
reduced, and visceral hyperalgesia was alleviated (Shi et al., 2018).
Together, these results indicate that ELS-induced CRH elevation
and ECs increase. CRH and ECs may play an important role in
ELS-induced IBS (Figure 5).

LINKS BETWEEN ENTEROCHROMAFFIN
CELLS, MAST CELLS, AND EARLY LIFE
STRESS-INDUCED IRRITABLE BOWEL
SYNDROME

The essential role of MCs in the occurrence and development
of IBS has been well recognized (Xu et al., 2017; Miura et al.,
2020). In both IBS patients and experimental animals, MCs were
reported to be significantly increased in the intestine (Bednarska
et al., 2017; Xu et al., 2017; McClain et al., 2020; Miura et al.,
2020). The increased MCs were shown to be associated with
various IBS phenotypes, including damage to the intestinal
barrier (Zhang et al., 2016), dysfunction of intestinal motility
(Camilleri et al., 2017), low-grade inflammation (Uranga et al.,
2020), visceral hypersensitivities (Kamphuis et al., 2020), and
translocations of the gut microbiota (Bednarska et al., 2017).
Moreover, the number of MCs was significantly related to
the severity of symptoms in both IBS patients and the IBS
experimental animal model (Akbar et al., 2008; Kamphuis et al.,
2020). The symptoms observed in IBS patients and animal
models were attributed to the fact that MCs contain multiple
mediators of paracrine signaling, including histamine, serine
proteases, chymase, tryptase, prostaglandin, and 5-HT (Galli

et al., 2020; Wood, 2020). These diverse mediators are released
from MCs through degranulation, which can be triggered
by multiple neuropeptides, neurotransmitters, hormones, and
bacterial secretions, such as SP, VIP, calcitonin gene-related
peptide (CGRP), CRH, 5-HT, and quorum-sensing molecules
(QSMs) (Wang et al., 2013; D’Costa et al., 2019; Guilarte et al.,
2020; Wei et al., 2020; Wood, 2020). Moreover, increased SP,
VIP, CGRP, CRH, and 5-HT were observed in IBS patients and
experimental IBS animals (Keszthelyi et al., 2013; Yu et al., 2016;
Ceuleers et al., 2018; Fu R. et al., 2019; Guilarte et al., 2020).

MCs are immune cells with a widespread distribution,
including the digestive tracts surrounding blood vessels, neurons,
or nerve fibers, primarily in the intestinal lamina propria (Uranga
et al., 2020; Wood, 2020). As previously mentioned, ECs and
MCs are neighbors, as ECs are located on the epithelial layer
(Mawe and Hoffman, 2013), and MCs are mainly located in
the lamina propria (Zhang et al., 2016; Uranga et al., 2020).
ECs express histamine receptors 1 and 3 (Pfanzagl et al.,
2019), while MCs express 5-HT1AR (Schwörer et al., 1992),
indicating that a possible connection exists between these two
cells. A clinical study showed that ECs number and 5-HT content
were significantly increased in IBS patients, particularly in IBS-
D, compared to that of the control. 5-HT content was correlated
with MCs counts and the severity of abdominal pain (Martínez
et al., 2013). The results indicate that ECs contribute to the
development of abdominal pain in IBS, likely through MCs
activation (Lobo et al., 2017). A systematic review revealed MCs
and ECs both increased in IBS patients, despite the limited
intrinsic heterogeneity of IBS and a lack of standardization in
study design (Martin-Viñas and Quigley, 2016). However, Lee
et al. (2008) found significantly increased MCs in irritable bowel
syndrome-diarrhoea (IBS-D) without ECs number alterations in
non-post-infectious IBS patients, which is likely owing to the
small sample size. Together, the evidence supports the viewpoint
that both MCs and ECs numbers are associated with IBS, as well
as the severity of IBS symptoms.

Mechanistically, ECs and MCs might have a synergistic effect
on the pathogenesis of ELS-induced IBS. ELS leads to the
release of CRH, alone or together with other peptides such
as SP, which then stimulate MCs to secrete proinflammatory
molecules (D’Costa et al., 2019). Some of these molecules may
cross-talk with ECs. First, histamine acts on histamine receptor-
mediated visceral hypersensitivity (Balemans et al., 2019). ECs
have histamine receptors (Pfanzagl et al., 2019), and ELS
induces ECs hyperplasia, leading to visceral hypersensitivity
(Wong et al., 2019). Second, mediators released from the
intestinal mucosa of IBS patients, such as histamine, 5-HT,
and proteases, can activate submucosal neurons. However, this
activation is inhibited by histamine receptor antagonists, 5-
HT3R antagonists, and protease inhibition (Buhner et al., 2009).
A recent study also revealed that colon biopsies from patients
with IBS-D had increased levels of prostaglandin E2. Intracolonic
infusions of rats with IBS-D biopsy supernatants increased
visceral hypersensitivity, which was associated with a significant
increase in prostaglandin E2, histamine, and tryptase in the
colonic mucosa (Grabauskas et al., 2020). Third, patients with
IBS had increased bacterial translocation compared with that
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of the controls, indicating increased intestinal permeability. The
mechanisms of increased translocation include MCs tryptase
and VIP (Bednarska et al., 2017). Finally, 5-HT acted as an
interkingdom signaling molecule via quorum sensing, stimulated
the production of bacterial virulence factors, and increased
biofilm formation in vitro and in vivo in a novel mouse infection
model (Knecht et al., 2016). Meanwhile, MCs have receptors for
gram-positive QSMs, and trigger degranulation upon activation
by QSMs, which inhibits bacterial growth and prevents biofilm
formation (Pundir et al., 2019). Therefore, ECs and MCs may play
a crucial role in the pathogenesis of ELS-induced IBS (Figure 5).

LINKS BETWEEN ENTEROCHROMAFFIN
CELLS, NERVE GROWTH FACTOR, AND
EARLY LIFE STRESS-INDUCED
IRRITABLE BOWEL SYNDROME

The critical role of NGF in the pathogenesis of IBS is well
established (Coelho et al., 2019). In colonic biopsies obtained
from adult and pediatric patients with IBS, NGF levels were
found to be upregulated (Willot et al., 2012; Xu et al., 2017).
Another study suggested that NGF is closely related to IBS
with constipation (IBS-C) (Lee et al., 2020). Furthermore, NGF
expression is positively correlated with disease severity and
anxiety, and is negatively associated with the threshold of visceral
sensitivity (Xu et al., 2017). Furthermore, increased NGF levels
have also been observed in rodents exposed to ELS (Chow et al.,
2019; Wong et al., 2019). Moreover, MS promotes hyperplasia
in both MCs and synaptogenesis in rats, whereas treatment of
pups with anti-NGF antibodies abolishes this effect (Barreau
et al., 2008). In further studies on MS of rodents, Wong et al.
(2019) revealed that NGF elevation directly targeted ISC with
trans-activating Wnt/β-catenin signaling and promoted their
expansion and differentiation to intestinal ECs hyperplasia,
resulting in visceral hypersensitivity. These important findings
indicate that, in the initiation and development of IBS,
proliferation and differentiation of ISC may be disrupted, and
ECs hyperplasia may be induced in newborn animals who
experience ELS. However, there is a lack of clinical evidence
indicating that patients with IBS who experience ELS present high
levels of NGF and ECs hyperplasia. One study revealed that nerve
fiber outgrowth and staining density of NGF were increased
in the intestinal mucosa of patients with IBS (Dothel et al.,
2015), however, considerable advancement is required for its
clinical application. Therefore, the effects of ECs and NGF on the
pathogenesis of ELS-induced IBS require further clinical studies.

LINKS BETWEEN ENTEROCHROMAFFIN
CELLS, BILE ACIDS, AND EARLY LIFE
STRESS-INDUCED IRRITABLE BOWEL
SYNDROME

Bile acids are known to play a pivotal role in the pathological
development of IBS, particularly IBS-D (Aziz et al., 2015;

Zhao et al., 2020). In addition, bile acid level is associated with
the severity of IBS symptoms. IBS patients with moderate or
severe bile acid diarrhea are significantly less physically active
than those with mild bile acid diarrhea (Aziz et al., 2015). In
addition, increased colonic bile acid exposure results in more
frequent bowel movements and accelerated colonic transit time
in patients with IBS compared to that in controls (Bajor et al.,
2015). Furthermore, in rats, deoxycholic acid (DCA) directly
excited spinal afferents and, to a lesser extent, indirectly via
mucosal 5-HT release, while DCA increased vagal afferent firing
in the proximal colon via 5-HT release. Intraluminal DCA caused
an increase in ECs density, which was greater in the proximal
colon than in the distal colon. These results suggest that ECs
partly mediate signaling from DCA to spinal afferents, whereas
they mediate signaling from DCA to the vagal afferent (Yu et al.,
2019). One of the potential mechanisms is that DCA, a SBA,
can act on TGR5 of ECs and promote 5-HT synthesis (Lund
et al., 2018). TGR5, a membrane receptor of bile acid receptors,
is widely expressed throughout the small intestine and colon,
and participates in the modulation of intestinal functions (de
Aguiar Vallim et al., 2013; Martinot et al., 2017; Wei et al.,
2021). One study detected TGR5 expression in ECs in the colon,
however, not in the small intestine (Lund et al., 2018). Colonic
mucosal TGR5 protein expression is correlated with the severity
of symptoms in IBS-D patients (Wei et al., 2021). These results
indicate that TGR5-ECs-5-HT signaling may play a role in the
pathophysiology of IBS.

In addition, evidence from the animal experiments confirmed
that HFD rats exhibited significantly increased levels of
cholic acid and DCA in intestinal contents accompanied by
upregulation of TPH1 protein expression compared with that
of the control. Moreover, GI transit and small intestinal 5-HT
concentrations were higher in HFD-fed rats than in control
rats. When the rats received fecal microbiota transplantation
treatment from the control, the GI transit, small intestinal
5-HT concentration, and TPH1 expression were decreased,
accompanied by decreased cholic acid and DCA (Sun et al.,
2018). Moreover, ELS-induced increased intestinal permeability,
visceral sensitivity, and bile acid malabsorption were detected.
Bile acid malabsorption was reported to be due to alteration of
the intestinal microbiota (Riba et al., 2018). However, neither
ECs nor TPH1 expression was detected. Considering previous
reports, it could be postulated that ELS leads to ECs hyperplasia
(Wong et al., 2019) and bile acid malabsorption (Riba et al.,
2018). Therefore, ECs and bile acids may be involved in the
pathophysiology of ELS-induced IBS (Figure 5). Additional
studies are required to investigate this further.

LINKS BETWEEN ENTEROCHROMAFFIN
CELLS, SHORT-CHAIN FATTY ACIDS,
AND EARLY LIFE STRESS-INDUCED
IRRITABLE BOWEL SYNDROME

SCFAs are produced by gut microbial fermentation of indigestible
dietary fiber and serve as energy sources and natural ligands
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for a group of orphan GPCRs, which play an important
role in metabolism and immunity (Tian et al., 2020). An
increasing number of studies have shown that SCFAs, primarily
acetate, propionate, and butyrate, might play a role in the
pathophysiology of IBS. Reduced SCFA levels have been reported
in IBS-C patients compared to that in unsubtyped IBS and IBS-D
patients (Gargari et al., 2018). Recently, a systematic review and
meta-analysis showed that propionate and butyrate levels were
reduced in IBS-C patients, whereas butyrate was increased in IBS-
D patients compared to that in healthy controls (Sun et al., 2019).
Furthermore, both clinical and animal experiments suggested
that, compared with their corresponding controls, IBS-D patients
and MS rats showed a higher abundance of SCFA-producing
Fusobacterium. Moreover, the abundance of Fusobacterium was
positively correlated with the degree of visceral hypersensitivity
(Gu et al., 2020). This indicates that the elevation of SCFAs
is associated with visceral hypersensitivity. Butyrate is known
to be the most important metabolite and functions as a major
energy source for colonocytes by directly affecting the growth
and differentiation of colonocytes. Furthermore, butyrate exerts
various physiological effects, such as enhancement of intestinal
barrier function and mucosal immunity (Fu X. et al., 2019).
Results from the WAS model suggested that butyrate had a
stimulating effect on longitudinal muscle at low concentrations
(1 mM to 10 mM), while exhibiting an inhibitory effect at
high concentrations (30 mM) (Yuan et al., 2020). Moreover,
Akiba et al. (2017) suggested that luminal FFAR2 agonists
stimulate ECs to release 5-HT, which enhances mucosal defenses
in the rat duodenum. However, excessive 5-HT release with
high luminal concentrations of SCFAs injures the mucosa by
decreasing mucosal blood flow, which is likely implicated in the
5-HT-related mechanism. Small intestinal bacterial overgrowth
(SIBO) has been hypothesized to generate excess SCFAs in the
foregut and promote ECs to release unconscionable 5-HT (Akiba
et al., 2017), and has been recognized as a hallmark of IBS
(Shah et al., 2020). Notably, as previously described, ECs express
SCFA receptors, including FFAR2 and FFAR3 (Nøhr et al.,
2013; Pfanzagl et al., 2019). SCFAs upregulate TPH1 expression,
thereby promoting ECs to produce 5-HT by acting on their
SCFA receptors (Reigstad et al., 2015). Moreover, treatment with
rifaximin, an antibiotic that is not absorbed systemically and is
currently approved for the treatment of IBS (Brenner and Sayuk,
2020), improves SIBO and ameliorates abdominal symptoms
of IBS (Li et al., 2020). Taken together, these results indicate
that a normal concentration of SCFAs, particularly butyrate, is
beneficial to intestinal barrier function. However, high SCFA
concentrations may be harmful. Therefore, the increased butyrate
observed in IBS-D patients (Gargari et al., 2018; Sun et al.,
2019) may affect the intestinal barrier, as both increased intestinal
permeability and visceral hypersensitivity are features of IBS.

Conversely, SCFAs were reduced in IBS-C patients, including
propionate and butyrate (Gargari et al., 2018; Sun et al., 2019),
which indicated that low 5-HT levels were produced by ECs.
Indeed, IBS-C patients presented low 5-HT levels in the gut
and were thus treated with 5-HT3R and 5-HT4R agonists
(Binienda et al., 2018). In parallel, certain IBS-C patients also
showed increased intestinal permeability and visceral sensitivity

(Annaházi et al., 2013). It has been documented that reduced
SCFAs levels, particularly butyrate, may have adverse effects
on epithelial barrier integrity and energy homeostasis (Morris
et al., 2017). 5-HT is involved in the regulation of mucosal
homeostasis by promoting epithelial growth (Greig et al., 2016).
This might explain why IBS-C patients with reduced SCFAs
also manifested increased permeability and visceral sensitivity,
similar to IBS-D patients who had a relatively higher SCFAs level.
Therefore, either weakened or enhanced SCFAs-ECs signaling
may be implicated in the pathogenesis of IBS. This viewpoint
was supported by animal experiments. Rats that underwent
chronic WAS caused visceral hypersensitivity and decreased
occludin expression in the colon, accompanied by reduced
butyrate, as well as reduced abundance of several butyrate-
producing bacteria, such as Lachnospiraceae. Supplementation of
Roseburia, a species belonging to Lachnospiraceae, to WAS rats
significantly increased cecal butyrate content, alleviated visceral
hypersensitivity, and prevented a decrease in occludin expression
(Zhang et al., 2019). Similarly, another animal experiment
indicated that WAS induced GI hypermotility, and fecal SCFAs
were decreased significantly (Yuan et al., 2020). In addition, the
level of 5-HT in colonic tissue also decreased when animals were
exposed to WAS (Shi et al., 2015). These results indicate that
chronic WAS leads to visceral hypersensitivity and increased
intestinal permeability, which is associated with reduced SCFAs
(particularly butyrate) and 5-HT.

Moreover, butyric acid levels were significantly lower in
the MS group than in the non-separation group (Egerton
et al., 2020). In addition, Egerton et al. (2020) found
that MS animals had significantly lower ratios of SCFA
producers, including Caldicoprobacteraceae, Streptococcaceae,
Rothia, Lachnospiraceae_NC2004_group, and Ruminococcus_2.
Additionally, animal exposure to prolonged restraint significantly
reduced SCFAs, and Lactobacillus in the gut was significantly
reduced, which was directly correlated with propionic acid (Maltz
et al., 2018). However, these studies did not consider ECs or
5-HT. As previously mentioned, MS induces ECs hyperplasia
and a high 5-HT level (Wong et al., 2019). This resulted in
conflicting results. Reduced SCFAs and an increased number of
ECs coexist in maternally separated animals, however, causality
is undetermined. If reduced SCFAs is the cause, then it is
difficult to understand why ECs are hyperplastic. SCFAs have
been shown to upregulate TPH1 expression but do not change the
number of ECs (Reigstad et al., 2015). Furthermore, a previous
study showed reduced SCFAs with reduced 5-HT (Shi et al.,
2015). Consequently, the cause tends to the latter, that is to
say, the increased number of ECs caused reduced SCFAs or
ECs hyperplasia that appeared first and then reduced SCFAs.
However, the underlying mechanism is unclear. The possible
cause is that intraluminal excessive 5-HT released from ECs
may inhibit the abundance of SCFA-producing microbiota, likely
in a manner of negative feedback. Recently, two studies have
suggested the effects of 5-HT on intestinal bacteria. One study
conducted by Kumar et al. (2020) revealed that 5-HT modulated
the virulence of enteric pathogens, and another study by Fung
et al. (2019) showed that 5-HT modulated bacterial colonization
in the gut. The significant implication of these two studies is
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that they elucidate the mechanism of action of 5-HT on bacteria.
Accordingly, it is interesting to investigate the role of the ECs-5-
HT-SCFAs signal in ELS-induced IBS (Figure 5).

FUTURE PERSPECTIVES

ECs sense various stimuli, such as nutritional, chemical, odorous,
mechanical, hypoxic, and bacterial metabolites, including SCFAs
and SBA, indicating the important role of ECs in maintaining
intestinal homeostasis. Simultaneously, because of the peculiarity
of their location in the gut, ECs can transmit luminal signals to
neighboring cells and neurons, and even to the CNS.

Despite considerable efforts having been made, the
pathogenesis of IBS remains unclear. However, an emerging
number of studies have shown the crucial role of ECs in the
pathogenesis of ELS-induced IBS. IBS is a disorder of dysfunction
of the brain–gut–microbiota, while ECs link microbiota,
enteroendocrine cells, intestinal epithelial cells, enteric immune
cells, the ENS, and the CNS. Therefore, either weakened or
enhanced function of ECs may affect the brain–gut–microbiota
axis, and thus play an important role in the pathogenesis of
IBS. ECs-5-HT dysfunction is associated with IBS symptoms,
including increased intestinal permeability, secretion, intestinal
mobility, visceral hypersensitivity, low-grade inflammation, and
altered intestinal microbiota. Furthermore, ECs have a close
relationship with CRF, NGF, MCs, SCFAs, and bile acids, which
are involved in the pathogenesis of IBS.

By exploring unclear mechanisms and undiscovered actions
of ECs in the brain–gut–microbiota axis in the pathogenesis
of ELS-induced IBS, ECs may provide new insights into the
potential therapeutic targets and diagnostic markers in the
treatment and management of IBS. Manipulating ECs and

maintaining the ECs-5-HT signaling balance may be helpful in
the prevention and treatment of IBS, particularly in those who
had previously suffered ELS.
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