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ABSTRACT 
 

Background: Hepatocellular carcinoma (HCC) is characterized by rapid progression, high recurrence rate and poor 
prognosis. Early prediction for the prognosis and immunotherapy efficacy is of great significance to improve the 
survival of HCC patients. However, there is still no reliable predictor at present. This study is aimed to explore the 
role of centromere protein L (CENPL) in predicting prognosis and its association with immune infiltration in HCC. 
Methods: The expression of CENPL was identified through analyzing the Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) data. The association between CENPL expression and clinicopathological features 
was investigated by the Wilcoxon signed-rank test or Kruskal Wallis test and logistic regression. The role of 
CENPL in prognosis was examined via Kaplan-Meier method and Log-rank test as well as univariate and 
multivariate Cox regression analysis. Besides, in TIMER and GEPIA database, we investigated the correlation 
between CENPL level and immunocyte and immunocyte markers, and the prognostic-related methylation sites 
in CENPL were identified by MethSurv. 
Results: CENPL had a high expression in HCC samples. Increased CENPL was prominently associated with 
unfavorable survival, and maybe an independent prognostic factor of worse overall survival (OS), disease-specific 
survival (DSS), disease-free interval (DFI), progression-free interval (PFI). Additionally, CENPL expression was 
significantly correlated with immune cell infiltration and some markers. CENPL also contained a methylation site 
that was notably related to poor prognosis. 
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INTRODUCTION 
 

Primary liver cancer is a rapidly developing and 

aggressive malignant tumor with high incidence rate 

and short survival time. According to the statistics of 

the International Agency for Research on Cancer on 

global cancer incidence and mortality in 2020, primary 

liver cancer is the sixth most commonly diagnosed 

cancer and the third leading cause of cancer death 

worldwide in 2020, with approximately 906,000 new 

cases and 830,000 deaths and it ranks the second in the 

mortality rate of male cancer [1]. Hepatocellular 

carcinoma (HCC) is the main type of primary liver 

cancer [2]. Although early liver cancer can be cured by 

surgery or liver transplantation, more than 80% of 

patients have no chance of surgery. Even with 

successful surgical excision or liver transplantation, the 

postoperative recurrence is still common and elusive. 

Especially, early recurrence and metastasis are often 

difficult to be detected, so the 5-year survival rate after 

surgical resection and liver transplantation are only 36–

70% and 60–70%, respectively [3]. The majority of 

patients are found in the late stage or after metastasis, 

while the treatment in the late stage is limited and the 

therapeutic effect is poor. With the clinical application 

of immune checkpoint inhibitors (ICIs), new dawn has 

been brought to tumor patients, but only a few patients 

have experienced clinical benefits [4]. Therefore, early 

prediction for the occurrence and progress as well as the 

immunotherapy efficacy is of great significance to 

improve the prognosis of HCC patients and avoid 

unnecessary drug toxicity. However, to date, there has 

been no robust predictor for HCC. 

 

Centromere protein L (CENPL) is a member of the 

centromere protein (CENP) family, which is necessary 

for normal cell division (mitosis and meiosis) [5]. We 

all know that centromeres are specialized DNA 

sequences that connect a pair of sister chromatids, and 

are mainly regarded as loci that guide chromosomal 

behavior. The kinetochore is a cell structure attached to 

the centromere. During mitosis, the two sister 

chromatids are drawn to the poles of the cell through the 

spindle filaments (stellar rays of the spindle) attached to 

the kinetochore. If the centromere or kinetochore is 

abnormal, the chromosomes will be randomly allocated 

into the daughter cells during cell division, and the 

chromosome number will change. The centromere is 
composed of more than 15 centromere-specific proteins 

binding together, including the CENP family [5]. In 

addition, the CENP family is also the basis of 

kinetochore assembly and function, and they determine 

the correct separation of chromosomes [5, 6]. 

Otherwise, it will lead to abnormal chromosome 

number and induce tumorigenesis. Studies have shown 

that most cancer cells are aneuploidy [7, 8]. CENPL can 

be combined with CENPN to identify CENPA 

nucleosomes, and it plays a vital role in the process of 

recruiting other centromere components to assemble 

into centromeres [9, 10]. Previous researches have 

reported the role of CENPA [11, 12], CENPE [13], 

CENPF [14] in HCC, however, there is no research on 

the role of CENPL in HCC and other cancers. Based on 

the Cancer Genome Atlas (TCGA) and Gene 

Expression Omnibus (GEO) databases, we analyzed the 

expression of CENPL in HCC, and explored the 

possible pathways by which abnormally expressed 

CENPL was involved in the occurrence and progression 

of HCC. Moreover, we also explored the relationship 

between CENPL expression and immune cell 

infiltration, and investigated the abnormal methylation 

sites of CENPL. 

 

MATERIALS AND METHODS 
 

Gene expression profiles and clinical information 

 

Using TCGA database (https://portal.gdc.cancer.gov/ 

repository), we obtained the gene expression data (424 

cases, Workflow Type: HTSeq-FPKM) and 

corresponding clinical information. Samples with 

deficient or unclear information on important 

clinicopathological characteristics were excluded. In all, 

374 HCC samples and 50 adjacent normal samples were 

brought into our research. Patient’s clinical information 

contained age, gender, family history, clinical stage, 

TNM stage, AFP, new tumor event, residual tumor, 

vascular invasion, postoperative ablation embolization, 

tumor status, histologic grade, Child-Pugh and risk factor 

(viral hepatitis and/or alcohol consumption). In addition, 

we used gene expression profiles of GSE121248 and 

GSE54236, which were downloaded from the GEO 

database, to confirm the CENPL expression in HCC. 

Moreover, we validated the protein level of CENPL 

through obtaining the corresponding 

immunohistochemical (IHC) images in Human Protein 

Atlas (HPA) database (http://www.proteinatlas.org/). 

HPA is an open access knowledge repository that 

integrates the work of many laboratories and technology 
platforms around the world to explore and annotate more 

than 20,000 human genes in detail at the protein level 

[15, 16]. Image-Pro Plus software (version 6.0; Media 

Conclusions: Elevated CENPL may be a promising prognostic marker and associate with immune infiltration 
in HCC. 

https://portal.gdc.cancer.gov/repository
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Cybernetics, Inc.) was applied to detected the mean 

integrated optical density (IOD) value of IHC images. 

The IOD value, representing the protein level of CENPL, 

was statistically analyzed by non-paired T-test in the 

GraphPad Prism® version 8.0 software. P < 0.05 

indicates statistical significance. 

 

Gene Set Enrichment Analysis (GSEA) 

 

A computational method called Gene Set Enrichment 

Analysis (GSEA) can be used to decide whether an 

a priori defined set of genes has statistical significance, 

concordant differences between two biological states 

[17]. The level of the gene was recognized as a 

phenotype label. The number of gene set permutations 

was 1,000 times for each analysis. Biological pathways 

with P < 0.05 and false discovery rate (FDR) <0.05 

were considered to be significantly enriched. 

 

Kaplan-Meier plotter analysis 

 

The Kaplan-Meier plotter [18] (http://www.kmplot.com/ 

analysis/index.php?p=background) was applied to analyze 

the correlation between CENPL expression and survival 

outcome in lung cancer, ovarian cancer, breast cancer and 

gastric cancer. Log-rank P-values < 0.05 represents statistical 

significance. 

 

Co-expression, GO and KEGG enrichment analyses 

 

Coexpedia (https://www.coexpedia.org/index.php) is a 

unique network tool based on the human and mouse 

gene chip data in the GEO database. It can analyze the 

functional, biological, and medical correlations between 

genes through statistical analysis, and then construct a 

co-expression network [19]. It was used to find the co-

expressed genes of CENPL. Further, the co-expressed 

genes were utilized for Gene Ontology (GO) and the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment analysis in the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) 

database (version 6.8; https://david.ncifcrf.gov/) [20]. 

The annotation and functional analyses of GO consist of 

biological process (BP), cellular component (CC) and 

molecular function (MF). False discovery rate (FDR) < 

0.05 was set as the enrichment cut-off value. 

 

Immunocyte infiltration 

 

Tumor Immune Estimation Resource (TIMER) is an 

online network platform for comprehensive analysis 

of the immunocyte infiltration abundance 

(http://timer.cistrome.org/). It can predict the 
immunocyte infiltration levels in over 10000 tumors 

from 32 tumor types, and analyze the associations 

between the immunocyte infiltration abundance and 

gene expression, survival time, and other 

clinicopathological factors [21]. We searched the 

expression of CENPL in various cancers and uncovered 

the correlation between CENPL expression and six 

main immune cell types as well as their markers in 

TIMER. Furthermore, we also applied TIMER’s 

multivariate Cox analysis to explore the effect of 

immune cell infiltration and CNEPL expression on 

survival outcome. 

 

GEIPA analysis 

 

Gene Expression Profiling Interactive Analysis 

(GEPIA, http://gepia.cancer-pku.cn/index.html) is a 

network tool based on TCGA and GTEx databases. It 

provides customizable functions such as tumor/normal 

differential expression analysis, profiling according to 

cancer types or pathological stages, patient survival 

analysis, similar gene detection, correlation analysis and 

dimensionality reduction analysis [22]. GEPIA was 

employed to validate the transcriptional level of CENPL 

in HCC and other cancers, and to demonstrate the 

relationship between CENPL expression and the major 

markers of immune cells. 

 

DNA methylation 

 

MethSurv (https://github.com/vijayachitrabio/MethSurv) 

is a web tool for univariate and multivariate survival 

analysis based on DNA methylation data from 25 

different cancer types and 7,358 patients in the TCGA 

database [23]. Using the MethSurv, CENPL DNA 

methylation sites related to the survival was disclosed. 

 

Statistical analysis 

 

The expression differences of CENPL in HCC samples 

and normal samples, HCC samples and adjacent samples 

were analyzed by Wilcoxon rank-sum tests and Wilcoxon 

signed-rank tests, respectively. The Wilcoxon signed-

rank test or Kruskal Wallis test and logistic regression 

were used to investigate the relationship between CENPL 

expression and clinicopathological factors. The role of 

CENPL in survival was examined via Kaplan-Meier 

method and Log-rank test as well as univariate and 

multivariate Cox regression analysis. All statistical 

analyses were conducted on R (version 3.6.1, 2019-07-

05, R Foundation, Vienna, Austria), P < 0.05 was set as 

the statistical threshold. The median expression value of 

CENPL was regarded as the cut-off value. 

 

Ethics approval and consent to participate 

 
No ethics approval was required for this work. All 

utilized public data sets were generated by others who 

obtained ethical approval. 

http://www.kmplot.com/analysis/index.php?p=background
http://www.kmplot.com/analysis/index.php?p=background
https://www.coexpedia.org/index.php
https://david.ncifcrf.gov/
(http:/cistrome.org/TIMER/
http://gepia.cancer-pku.cn/index.html
https://github.com/vijayachitrabio/MethSurv
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Availability of data and materials 

 

The datasets generated and/or analyzed during the 

current study are available in the GSE54236 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE54236), and GSE121248 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE121248) from the Gene Expression Omnibus 

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). 

 

RESULTS 
 

Clinicopathological features of patients 

 

As showed in Table 1, the clinical information of 374 

HCC patients was extracted from the TCGA database in 

August 2020. After excluding the samples with missing 

or unclear clinicopathological features, finally, there 

were 121 females and 250 males. Only 9% (n = 34) 

patients were under 40 years old and 35.0% (n = 112) 

patients had HCC family history. Besides, most patients 

(65.8%, n = 231) had risk factors, such as alcohol 

consumption and/or viral hepatitis. The histologic grade 

included 232 (63.4%) cases in G1-2 and 134 (36.6%) 

cases in G3-4. The clinical stage was composed of 

74.1% (n = 257) cases in stage I-II and 25.9% (n = 90) 

cases in stage III-IV. There were 275 of 368 (74.7%) 

patients in T1-2 and 93 of 368 (25.3%) patients in T3-4. 

Only 1.6% (4 of 256), 1.5% (4 of 270), and 34.6% (109 

of 315) cases were found to have lymph node 

metastasis, distant metastasis, and vascular invasion, 

respectively. The distribution of Child-Pugh involved 

90.8% Child-Pugh A patients (n = 217) and 9.2% Child-

Pugh B-C patients (n = 22). 52.9% (n = 147) patients 

were in AFP < 20, 23.7% (n = 66) in 20 ≤ AFP < 400, 

and 23.4% (n = 65) in AFP ≥ 400. 97.7% (338 of 346) 

and 91.9% (319 of 347) patients did not undergone 

radiation therapy and postoperative chemotherapy, 

respectively. After operation, there were 5.3% (n = 18) 

patients with residual tumor and 48.3% (n = 169) 

patients with new tumor event. Until we extracted the 

data, a total of 57.1% (n = 201) patients were in a 

tumor-free state. 

 

The expression of CENPL in HCC and other cancers 

 

In our study, CENPL expression was compared between 

374 HCC samples and 50 adjacent normal samples. We 

found that the expression of CENPL was significantly 

elevated in HCC (Figure 1A, 1B). This result was 

confirmed in GSE121248 and GSE54236 datasets 

(Figure 1C, 1D). Further, the TIMER and GEPIA 

analysis showed that the transcriptional levels of 

CENPL in various cancer types, such as HCC, lung 

cancer, pancreatic cancer, ovarian cancer, breast cancer, 

gallbladder cancer, cervical cancer, esophageal cancer, 

glioblastoma multiforme Tumor, bladder urothelial 

carcinoma, were significantly higher than that in normal 

tissues (Supplementary Figures 1 and 2). Moreover, we 

found that the protein level of CENPL was also 

significantly increased in HCC based on the HPA 

database (Figure 1E–1G). These results suggested that 

high mRNA and protein levels of CENPL in HCC were 

consistent in different databases. 

 

Association between CENPL and clinicopathological 

factors 

 

As we can see in Figure 2A–2I, up-regulated CENPL 

was distributed in patients with family history (Yes vs. 

No, p = 0.011), vascular invasion (No vs. Yes, p = 

0.032), new tumor event (p = 0.033), risk factor (R1 vs. 

R2 vs. R3 vs. R4, p = 0.043), with tumor (p = 0.006), 

high AFP (AFP < 20 vs. 20 ≤ AFP < 400 vs. AFP ≥ 

400, p = 2.655e−08) as well as unfavorable histologic 

grade (G1-2 vs. G3-4, p = 4.234e−10), clinical stage 

(Stage I−II vs. Stage III−IV, p = 0.008) and topography 

(T) stage (T1-2 vs. T3-4, p = 0.005). Similar but more 

specific results were obtained by logistic regression 

analysis (Table 2). 

 

The prognostic value of enhanced CENPL 

 

Figure 3 unveiled that enhanced CENPL was 

significantly related to poor overall survival (OS) (p 

= 3.995e−05), disease-specific survival (DSS) (p = 

3.423e−05), disease-free interval (DFI) (p = 0.012), 

and progression-free interval (PFI) (p = 7.493e−04). 

Moreover, this similar phenomenon occurred in other 

cancers, such as OS, post progression survival (PPS), 

first progression (FP) in lung cancer; OS, PPS, 

progression-free survival (PFS) in ovarian cancer; 

OS, relapse-free survival (RFS), distance metastasis 

free survival (DMFS) in breast cancer 

(Supplementary Figure 3). Furthermore, univariate 

and multivariate Cox regression analysis found that 

elevated CENPL can independently predict worse OS 

(HR = 1.7, 95% CI [1.2–2.6], p = 0.008), DSS (HR = 

2.2, 95% CI [1.4–3.6], p = 0.001), DFI (HR = 1.6, 

95% CI [1.1–2.3], p = 0.006), and PFI (HR = 1.7, 

95% CI [1.2–2.3], p = 0.002) in HCC (Table 3, 

Figure 4). 

 

Pathways related to CENPL in HCC 

 

GSEA unraveled that spliceosome, nucleotide excision 

repair, DNA replication, cell cycle, homologous 

recombination, ubiquitin mediated proteolysis, 

mismatch repair, p53 signaling pathway, oocyte meiosis 
and pyrimidine metabolism were significantly enriched 

in the high CENPL expression phenotype (Table 4; 

Figure 5A), indicating that elevated CENPL might 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54236
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54236
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121248
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121248
https://www.ncbi.nlm.nih.gov/geo/
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Table 1. HCC patient characteristics based on TCGA. 

Clinical characteristics  Total % 

Age at diagnosis (years)  >40 336 91.0 
 ≤40 34 9.0 

Gender male 250 67.6 
 female 121 32.4 

Family history Yes 112 35.0 
 No 208 65.0 

Histologic grade G1-G2 232 63.4 
 G3-G4 134 36.6 

Clinical stage I-II 257 74.1 
 III-IV 90 25.9 

T T1-T2 275 74.7 
 T3-T4 93 25.3 

N N0 252 98.4 
 N1 4 1.6 

M M0 266 98.5 
 M1 4 1.5 

Residual tumor R0 324 94.7 
 R1 18 5.3 

Tumor status tumor free 201 57.1 
 with tumor 151 42.9 

Vascular invasion Yes 109 34.6 
 No 206 65.4 

Child-Pugh A 217 90.8 
 B-C 22 9.2 

AFP AFP <20 147 52.9 
 20< AFP <400  66 23.7 
 AFP ≥400 65 23.4 

New tumor event Yes 169 48.3 
 No 181 51.7 

Risk factor 
Alcohol consumption and viral 

hepatitis 
39 11.1 

 Alcohol consumption 78 22.2 
 Viral hepatitis 114 32.5 
 Neither 120 34.2 

Postoperative ablation 
embolization 

Yes 28 8.1 

 No 319 91.9 

Radiation therapy Yes 8 2.3 
 No 338 97.7  

Abbreviations: T: topography distribution; N: lymph node metastasis; M: distant metastasis; AFP: alpha fetal protein. 

 

participate in the occurrence and progression of HCC 

through these pathways. 

 

Additionally, we obtained the co-expressed genes of 
CENPL in Coexpedia database (Figure 6A). Among 

these genes, Nuf2 had the strongest positive 

correlation with CENPL in HCC and many other 

common cancers (Supplementary Figure 4). Since 

co-expressed genes often have similar functions [24], 

we analyzed the enrichment pathways of these co-

expressed genes via DAVID. For BP, co-expression 
genes were significantly enriched in kinetochore 

organization, mitotic sister chromatid segregation, 

spindle organization, kinetochore assembly, sister 
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chromatid cohesion DNA replication. For CC, 

co-expression genes were prominently enriched in 

condensed chromosome kinetochore, kinetochore, 

spindle microtubule, mitotic spindle, chromatin. For 

MF, co-expression genes were significantly enriched 

in kinetochore binding, microtubule motor activity, 

damaged DNA binding, microtubule binding, 

chromatin binding, ATP binding and DNA binding 

(Figure 6B). KEGG pathway enrichment analysis 

showed that co-expression genes were 

 

 
 

Figure 1. The mRNA and protein expression of CENPL in HCC. (A) CENPL showed significantly high expression in HCC tissues than in 

normal tissues using Wilcoxon rank sum test. (B) The expression of CENPL was prominently highly expressed in HCC tissues compared with 
adjoining non-cancerous tissues via Wilcoxon signed-rank test. (C and D) suggested CENPL was prominently enhanced in HCC samples from 
GSE121248 and GSE54236. (E–G) compared with the normal group, the protein level of CENPL in the liver cancer group was significantly 
increased. Abbreviation: CENP: centromere protein. 
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significantly enriched in cell cycle, DNA replication, 

oocyte meiosis, pyrimidine metabolism, mismatch 

repair, p53 signaling pathway, purine metabolism, 

nucleotide excision repair and base excision repair 

(Figure 6C). 

The effect of CENPL expression on immune cell 

infiltration 

 

Based on the TIMER and GEPIA database, we found 

that CENPL expression was positively correlated with 

 

 
 

Figure 2. Relationship between CENPL transcription level and clinicopathologic characteristics. Increased CENPL had significant 

correlation with (A) histologic grade, (B) clinical stage, (C) topography, (D) tumor status, (E) AFP, (F) New tumor event, (G) Risk factor, (H) 
Vascular invasion, (I) Family history. Abbreviations: CENP: centromere protein; T: topography distribution; N: lymph node metastasis; M: 
distant metastasis; AFP: alpha fetal protein. 
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Table 2. Association between CENPL expression and clinicopathologic characteristics (logistic regression). 

Clinical characteristics Total OR P-value 

Age at diagnosis (years) (>40 vs. ≤40) 370 0.9 (0.4–1.8) 0.719  

Gender (female vs. male) 371 0.6 (0.4–1.0) 0.033  

Family history (no vs. yes) 320 0.6 (0.4–0.9) 0.020  

Histologic grade (G3-4 vs. G1-2) 366 3.4 (2.2–5.4) 0.000  

Clinical stage (III-IV vs. I-II) 347 1.7 (1.1–2.8) 0.026  

T (T3-4 vs. T1-2) 368 1.8 (1.1–3.0) 0.012  

N (N1 vs. N0) 256 1.0 (0.1–8.4) 1.000  

M (M1 vs. M0) 270 1.0 (0.1–8.4) 1.000  

Residual tumor (R1-2 vs. R0) 342 1.6 (0.6–4.5) 0.337  

Tumor status (with tumor vs. tumor free) 352 1.6 (1.0–2.4) 0.041  

Vascular invasion (yes vs. no) 315 1.5 (1.0–2.5) 0.070  

Child-Pugh (B-C vs. A) 239 1.6 (0.6–4.5) 0.337  

New tumor event (yes vs. no) 350 1.4 (0.9–2.2) 0.109  

Radiation therapy (yes vs. no) 346 0.6 (0.1–2.5) 0.479  

Postoperative ablation embolization (yes vs. no) 347 1.2 (0.5–2.6) 0.682  

Risk factor     

RF2 vs. RF1 235 1.3 (0.8–2.2) 0.319  

RF3 vs. RF1 199 1.2 (0.7–2.1) 0.600  

RF4 vs. RF1 160 0.5 (0.2–1.1) 0.095  

RF3 vs. RF2 192 0.9 (0.5–1.6) 0.712  

RF4 vs. RF2 153 0.4 (0.2–0.9) 0.020  

RF4 vs. RF3 117 0.5 (0.2–1.0) 0.051  

AFP    

AFP2 vs. AFP1 213 2.9 (1.6–5.4) 0.000  

AFP3 vs. AFP1 131 4.0 (2.2–7.6) 0.000  

AFP3 vs. AFP2 212 1.4 (0.7–2.9) 0.392  

Abbreviations: OR: odd ratio; T: topography distribution; N: lymph node metastasis; M: distant metastasis; RF: risk factor 
(RF1: neither alcohol consumption or viral hepatitis; RF2: viral hepatitis; RF3: alcohol consumption; RF4: both alcohol 
consumption and viral hepatitis); AFP: alpha fetal protein (AFP1 represents AFP <20; AFP2 represents 20≤ AFP <400; AFP3 
represents AFP ≥400). 

 

the infiltration of B cell (r = 0.409, p = 2.63e−15), 

CD8+ T Cell (r = 0.279, p = 1.64e−07), CD4+ T Cell 

(r = 0.394, p = 3.00e−14), Macrophage (r = 0.47, p = 

4.01e−20), Neutrophil (r = 0.421, p = 3.04e−16), 

Dendritic Cell (r = 0.402, p = 1.32e−14) (Figure 5B), as 

well as some immunocyte biomarkers (Supplementary 

Figure 5 and Table 5). In addition, TIMER multivariate 

Cox analysis exhibited that B cell (Coef = −7.514, HR = 

0.00, p = 0.045), CD8 T cell (Coef = −5.056, HR = 

0.01, p = 0.046), CD4 T cell (Coef = −9.241, HR = 
0.00, p = 0.016) infiltration were negative independent 

predictors for poor prognosis, while macrophage 

(Coef = 8.546, HR = 5146.34, p = 0.003) and dendritic 

(Coef = 4.945, HR = 140.42, p = 0.012) infiltration and 

CENPL expression were positive independent 

predictors for poor prognosis (Table 6), indicating low 

B cell, CD8 T cell, CD4 T cell infiltration and high 

macrophage and dendritic infiltration as well as CENPL 

expression predicted poor prognosis. 

 

In TIMER database, CENPL expression is prominently 

positively correlated with markers of M1 Macrophage 

(IRF5: Cor = 0.478, P = 3.86E−21), M2 Macrophage 
(CD163: Cor = 0.194, P = 2.91E−04; VSIG4: Cor = 

0.238, P = 8.12E−06; MS4A4A: Cor = 0.228, P = 

1.99E−05), Treg (STAT5B: Cor = 0.379, P = 3.29E−13; 
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CCR8: Cor = 0.504, P = 1.20E−23), B cell and T cell, 

especially T-cell failure markers such as PD-1(Cor = 

0.363, P = 3.60E−12), CTLA4 (Cor = 0.364, P = 

3.02E−12), LAG3 (Cor = 0.278, P = 1.46E−07), TOX 

(Cor = 0.322, P = 9.49E−10), TIGIT (Cor = 0.367, P = 

1.89E−12), GZMB (Cor = 0.137, P = 1.10E−02) and 

Tim-3 (Cor = 0.414, P = 9.94E−16). Similar results 

were obtained in GEPIA database. 

The methylation site of CENPL 

 

We found two DNA methylation sites of CENPL, namely, 

CENPL-3′UTR−Open_Sea−cg04555837 and CENPL-

5′UTR−N_Shelf−cg22379576 using MethSurv web tool. 

Among them, CENPL-3′UTR−Open_Sea−cg04555837 

was significantly positively related to shorter survival time, 

with a HR of 2.431 (Table 7; Figure 7). 

 

 
 

Figure 3. Survival analyses based on Kaplan-Meier method. Kaplan-Meier survival analysis indicated that elevated CENPL was 

prominently associated with worse (A) OS, (B) DSS, (C) DFI, and (D) PFI. Abbreviations: CENP: centromere protein; OS: overall survival; DSS: 
disease-specific survival; DFI: disease-free interval; PFI: progression-free interval. 
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Table 3. Association between clinicopathologic characteristics and OS, DSS, DFI and PFI in patients with HCC through 
univariate and multivariate analysis with Cox regression survival model. 

Characteristics 

OS DSS DFI PFI 

HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value 

Univariate analysis             

Child-Pugh (B-C vs. A) 1.3 0.4–4.2 0.715 1.8 0.5–6.3 0.363 2.1 0.9–4.9 0.096 1.8 0.8–4.3 0.164 

Risk factor (Alcohol 

consumption and/or viral 

hepatitis vs. neither) 

0.6 0.4–1.0 0.064 0.6 0.3–1.1 0.12 0.9 0.6–1.2 0.341 0.8 0.6–1.1 0.244 

AFP (20≤ AFP vs. AFP <20) 1.0 0.7–1.6 0.961 1.0 0.6–1.6 0.871 0.9 0.7–1.3 0.632 1.0 0.7–1.3 0.914 

New tumor event (yes vs. no) 3.0 1.3–7.0 0.012 1.4 0.9–2.1 0.997 1.0 0.8–1.5 0.996 4.3 1.9–10.1 0.995 

Age (>40 vs. ≤40) 4.7 0.6–34.8 0.133 3.8 0.5–28.7 0.197 1.0 0.4–2.3 0.926 0.9 0.4–2.1 0.887 

Gender (male vs. female) 0.5 0.2–1.1 0.086 0.6 0.2–1.3 0.195 0.9 0.5–1.6 0.599 0.8 0.5–1.4 0.406 

Histologic grade (G3-4 vs. 

G1-2) 
1.6 0.7-3.3 0.247 1.5 0.6–3.6 0.35 1.2 0.7–2.1 0.486 1.1 0.7–1.9 0.645 

M (M1 vs. M0) 5.4 0.7–40.7 0.099 8.9 1.1–68.6 0.037 1.1 0.9–1.4 1.000 5.0 0.7–37.4 0.116 

N (N1 vs. N0) 4.3 0.6–31.7 0.157 6.1 0.8–46.7 0.081 4.2 0.6–31.4 0.159 3.7 0.5–27.5 0.197 

T (T3-4 vs. T1-2) 1.2 0.5–3.0 0.691 1.8 0.7–4.6 0.25 2.0 1.0–3.9 0.043 1.9 1.0–3.6 0.047 

Clinical stage (III-IV vs. I-II) 1.4 0.6–3.3 0.454 2.1 0.8–5.2 0.117 2.1 1.1–4.1 0.022 2.0 1.1–3.8 0.026 

Postoperative ablation 

embolization (yes vs. no) 
1.1 0.4–3.2 0.87 1.5 0.5–4.6 0.47 2.7 1.4–5.5 0.005 2.7 1.4–5.1 0.003 

Radiation therapy (yes vs. no) 0.6 0.3–1.2 0.997 1.3 0.8–2.0 0.997 1.5 0.2–11.1 0.683 1.3 0.2–9.6 0.787 

Vascular invasion (yes vs. no) 1.3 0.6–2.9 0.560 1.1 0.4–3.1 0.821 1.0 0.5–2.0 0.910 1.2 0.7–2.1 0.590 

Tumor status (with tumor vs. 

tumor free) 
4.0 1.8–9.2 0.001 2.2 1.0–4.9 0.997 35.0 13.4–93.5 0.000 37.0 

14.2–

97.4 
0.000 

Family history (yes vs. no) 1.8 0.9–3.7 0.116 2.0 0.8–4.7 0.119 1.1 0.6–2.1 0.639 1.1 0.6–1.9 0.785 

Residual tumor (R1-2 vs. R0) 1.4 0.2–10.2 0.761 2.3 0.3–17.4 0.434 1.3 1.1–1.5 0.774 6.4 2.2–18.3 0.001 

CENPL (high vs. low) 1.8 1.2–2.6 0.002 2.0 1.3–3.3 0.003 1.9 1.3–2.6 0.000 1.8 1.3–2.5 0.000 

Multivariate analysis             

Child-Pugh (B-C vs. A)       3.5 1.3–9.3 0.013    

Risk factor (Alcohol 

consumption and/or viral 

hepatitis vs. neither) 

0.7 0.4–1.3 0.241          

New tumor event (yes vs. no) 0.4 0.0–3.6 0.412          

Gender (male vs. female) 1.1 0.4–3.1 0.833          

M (M1 vs. M0) 3.2 0.4–26.7 0.285 14.0 1.7–114.3 0.013       

N (N1 vs. N0)    8.9 1.1–70.4 0.039       

T (T3-4 vs. T1-2)       2.4 0.2–22.6 0.458 0.8 0.1–6.3 0.821 

Clinical stage (III-IV vs. I-II)       0.7 0.1–6.0 0.706 2.1 0.3–16.5 0.466 

Postoperative ablation 

embolization (yes vs. no) 
      0.9 0.5–2.0 0.882 1.0 0.5–2.1 0.907 

Tumor status (with tumor vs. 

tumor free) 
7.3 0.9–59.6 0.063    39.0 

14.3–

105.4 
0.000 36.0 

13.3–

96.8 
0.000 

Residual tumor (R1-2 vs. R0)          2.9 0.9–8.7 0.063 

CENPL (high vs. low) 1.7 1.2–2.6 0.008 2.2 1.4–3.6 0.001 1.6 1.1–2.3 0.006 1.7 1.2–2.3 0.002 

Abbreviations: OS: overall survival; DSS: disease-specific survival; DFI: disease-free interval; PFI: progression free interval; T: 
topography distribution; N: lymph node metastasis; M: distant metastasis; HR: hazard ratio; CI: confidence interval; CENPL: 
centromere protein L. 
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DISCUSSION  
 

Although breakthroughs have been made in various 

diagnosis and treatment methods, including biomarkers 

and immunotherapy, the prognosis of HCC patients is 

still not optimistic [1]. Therefore, finding markers that 

can not only predict the occurrence, development and 

prognosis of HCC, but also predict the effect of 

immunotherapy is contributed to correctly diagnosing 

and intervening HCC in the early stage, improving the 

prognosis, and reducing unnecessary adverse drug 

reactions. 

 

Through integrating multiple databases, we found that 

CNEPL was enhanced in most cancer types, which 

indicated that CENPL had a wide range of applicability 

 

 
 

Figure 4. Relationship between clinicopathologic factors and survival outcome of HCC patient through univariate and 
multivariate Cox regression analysis. (A–D) indicated CENPL may be an independent prognostic factor for poor OS, DSS, DFI and PFI, 
respectively. Abbreviations: OS: overall survival; DSS: disease-specific survival; DFI: disease-free interval; PFI: progression-free interval. 
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Table 4. Gene sets enriched in phenotype high. 

MSigDB 
collection 

Gene set name NES 
NOM  

p-value 
FDR  

q-value 

c2.cp.kegg. 
v7.0.symbols. 
gmt [Curated] 

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 2.177 0.000  0.000  

KEGG_CELL_CYCLE 2.132 0.000  0.002  

KEGG_OOCYTE_MEIOSIS 2.128 0.000  0.001  

KEGG_PYRIMIDINE_METABOLISM 2.057 0.000  0.003  

KEGG_NUCLEOTIDE_EXCISION_REPAIR 2.056 0.000  0.002  

KEGG_SPLICEOSOME 1.981 0.002  0.004  

KEGG_DNA_REPLICATION 1.968 0.000  0.004  

KEGG_HOMOLOGOUS_RECOMBINATION 1.940 0.000  0.004  

KEGG_MISMATCH_REPAIR 1.921 0.000  0.004  

KEGG_P53_SIGNALING_PATHWAY 1.884 0.000  0.006  

Abbreviations: NES: normalized enrichment score; NOM: nominal; FDR: false discovery rate. Gene sets with NOM p-value 
<0.05 and FDR q-value <0.05 are considered as significant. 

 

and functional conservation. However, CENPL was 

decreased in Acute Myeloid Leukemia (LAML) and 

testicular germ cell tumor (TGCT) in GEPIA, which 

indicated that the transcription level of CENPL was 

still specific in different tumors. We further found that 

high expression of CENPL was significantly 

associated with adverse clinicopathological 

characteristics. Survival analysis revealed that patients 

with high CENPL expression had worse OS, DSS, 

DFI, and PFI. Most importantly, univariate and 

multivariate Cox regression analysis proved that 

elevated CENPL was an independent risk factor for 

poor OS, DSS, DFI and PFI in HCC patients. GSEA 

results indicated that CENPL may be involved in the 

occurrence and progression of HCC via some 

pathways. Among these pathways, cell cycle, DNA 

replication, p53 signaling pathway, and oocyte meiosis 

play important roles in regulating cell cycle. The 

hallmarks of cancer comprise sustaining proliferative 

signaling, evading growth suppressors, resisting cell 

death, enabling replicative immortality, inducing 

angiogenesis, and activating invasion and metastasis 

[25], and these processes all involve cell cycle 

abnormalities. Nucleotide excision repair [26, 27], 

mismatch repair [28], homologous recombination [29] 

are key pathways for repairing DNA damage and 

preventing tumorigenesis. Disorders in these pathways 

could lead to genetic mutations, chromosomal 

aberrations, and subsequent transcriptional and 

translation errors, which gradually accumulate and 

result in cancer [26]. Pyrimidine metabolism, a branch 

of nucleotide metabolism, provides pyrimidine base 
nucleotides and deoxyribonucleotides to synthetize 

DNA and RNA, which plays a crucial role in 

maintaining basic cellular functions [30, 31]. 

Dysfunctional pyrimidine metabolism can facilitate 

cancer proliferation and invasiveness and induce HCC 

epithelial-mesenchymal transition (EMT), thereby 

enhancing the stem cell-like characteristics and drug 

resistance of cancer cells [31–33]. Studies have 

suggested that pyrimidine metabolism pathways are 

promising targets for HCC treatment [30, 34]. In 

addition, spliceosomes exert a key effect in the process 

of removing introns, connecting exons on both sides 

and transforming into mature mRNAs after 

transcription [35–37]. Pre-mRNA splicing is a key step 

in gene expression [38]. Abnormal RNA spliceosomes 

and/or splicing processes have been shown to promote 

tumor genesis and maintenance in a variety of ways 

[39–41], and some laboratories have begun to develop 

and design spliceosome inhibitors for anti-tumor effect 

[42]. Additionally, a meta-analysis reported that the 

spliceosome pathway was overexpressed in HCC, but 

its mechanism of action had not been clarified [43]. To 

our knowledge, this study firstly reported that CENPL 

may participate in the occurrence and progress of HCC 

through these pathways. 

 

Co-expressed genes often have similar functions [24, 

44], so we explored the co-expression network of 

CENPL in HCC through the Coexpedia website. We 

found that Nuf2, also known as Cell Division Cycle 

Associated 1 (CDCA1), was the strongest positive 

correlation co-expressed gene. It was reported that Nuf2 

was also highly expressed in HCC and played an 

important role in the arrangement and correct separation 

of chromosomes during mitosis [45]. Silencing Nuf2 

can induce cell cycle arrest, significantly inhibit HCC 
proliferation and induce cell apoptosis [46]. Then we 

performed function and pathway enrichment analysis 

based on the co-expressed genes and found the 

biological processes (BP) were also mainly related to 
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cell cycle and metabolism, which were similar to the 

pathways enriched by CENPL. 

 

With the development of medicine, people gradually 

realize that traditional TNM staging and pathological 

grading can only provide limited prognostic information 

and cannot predict the response to treatment. More and 

more researchers begin to pay attention to the host's 

immune system which plays an important role in 

controlling tumor occurrence and progression, and 

 

 
 

Figure 5. (A) Enrichment plots from GSEA. GSEA results showed that spliceosome, nucleotide excision repair, pyrimidine metabolism, DNA 

replication, ubiquitin mediated proteolysis, cell cycle, homologous recombination, mismatch repair, p53 signaling pathway and oocyte 
meiosis were significantly enriched in the high CENPL expression phenotype. GSEA: Gene Set Enrichment Analysis. (B) CENPL transcription 
level had prominent association with level of immune cell infiltration in HCC. 
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predicting prognosis and therapeutic response [47]. 

Previous evidences have shown that tumor progression 

is often closely related to the decrease of CD8+ T cells, 

NK cells and other potent lymphocytes that play key 

anti-tumor roles, and the aggregation of regulatory T 

cells (Tregs) and tumor-associated macrophages [48–

51]. Macrophages can stimulate angiogenesis, enhance 

tumor cell migration and invasion [52, 53]. This was 

consistent with the results of our study. Multivariate 

Cox analysis showed that the infiltration of B cells, 

CD8+ T cells, and CD4+ T cells were negatively 

correlated with poor prognosis. That is to say, the 

decrease of their infiltration indicated an increased 

risk of poor prognosis. On the contrary, 

 

 
 

Figure 6. (A) The co-expression network of CENPL; (B–C) GO and KEGG enrichment analysis of co-expression genes of CENPL. 
Abbreviations: CENPL: centromere protein L; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes. 
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Table 5. Survival analysis of multivariate COX hazard model based on TIMER online tool. 

Clinicopathologic variable Coef 95% CI HR P-value 

Age 0.016 1.00−1.03 1.02  0.068 

Gender Male −0.019 0.61−1.59 0.98  0.938 

Race Black 1.201 1.20−9.21 3.32  0.021 

Race White −0.002 0.60−1.66 1.00  0.995 

Stage II 0.081 0.63−1.87 1.09  0.770 

Stage III 0.748 1.30−3.43 2.11  0.003 

Stage IV 1.522 1.31−15.99 4.58  0.017 

Purity 0.419 0.47−4.95 1.52  0.487 

B cell −7.514 0.00−0.84 0.00  0.045 

CD8 T cell −5.056 0.00−0.92 0.01  0.046 

CD4 T cell −9.241 0.00−0.18 0.00  0.016 

Macrophage 8.546 18.24−1452349.07 5146.34  0.003 

Neutrophil −5.479 0.00−478.27 0.00  0.357 

Dendritic 4.945 3.02−6526.97 140.42  0.012 

CENPL 0.389 1.11−1.96 1.48  0.007 

Abbreviations: TIMER: Tumor Immune Estimation Resource; CENPL: centromere protein L; HR: hazard ratio; Coef: coefficient. 

 

Table 6. The association between the expression of CENPL and immune biomarker genes in HCC based on TIMER and 
GEPIA. 

Description Gene markers 
TIMER GEPIA 

Cor P-value Cor P-value 

CD8+ T cell  CD8A  0.284 8.18E−08 0.160 2.30E-03 

 CD8B 0.209 8.84E−05 0.093 7.50E-02 

T cell (general)  CD2 0.282 1.03E−07 0.130 1.40E-02 

 CD3E 0.282 9.94E−08 0.120 2.30E-02 

 CD3D 0.288 4.89E−08 0.120 1.70E-02 

 CD6 0.259 1.04E−06 0.130 1.20E-02 

 SH2D1A 0.271 3.36E−07 0.140 8.00E-03 

 TRAT1 0.263 7.37E−07 0.150 3.40E-03 

 CD3G 0.323 7.76E−10 0.250 8.2E−07 

B cell CD19 0.293 2.96E−08 0.230 1.2E−05 

 CD79A 0.241 5.93E−06 0.120 2.50E-02 

Monocyte CD86 0.412 1.50E−15 0.270 2.4E−07 

 CD115 (CSF1R) 0.295 2.22E−08 0.180 4.90E-04 

TAM CD68 0.282 9.54E−08 0.200 9.9E−05 

 CCL2 0.216 5.04E−05 0.110 4.30E-02 

 IL10  0.284 7.94E−08 0.150 4.60E-03 

M1 Macrophage IRF5 0.478 3.86E−21 0.440 1.1E−18 

M2 Macrophage CD163 0.194 2.91E−04 −0.006 9.10E−01 

 VSIG4 0.238 8.12E−06 0.120 2.60E−02 
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 MS4A4A 0.228 1.99E−05 0.100  5.10E−02 

Neutrophil S100A12 0.000 9.99E−01 −0.023 6.60E−01 

 CEACAM3 0.159 3.10E−03 0.120  2.20E−02 

 CCR7 0.229 1.69E−05 0.100  5.30E−02 

 FPR1 0.322 9.78E−10 0.200  7.4E−05 

 SIGLEC5 0.415 7.99E−16 0.240  2.6E−06 

 CSF3R 0.375 5.58E−13 0.240  3.9E−06 

 FCAR 0.196 2.42E−04 0.094  7.20E−02 

 FCGR3B 0.232 1.33E−05 0.320  3.1E−10 

NK KIR2DL1 −0.051 3.41E−01 0.056  2.80E−01 

 KIR2DL3 0.253 1.89E−06 0.200  1.50E−04 

 KIR2DL4 0.184 5.92E−04 0.200  1E−04 

 KIR3DL1 0.039 4.75E−01 −0.048 3.60E−01 

 KIR3DL2 0.170 1.54E−03 0.200  7.9E−05 

 KIR3DL3 0.186 4.94E−04 0.120  1.90E−02 

 XCL1 0.304 8.72E−09 0.240  2.5E−06 

 XCL2 0.245 3.98E−06 0.082  1.20E−01 

 NCR1 0.119 2.69E−02 0.140  5.90E−03 

DC CD11C (ITGAX) 0.407 3.11E−15 0.300  7.5E−09 

 HLA-DPA1 0.280 1.25E−07 0.160  1.70E−03 

 HLA-DRA 0.309 4.38E−09 0.190  2.10E−04 

 HLA-DQB1 0.204 1.33E−04 0.042  4.20E−01 

 HLA-DPB1 0.274 2.23E−07 0.160  1.60E−03 

 CCL13 0.162 2.59E−03 0.090  8.30E−02 

 HSD11B1 −0.234 1.17E−05 −0.2 9.5E−05 

Th1 TBX21 (T-bet) 0.171 1.39E−03 0.072  1.70E−01 

 TNF 0.334 1.92E−10 0.230  1.2E−05 

 STAT1 0.434 2.76E−17 0.390  7.2E−15 

 STAT4 0.296 2.20E−08 0.240  3.1E−06 

Th2 IL13 0.107 4.79E−02 0.130  1.10E-02 

 GATA3 0.326 5.59E−10 0.210  3.6E−05 

 STAT5A 0.386 1.04E−13 0.340  2.1E−11 

 STAT6  0.231 1.50E−05 0.280  3.3E−08 

Tfh VSIG4 0.241 5.98E−06 0.120  2.60E-02 

Th17 STAT3 0.278 1.59E−07 0.270  9.4E−08 

Treg TGFB1 0.366 2.32E−12 0.220  1.6E−05 

 STAT5B 0.379 3.29E−13 0.430  2.4E−18 

 CCR8 0.504 1.20E−23 0.410  2.7E−16 

 FOXP3 0.264 6.30E−07 0.140  5.50E-03 

T-cell exhaustion TIGIT 0.367 1.89E−12 0.230  7.2E−06 

 GZMB 0.137 1.10E−02 0.019  7.20E−01 

 TOX 0.322 9.49E−10 0.240  5E−06 
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 TIM-3 (HAVCR2) 0.414 9.94E−16 0.250  7.3E−07 

 LAG3 0.278 1.46E−07 0.140  6.90E−03 

 CTLA4 0.364 3.02E−12 0.240  2.5E−06 

 PD-1 (PDCD1) 0.363 3.60E−12 0.240  2.6E−06 

Abbreviations: TAM: tumor-associated macrophage; IL: interleukin; Tfh: follicular helper T cell; TNF: tumor necrosis factor; 
DC: dendritic cell; Treg: regulatory T cell; TIMER: Tumor Immune Estimation Resource; GEPIA: Gene Expression Profiling 
Interactive Analysis; NK: natural killer cell; Th: T helper cell; HCC: hepatocellular carcinoma; Cor: R value of Spearman’s 
correlation; CENPL: centromere protein L. 

 

Table 7. CpG of CENPL related to the prognosis of HCC. 

Gene-CpG HR LR test p value 

CENPL-3′UTR−Open_Sea−cg04555837 2.431 0.000 

CENPL-5′UTR−N_Shelf−cg22379576 1.232 0.232 

Abbreviations: CENPL: centromere protein L; HR: hazard ratio; LR: log-rank. 

 

Macrophages were significantly positively associated 

with poor prognosis, suggesting the high macrophages 

infiltration predicts adverse prognosis. Elevated CENPL 

expression could also independently predict worse 

prognosis under the condition excluding immune cell 

infiltration. Furthermore, we found that CENPL 

expression was notably negatively correlated with 

infiltration of B cells, CD8+ T cells, CD4+ T cells and 

neutrophil and positively associated with macrophage 

and dendritic cell, especially had the highest association 

with macrophages. We speculated that the occurrence 

and progression of HCC promoted by enhanced CENPL 

may be partly attributed to augmenting tumorigenic 

effect of macrophages and attenuating the anti-tumor 

effect of killer cells such as B cells, CD8+ T cells and 

CD4+ T cells. 

 

In addition, our results showed that the expression of 

CENPL was significantly positively correlated with 

many markers of immune cells, among which IRF5, a 

marker of M1 macrophages [54], and CCR8 [55] and 

STAT5B [56], markers of Treg cells, have the highest 

correlation. Macrophages are often divided into M1 and 

M2 types according to their functions. Among them, 

M1 macrophages can secrete inflammatory factors such 

as interleukin (IL-12), interleukin-6 (IL-6) and tumor 

necrosis factor alpha (TNFα), promote the production of 

reactive oxygen species and nitric oxide (NO), and have 

pro-inflammatory activity [57]. Chronic inflammatory 

and continuous peroxidation can induce cell 

cancerization and tumorigenesis. M2 macrophages are 

involved in accelerating tumor growth, invasion and 

angiogenesis [52, 53, 57–59]. This study found that the 

expression of CENPL was positively associated with 
the markers of M1 and M2 macrophages, but had a 

higher correlation with M1 macrophages, suggesting 

that increased CENPL may be more involved in M1 

macrophages promoting tumorigenesis. Nevertheless, it 

may also play a role in the tumor invasion and 

progression induced by M2 macrophages. Additionally, 

studies have revealed that Treg cells can inhibit the 

activity and proliferation of effector CD4+ and CD8+ T 

cells, and higher Treg cells infiltration means worse 

prognosis in HCC [49, 50]. This suggests that elevated 

CENPL may also participate in the process of Treg cells 

suppressing effector CD4+ and CD8+ T cells. 

Furthermore, CENPL expression associated 

prominently and positively with T-cell failure markers 

such as PD-1, CTLA4, LAG3, TOX, TIGIT, GZMB 

and Tim-3. Particularly the correlation with Tim-3 was 

the highest. This explains the result that enhanced 

CENPL predicts poor prognosis and also provides a 

basis for finding new immunotherapy methods for HCC 

patients with poor response to PD-1 antibodies and 

other immunosuppressive agents. 

 

Tumor immune microenvironment is a complex 

environment characterized by immunosuppression and 

immune escape [4, 60]. How to restore the normal anti-

tumor immune response to kill tumor cells is a research 

hotspot in recent years. With the clinical application of 

immune checkpoint inhibitors (ICIs), new hope has 

been brought to tumor patients, but only a small number 

of patients have obtained clinical benefits [4]. 

Therefore, it is necessary to look for biomarkers to 

predict the efficacy of ICIs in order to determine the 

appropriate population for corresponding 

immunotherapy. Previous studies reported that the 

expression of PD-L1 and tumor mutational burden 

(TMB), as biomarkers for the evaluation of ICIs 

treatment efficacy, could play a better predictive role in 
some cancers [61–64]. However, other investigators 

found that PD-L1 and TMB were not significantly 

associated with ICIs efficacy in most cancer subtypes 



 

www.aging-us.com 22819 AGING 

[65–67]. Therefore, novel biomarkers which can predict 

the efficacy of ICIs should be developed in combination 

with PD-L1 and TMB to correctly assess whether 

patients can benefit from ICIs treatment [66], thereby 

improving prognosis and reducing unnecessary drug 

toxicity in patients who are unlikely to benefit. Previous 

studies have proved that the levels of major markers of 

immune cells could represent the abundance of 

corresponding immune cells and the composition of 

immune cell populations in the tumor-immune 

microenvironment [68], which were helpful to predict 

the prognosis and select the best immunotherapy 

scheme [47, 68–71]. Our study revealed that CENPL 

expression had a prominent correlation with not only 

the infiltration level of major immune cells, but also 

major markers of immune cells. This further verifies our 

conclusion that elevated CENPL can independently 

predict poor prognosis of HCC, and to some extent 

 

 
 

Figure 7. DNA methylation of CENPL. Red to blue means that the expression level goes from high to low. The different colored boxes 

represent ethnicity, race, BMI, age, event, relation_to_UCSC_CpG_Island, UCSC_RefGene_Group. Abbreviations: CENPL: centromere 
protein L; BMI: Body Mass Index. 
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predict the efficacy of some immunotherapy, which 

provides a direction for new immunotherapy methods. 

 

Many researches provided evidence that almost all 

tumor types contained abnormal methylation and it 

could lead to the occurrence of cancer [72, 73]. 

Studying DNA methylation helps us to understand the 

mechanism of tumorigenesis and predict the 

occurrence and progression of cancer [74]. Since 

methylation is sometimes reversible, it has the 

potential to become a therapeutic target. Our research 

unveiled that CENPL had two methylation sites, and 

CENPL-3′UTR−Open_Sea−cg04555837, one of them, 

had a significantly positive correlation with shorter 

survival time. 

 

Although this study is the first to reveal the relationship 

between CENPL and HCC prognosis and immune 

infiltration, some false positive rates cannot be ruled out 

and further experimental and clinical validation is 

needed. 

 

CONCLUSIONS 
 

Our study uncovered that elevated CENPL in HCC was 

positively related to adverse clinicopathological factors, 

occurrence and progression of HCC, and abnormal 

immunocyte infiltration. It could be an independent 

predictor for poor prognosis and a promising 

determinant for immunotherapy. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The transcription level of CENPL in different tumor types by GEPIA. 

 

 

 
 

Supplementary Figure 2. The transcription level of CENPL in different tumor types through TIMER. 
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Supplementary Figure 3. The effects of CENPL expression on the prognostic outcome of other tumor types. (A–C) Lung 
cancer; (D–F) Ovarian cancer; (G–I) Breast cancer, (J–L) Gastric cancer. Abbreviations: OS: overall survival; PPS: post progression survival; 
FP: first progression; PFS: progression-free survival; RFS: relapse-free survival; DMFS: distance metastasis free survival. 
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Supplementary Figure 4. The transcription level of Nuf2 in different tumor types through TIMER and GEPIA. 
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Supplementary Figure 5. Association between CENPL transcription level and immune cell markers. The association between 

CENPL transcription level and cell markers of (A) CD8+ T cell, (B) B cell, (C) Monocyte, (D–E) T cell, (F) M1 Macrophage, (G) M2 Macrophage, 
(H–I) DC, (J) TAM, (K–L) NK, (M–N) Neutrophil, (O) Th1, (P) Th2, (Q) Tfh, (R) Th17, (S) Treg, and (T–U) T-cell exhaustion. Abbreviations: DC: 
dendritic cell; TAM: tumor-associated macrophage; NK: natural killer cell; Th: T helper cell; Tfh: follicular helper T cell; Treg: regulatory 
T cell. 


