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The capacity and organization 
of gustatory working memory
Shirley Xue Li Lim1*, Richard Höchenberger1, Iryna Ruda1, Gereon R. Fink1,2, 
Shivakumar Viswanathan1,3 & Kathrin Ohla1,3*

Remembering a particular taste is crucial in food intake and associative learning. We investigated 
whether taste can be dynamically encoded, maintained, and retrieved on short time scales consistent 
with working memory (WM). We use novel single and multi-item taste recognition tasks to show that 
a single taste can be reliably recognized despite repeated oro-sensory interference suggesting active 
and resilient maintenance (Experiment 1, N = 21). When multiple tastes were presented (Experiment 
2, N = 20), the resolution with which these were maintained depended on their serial position, and 
recognition was reliable for up to three tastes suggesting a limited capacity of gustatory WM. Lastly, 
stimulus similarity impaired recognition with increasing set size, which seemed to mask the awareness 
of capacity limitations. Together, the results advocate a hybrid model of gustatory WM with a limited 
number of slots where items are stored with varying precision.

Working memory (WM) is the faculty of actively storing information for short  periods1,2. Since its original 
formulation, the organization of WM and its neural substrate have been subject to extensive  investigation3–5. 
However, research into the generality of WM for different kinds of  information6,7 has neglected an essential 
chemical sense: the sense of taste. This is surprising given the relevance of taste information processing to 
identify nutrients and maintain homeostatic  balance8,9. Furthermore, the taste of previously consumed food 
substances guides future dietary decisions. As this memory for prior tastes is essential for adaptive behavior, long-
term gustatory memory, particularly conditioned taste-aversion, has been the focus of numerous  studies10–14. 
However, the possibility that multiple recently encountered tastes (such as sweet or sour) could be stored and 
maintained in WM has received almost no consideration, except for one  study15. This omission is even more 
notable given that working memory for smell and flavor has been the focus of previous  animal16 and  human17,18 
studies. Consequently, to what extent information about multiple tastes can be actively maintained in WM and 
its storage organization remains elusive.

The current study sought to investigate gustatory WM by assessing its storage capacity. Due to the methodo-
logical challenges of delivering multiple taste stimuli in a precisely controlled sequential manner, we operational-
ized gustatory WM’s storage capacity as the maximum number of unique tastes (items) that could be discretely 
maintained to enable subsequent recognition. In other sensory modalities, the study of WM’s storage capacity has 
provided valuable insights into its organization—for example, as being distributed resource-based19–21 or fixed 
slot-based22,23. However, relating the capacity limits for taste information to WM organization is challenging due 
to several considerations specific to the gustatory system’s mostly peripheral organization.

A general view of a limited WM capacity is that it explains why recognition accuracy decreases with increas-
ing set  size2,21,24 (Fig. 1a). However, decreases in recognition accuracy can be influenced by factors unrelated to 
gustatory WM, such as irrelevant cross-modal information that accompany sensory experiences. This constitutes 
a particular concern for gustation, which is inherently coupled with non-gustatory sensations. For instance, when 
eating an apple, its appearance, smell, texture, temperature, even sound when taking a bite are inextricably linked 
with its taste,  see25. These factors can affect recognition processes and distort capacity estimates of gustatory 
WM. Additionally, the possible physical mixing of sequentially presented taste stimuli on the tongue as well as 
the relative proneness of the gustatory system to quick sensory  adaptation26 are potential sources of sensory 
interference that might reduce the fidelity with which tastes are encoded in WM (Fig. 1c).

To limit the role of cross-modal information, all stimuli in our study were odorless and colorless liquids 
with a similar viscosity presented at a constant temperature. The concern about mixing tastes was countered by 
including a tasteless stimulus as a rinse between stimuli to remove residual tastes. However, tastes are unavoid-
ably associated with an oro-somatosensory touch due to contact with the tongue, and these touch stimulations 
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might present attentional “disturbances” that could degrade WM  performance7,27–29. Based on these considera-
tions, we investigated the organization of gustatory WM in two experiments. To obtain a baseline measure of 
the magnitude of critical non-capacity related factors, i.e., sensory interference and attentional distraction, in 
Experiment 1, we evaluated recognition of a single taste item in the presence of a variable number of oro-sensory 
disturbances presented between item and probe. The opposing hypothesized effects of sensory and attentional 
interference (see Fig. 1b) permit us to assess their contribution to gustatory WM, as reductions in sensory 
interference with time would be predicted to increase taste recognition accuracy (Fig. 1c). In contrast, increases 

Figure 1.  Illustration of hypothetical outcomes and inference effects in estimating taste WM capacity. (a) A 
multi-item recognition task (upper row, Experiment 2) requires a judgment whether the probe taste corresponds 
to one of the previously encountered taste items (match) or not (foil). The lower panel illustrates the typically 
expected accuracy decrease with increasing set size. (b) In a single-item recognition task (Experiment 1), 
a set consists of a single item with following items replaced by tasteless stimuli (disturbances). The lower 
panel illustrates predicted accuracy changes with increasing disturbances based on alternative hypothesized 
mechanisms. Sensory interference (also see panel c) predicts increased accuracy with an increasing number of 
rinses and time between the item and probe. Attentional disturbance (also see panel d) conversely predicts a 
steep decrease in accuracy with increasing disturbances and time. Resilient maintenance predicts accuracy that 
is relatively unaffected by disturbances and time. (c) Adaptation in response to any item could affect the sensory 
encoding of the subsequent item(s). Impaired sensory encoding would mirror WM performance. Adaptation 
effects would be weaker as interstimulus intervals (ISI) increase. (d) Assuming that the oro-sensory stimulation 
is a “disturbance”, this “disturbance” could reduce the fidelity of the item’s representation in WM.
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in attentional disturbances would be predicted to cause a marked drop (Fig. 1d). In Experiment 2, we sought to 
estimate the capacity of taste working memory. For this, we used a list memory task where participants were to 
remember sets of distinct sequentially presented tastes presented in various set sizes to estimate the unknown 
capacity of gustatory WM. Since recognition accuracy can be modulated by stimulus-similarity  effects30, we 
sought to account for the role of these effects when estimating capacity.

Methods
Participants. Participants were recruited at the Research Center Jülich, Germany. The sample size was based 
on a priori power calculations using G*Power 3.154. Assuming a power of 0.90 and a medium effect size of f = 0.3 
in an rmANOVA a sample of N = 19 (1-factorial rmANOVA with 5 levels) would be sufficient. Twenty-one 
healthy adults (15 females; age M = 28.43, SD = 3.9, range: 22–42 years) participated in Experiment 1 and twenty 
healthy adults (9 females; age M = 26.6; SD = 3.31, range: 22–33 years) participated in Experiment 2. In Experi-
ment 2, one participant did not complete the study because they failed to detect all bitter taste trials in the taste 
detection task. Participants were generally healthy, normal weighted (Body Mass Index < 28), had no current or 
past neurological disorders or taste disturbances, and did not take medication known to influence brain function 
or perception (self-report). Female participants reported not being pregnant. Total participation time was 6 h 
(Experiment 1) and 7 h (Experiment 2) distributed over 2 and 3 sessions, respectively. All participants signed an 
informed consent form before participation and received monetary compensation. The study was approved by 
the ethical review board of the German Psychological Society (DGPs) and complied with the revised declaration 
of Helsinki.

Stimuli. Stimuli were based on four aqueous solutions prototypical for the basic tastes: sweet, salty, sour, 
and bitter. The fifth basic taste quality, umami, was not used because it requires familiarity for a perceptually 
salient experience and is perceptually associated with salty and  sweet55. The basic tastes were produced by filling 
up 190 g sucrose (food quality), 30 g sodium chloride (food quality), 9 g citric acid (CAS 77-92-9), and 0.25 g 
quinine hemisulfate salt monohydrate (CAS 207671-44-1) with distilled water to 1L, respectively. The taste solu-
tions were then mixed at a 1:1 ratio to achieve six binary mixtures: sweet–salty, sweet–sour, sweet–bitter, salty–
sour, salty–bitter, sour–bitter, resulting in ten different taste solutions. Artificial saliva was prepared by filling up 
0.92 g sodium bicarbonate (Euro OTC Pharma GmbH, Article Number: 178900) and 0.105 g potassium chloride 
(Euro OTC Pharma GmbH, Article Number: 162070) to 1L with distilled water. Artificial saliva served as a rinse 
after the tastants and as non-gustatory, oro-somatosensory distraction because it is  tasteless56. All solutions were 
cooled at 4 °C when not used and renewed every 72 h.

Apparatus. Stimuli were delivered with a high-precision computer-controlled syringe pump  system39. We 
used five syringes for each of the four basic tastants and one for artificial saliva. Each syringe was connected to an 
inlet tubing that supplied the syringe with the tastant from a glass reservoir and an outlet tubing, which delivered 
the tastants to the participants. Each outlet was mounted in a manifold with five inlets (one for each solution) 
and one outlet with a 1–2 mm stub placed on participants’ tongues. Two syringes delivered stimuli with 7 ml 
volume at a total flow rate of 3.5 ml/s.

The experiment was controlled by PsychoPy version 3.0.657 running on Windows 10. Responses were recorded 
using a three-button response box (The Black Box Toolkit, Sheffield, UK) that was comfortably placed in front 
of participants.

Experimental paradigm and procedure. Both experiments consisted of a taste detection and evaluation 
(TDE) task and a taste recognition task with a single item in Experiment 1 and multiple items in Experiment 2. 
Experiments 1 and 2 consisted of two and three sessions, respectively, on separate days no more than 14 days 
apart. Participants performed the TDE task before the taste recognition task.

Taste detection and evaluation (TDE) task. The TDE task served to test whether participants could taste all 
stimuli. For this, we presented the 10 tastants (repeated four times) and artificial saliva (repeated 12 times) 
resulting in 52 trials. Each trial began with the visual cue “Tongue out”. This cue was presented for 0.75 s on 
the screen, followed by a 3-2-1-countdown (from 3-2- to 1) over 1.5 s. Next, a central fixation cross appeared 
on the screen concurrently with stimulus delivery for 0.75 s. After the stimulus presentation, participants were 
prompted to indicate whether they tasted anything by pressing the response box’s left or right button to answer 
yes or no. Participants were then cued to rate the intensity and pleasantness of the stimulus by moving an arrow 
with the buttons along on horizontal 11-point scales anchored with “Not at all” and “Very intense” for intensity 
and with “Unpleasant” and “Very pleasant” for pleasantness. The trial ended with a presentation of artificial 
saliva (tasteless stimulus) for 2 s to remove any residual tastant before the subsequent trial, which started after a 
varying inter-trial interval (ITI) of 10–15 s.

Single‑item recognition task (Experiment 1). In the single-item taste recognition (SIR) task (Fig. 2a), each trial 
began with presenting a single taste item that participants had to remember. This taste item was followed by 
tasteless artificial saliva stimuli that simulated the task-irrelevant oro-sensory disturbances typically accompany-
ing any taste presentation. The trial ended with the presentation of a second tastant (probe). Participants indi-
cated whether the probe was identical to (match) or different from (foil) the first taste item, followed by a rating 
of their confidence in this decision. To limit expectancy effects, the number of disturbances (1–5) on each trial 
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was unknown to participants and, on one-sixth of trials, the probe was presented directly after the item without 
intervening disturbance stimuli (Fig. 1a).

Like the TDE task, each trial began with a cue “Tongue out” and a countdown. Next, simultaneously with a 
central black fixation cross presentation, participants received a tastant for 0.75 s followed by a blank screen of 
fixed inter-stimulus-interval (ISI) of 2 s. On trials with at least one disturbance, one or more tasteless stimuli were 
presented next, together with a central blue fixation circle, for 0.75 s followed by a 2 s ITI. After the last stimulus 
on a trial and an additional 0.5 s delay, the probe was presented for 0.75 s together with a question mark on the 
screen. Participants had 3.5 s to respond by button press whether item and probe were the “same” or “different” 
from probe delivery on. They were then asked to rate their confidence at the time of response by moving an arrow 
along a 4-point scale anchored with “Not at all” (left) to “Very” (right). The trials ended with a tasteless stimulus 
presented for 2 s, and the next trial started after a varying ITI of 10–15 s. Overall, the task comprised 400 trials 
with match and foil evenly distributed over five different numbers of disturbances.

Figure 2.  Procedure of a single trial. (a) In Experiment 1 (Single Item Recognition), participants received an 
item and a probe tastant that could be identical (match) or different (foil). Item and probe were interleaved 
with zero to five tasteless stimuli that served as a cross-modal disturbance. Participants were to indicate by 
button press whether the item and probe matched. (b) In Experiment 2 (Multi-Item Recognition), one to five 
items were sequentially presented. A tasteless stimulus (rinse) separated the items. Participants were to indicate 
whether the probe matches any of the items in the set. In both experiments, participants rated the confidence of 
their decision on a 4-point numeric scale (1 = not confident, 4 = very confident). Colored lines on the timeline 
represent the duration of the visual display. Shades represent the duration of the spray. Taste stimuli are shown 
in red, the tasteless rinse in blue, and the probe in green. Colors are not displayed in the experiment and are only 
shown for clarity.
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Multi‑Item recognition task (Experiment 2). In the multi-item recognition (MIR) task (Fig. 2b), participants 
were to remember one to five sequentially presented tastes (items) on each trial, representing set sizes of one to 
five (referred to as S1 to S5), respectively. A tasteless stimulus (rinse) followed each item to cleanse sapid residues 
with minimal taste recognition disturbance to minimize sensory interference. Item memory was then tested 
with a probe stimulus. Participants indicated whether the probe matched any of the items in the remembered set 
(match) or not (foil) and they then rated confidence in that decision.

The procedure was similar to Experiment 1 with the difference that (1) sets were composed of 1–5 tastants 
(items), and (2) items were interleaved with a brief tasteless stimulus to rinse for 0.75 s. Each of the five set sizes 
consisted of 40 match and 40 foil trials resulting in 400 trials.

Procedure. During each experiment, participants were seated in an acoustically shielded chamber (Studiobox 
GmbH, Walzbachtal, Germany), and the gustometer and computers were placed outside to minimize any audi-
tory distractions. Additionally, participants listened to ocean waves (Spotify) through insulated in-ear head-
phones to minimize auditory cues from the gustometer’s valves switching. Participants sat in front of a 22 inch 
LCD monitor at 55 cm distance with their forehead comfortably resting on a headrest, which also holds the 
manifold and nozzle in place. During the experiments, participants placed their tongue’s tip on the outlet nozzle 
upon displaying a visual cue. They were to remain in this position until the end of a given trial, indicated on the 
screen. Participants were allowed to take a sip of water and rinse their mouths during the ITI.

Trial design. All trial types and conditions were presented in pseudo-random order. In order to minimize 
potential taste-specific effects WM, i.e., sweet may be more memorable than bitter, we rigorously controlled for 
taste-specific effects in our randomization of Experiment 2, which applied the following constraints: no repeti-
tion of tastants within a set/trial, no repetition of the same set of tastants (irrespective of the order of tastants), 
no repetition of the target tastant for each serial position and set size (providing an equal distribution of stimuli 
across positions in all set sizes), uniform distribution of the probes across stimulus space, and subsequent tri-
als shared no more than 2/5 of tastants. Lastly, response buttons were counterbalanced across participants and 
sessions.

Statistical analysis. Data were analyzed with JASP version 0.12.258. Trials without a response were excluded 
(0.6% in Experiment 1 and 1.2% in Experiment 2). Data were analyzed using rmANOVAs, simple main effects 
ANOVAs, and paired sample t test. A Greenhouse–Geisser correction was applied in case of violations of sphe-
ricity as identified by Mauchly’s test. Bonferroni correction was applied to all post hoc pairwise comparisons 
(two-tailed Student t test). Corrected p-values and confidence intervals were reported; Cohen’s d does not cor-
rect for multiple comparisons. The ⍺ level was set to 0.05.

In Experiment 1, we used a one-way rmANOVA with the factor number of disturbances (1–4) for recognition 
accuracy (Fig. 3a); the factor similarity (low, intermediate, high) for the proportion of “same” responses (p(same); 
Fig. 3c); and the factor confidence (1–4) for recognition accuracy (Fig. 3b). To test whether match and foil trials 
differed, we used separate two-way rmANOVAs with the factors number of disturbances (1–4) and trial type 
(match, foil) for recognition accuracy (Fig. 3d), RTs (Fig. 3e), and confidence (Fig. 3f). Significant interactions 
were followed up with simple main effect analyses if applicable.

In Experiment 2, separate one-way rmANOVA with the factor set size (1–5; Fig. 4a) and confidence (Fig. 5b) 
were performed for recognition accuracy. To test whether match and foil trials differed, two-way rmANOVAs 
with the factors set size (1–5) and trial type (match, foil) were performed for recognition accuracy (Fig. 4b), RTs 
(Fig. 5a) and confidence (Fig. 5c). To test for the serial-position effects on recognition accuracy (Fig. 4c), we per-
formed separate one-way rmANOVAs for set size 5 (5 levels), 4 (4 levels), and 3 (3 levels). Lastly, we performed 
a paired t test by testing an alternative hypothesis of μ > 0.5, to see if each position in a set size is significantly 
higher than chance level.

Results
Stimulus validation. Due to the large inter-individual variability in taste  perception31,32, it was critical to 
validate that participants tasted the stimuli. Therefore, we used a taste detection and evaluation task to confirm 
that participants could perceive the tastants before participating in the taste memory experiments. For these, 
participants were presented with taste and tasteless stimuli in a pseudo-randomized order. Participants indi-
cated whether they tasted something or not by button press, and detected tastes were further rated in terms of 
intensity and pleasantness. Taste detection accuracy was high in both experiments (Experiment 1: M = 97.5%, 
SD = 6%; Experiment 2: M = 98.5%, SD = 4%; Suppl. Fig. 1). Of the ten tastes, bitter had the lowest detection 
accuracy (Experiment 1: M = 87%; Experiment 2: M = 88.8%), consistent with the known variability in bitter 
taste  perception32. All tastes were rated as intermediately intense (Experiment 1: M = 6.52, SD = 1.61; Experiment 
2: M = 6.74, SD = 1.42) and moderately pleasant (Experiment 1: M = 4.58, SD = 1.51, Experiment 2: M = 4.50, 
SD = 1.49; Suppl. Fig. 1). The apparently high consistency in taste detection accuracy and intensity and pleasant-
ness ratings in the two experiments demonstrated that the stimuli were reliably perceived across participants.

Baseline measure of interference effects (Experiment 1). The objective of Experiment 1 was to 
obtain a baseline measure of critical non-capacity-related factors that might nevertheless affect recognition and 
confound estimates of capacity. For this purpose, we tested the resilience of a single taste memory to non-taste 
disturbances using a SIR task (Figs. 1 and 2b). If the single item was resiliently maintained in WM, recognition 
accuracy should be similar across different numbers of oro-sensory disturbances. In contrast, if the item’s rep-
resentation was affected by attentional distraction (e.g., due to bottom-up shifts of attention produced by oro-
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sensory stimulation) or sensory interference (e.g., due to a loss of sensitivity produced by prior tastes), accuracy 
should markedly change with an increasing number of tasteless stimuli between the single item and the probe 
stimulus (Fig. 2b–d).

High resilience of item representation to sensory inference and oro‑sensory disturbances. Recognition accuracy 
was well above chance at all levels of disturbance (Fig. 3a). The accuracy was highest on trials with a single distur-
bance and exhibited only small decrements with each additional disturbance (repeated measures analysis of vari-
ance, rmANOVA:  F4,80 = 6.25, p < 0.001, ηp

2 = 0.23). Relative to trials with one disturbance (M = 82%, SD = 6.38%), 
the accuracy was reduced by only 2% on trials with two disturbances (M = 80%, SD = 5.22%;  t20 = 1.56, d = 0.34, 
 pbonf = 1, 95% CI = [− 0.019, 0.056]), by 5% on trials with three disturbances (M = 77%, SD = 5.78%;  t20 = 4.15, 
d = 0.91,  pbonf = 0.005, 95% CI = [0.013, 0.091]), and by 6% on trials with four disturbances (M = 76%, SD = 6.6%; 
 t20 = 3.61, d = 0.79,  pbonf = 0.017, 95% CI = [0.008, 0.120]). Accuracy was lower when the probe was presented 
immediately after the taste than when presented after a single disturbance (M = 78%, SD = 7.70%;  t20 = − 3.25, 
d = − 0.71,  pbonf = 0.04; see Suppl. Table 1 for all pairwise comparisons).

To assess whether participants were aware of their performance, we assessed the link between confidence and 
accuracy. Confidence about recognition decisions had a strong veridical relationship to the accuracy of those 
decisions, i.e. trials with a higher confidence rating also had a higher accuracy  (F3,60 = 60.86, p < 0.001, ηp

2 = 0.75; 
Fig. 3b), indicating that participants indeed monitored their performance.

In summary, the relatively small decrements in recognition accuracy with increasing disturbances cannot be 
solely accounted for by either (i) attentional distraction/interference (Fig. 2b,d) or (ii) sensory interference in 
gustatory WM (Fig. 2b,c). However, the lowered accuracy for zero disturbances suggests sensory interference 
in the sensory encoding of the probe stimulus caused by the temporal proximity of the item and probe. We, 
therefore, restricted our subsequent analyses to disturbances ≥ 1.

Evidence for the representation of an item’s taste rather than other associated properties. We next tested whether 
taste recognition’s apparent resilience was indeed due to the representation of the item’s taste rather than some 
other associated property such as stimulus similarity. We exploited the well-known role of stimulus similarity 

Figure 3.  Experiment 1. (a) Recognition memory accuracy (proportion correct, propn) across the number of 
disturbances. (b) Accuracy for each confidence rating (1 = not confident, 4 = very confident). (c) Proportion 
of same responses for item probe pairs with different levels of stimulus similarity: highest in similarity 
(match), intermediate in similarity (foil pairs, shared component), lowest in similarity (foil pairs, non-shared 
component).  (d) Recognition memory accuracy for match and foil trials across the number of disturbances. (e) 
RT (in seconds) averaged across the number of disturbances, separately for match and foil trials. (f) Confidence 
averaged across the number of disturbances, separately for match and foil trials. Data points are means, error 
bars are SEM. Gray lines represent single-subject data (N = 21).
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in recognition with other stimulus  modalities33–37. As a simplistic illustration, a pair of phonetically similar but 
non-identical words, e.g., ‘cat’ and ‘cap’, might be more likely to be (mis)judged as being “same” than a dissimilar 
word pair, e.g., ‘cat’ and ‘pig’. A comparable prediction here would be that recognition judgments involving a 
WM for taste should depend on the chemical similarity of the item-probe pairs,  see15 for a similar argument. To 
test this, we compared the recognition accuracy for item-probe foil pairs that shared a chemical component (e.g., 
item: sour, probe: sour–sweet) with pairs that did not (e.g., item: sour, probe: bitter). Item-probe foil pairs with a 
shared component were assumed to be more similar (intermediate similar) than those without a shared compo-
nent (lowest in similarity). If this assumption holds, item-probe foil pairs of intermediate similarity should have 
a higher proportion of “same” responses (i.e., lower accuracy) than those with the lowest similarity. Further-
more, the probability of “same” responses should be the highest for item-probe match pairs, which are chemi-
cally identical and perceptually highest in similarity.

In line with these predictions, the proportion of “same” responses varied between item-probe pairs 
(rmANOVA;  F2,40 = 516.51, p < 0.001, ηp

2 = 0.9267; Fig. 3c) such that the proportion of “same” responses was 
highest for the item-probe match pairs that were highest in similarity (M = 80.38%, SD = 9.22%; highest similarity 
versus intermediate in similarity similar:  t20 = 20.16,  pbonf < 0.001, d = 4.4, 95% CI = [0.4017, 0.5213]; intermediate 
in similarity versus low in similarity:  t20 = 32.23,  pbonf < 0.001, d = 7.03, 95% CI = [0.6315, 0.7429]). Importantly, 
the proportion of “same” responses for the intermediary similar pairs (M = 34.23%, SD = 11.84%) was signifi-
cantly greater than for the lowest in similarity pairs (M = 11.66%, SD = 6.96%;  t20 = 10.68,  pbonf < 0.001, d = 2.33, 
95% CI = [0.1704, 0.2809]).

In summary, the modulation of recognition by taste similarity relationships is consistent with representing 
an item’s taste in WM rather than, for example, a verbal label describing the item’s taste.

Disturbances have dissociable effects on match and foil trials. The finding of a stimulus-similarity effect provided 
a way to evaluate why accuracy might reduce with increasing disturbances. Stimulus-similarity suggests that the 
combination of increasing disturbances and time-dependent forgetting might lower the precision of a taste rep-
resentation in memory. If so, this loss of precision should reduce the item-probe similarity (and accuracy) to a 
greater extent on match than foil trials. Consistent with a predicted match/foil dissociation, recognition accuracy 
on match and foil trials (Fig. 3d) were modulated differently by the number of disturbances (rmANOVA; Distur-
bances {1, 2, 3, 4} × Trial type {match, foil}; Disturbances × Type:  F3,60 = 6.70, p < 0.001, ηp

2 = 0.26; Disturbances: 
 F3,60 = 8.33, p < 0.001, ηp

2 = 0.29; Trial type:  F1,20 = 0.8511, p = 0.3672, ηp
2 = 0.04). While match trials showed an 

accuracy reduction of 13% with increasing disturbances  (F3,60 = 17.72, p < 0.001), accuracy on foil trials was not 
measurably affected by the number of disturbances  (F3,60 = 0.31, p = 0.82).

Additionally, response times on correct trials (RTs; Fig. 3e) increased with the number of disturbances on 
match  (F3,60 = 11.32, p < 0.001; Suppl. Table 2) but not foil  (F3,60 = 1.63, p = 0.1923; Suppl. Table 2) trials. This 
resulted in a significant interaction (rmANOVA; Number of disturbances {1,2,3,4} × Trial type {match, foil}, Dis-
turbances × Type:  F3,60 = 4.64, p < 0.006, ηp

2 = 0.19; Disturbances:  F3,60 = 7.99, p < 0.001, ηp
2 = 0.29; Type;  F1,20 = 3.19, 

p = 0.089, ηp
2 = 0.14).

Furthermore, confidence was significantly lower for match than foil trials (Fig. 3f; rmANOVA; Distur-
bances {1,2,3,4} × Trial Type {match, foil}; Disturbances × Type:  F3,60 = 4.46, p = 0.0068, ηp

2 = 0.18; Disturbances: 
 F3,60 = 10.45, p < 0.001, ηp

2 = 0.34; Trial Type:  F1,20 = 30.97, p < 0.001, ηp
2 = 0.61).

Taken together, the observed pattern of results where match trials were characterized by lower accuracy, 
higher RTs, and lower confidence than foil trials were consistent with a loss in precision of the item’s representa-
tion in memory, according to a stimulus similarity rationale.

Capacity for multiple distinct tastes (Experiment 2). We next sought to estimate the capacity of taste 
working memory using a MIR task (Figs. 1a and 2b). Participants were to remember one to five sequentially 
presented tastes (items) on each trial, representing set sizes of one to five (referred to as S1 to S5). A taste-
less stimulus (rinse) followed each item to cleanse sapid residues with minimal taste recognition disturbance 
to minimize sensory interference. Item memory was then tested with a probe stimulus. Participants indicated 
whether the probe matched any of the items in the remembered set (i.e., match) or not (i.e., foil) and then rated 
their confidence in that decision. We sought to assess WM capacity based on how recognition accuracy changed 
with increasing set size.

Non‑uniform reduction in recognition accuracy with increasing set size. Recognition accuracy decreased mono-
tonically with increasing set size (rmANOVA:  F4,76 = 37.52, p < 0.001, ηp

2 = 0.66; Fig. 4a). Accuracy was highest 
for S1 (M = 73.2%, SD = 10.8%). Although each additional increase in set size lowered accuracy, the relative 
decrements in accuracy for each additional item was not uniform. The decrement was 8.9% for S2 relative to 
S1  (t20 = 4.93, d = 1.10,  pbonf < 0.001, 95% CI = [0.023, 0.108]) and 7.9% for S3 relative to S2  (t20 = 3.71, d = 0.83, 
 pbonf = 0.015, 95% CI = [0.008, 0.098]). However, each additional increase in set size beyond three produced 
smaller decrements, namely, 3.1% for S4 relative to S3  (t20 = 1.41, d = 0.32, pbf = 1, 95% CI = [− 0.024, 0.063]) and 
5.4% for S5 relative to S4  (t20 = 2.13, d = 0.48,  pbonf = 0.469, 95% CI = [− 0.016, 0.089]; see Suppl. Table 3 for full 
pairwise comparisons). This non-uniform change was further supported by the qualitatively steeper negative 
slope fitting S1, S2, and S3 (Fig. 4a; − 0.059) compared to the slope fitting S3, S4, and S5 (Fig. 4a; − 0.026).

We next sought to disentangle the relative contributions of the match and foil trials to the observed reductions 
in recognition accuracy with set size increases.
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Larger accuracy reductions for foil versus match trials with increasing set size. The match accuracy for a particu-
lar set-size was the mean match accuracy across all possible probe-item configurations for that set size (e.g., for 
set size 2, the probe could match item 1 or item 2).

A key consideration when evaluating the effect of set-size on match and foil accuracy was the role of stimulus-
similarity. In the SIR task (Experiment 1), recognition accuracy for similar item-probe foil pairs was lower than 
for dissimilar pairs (Fig. 3c). Accounting for the equivalent effects of stimulus-similarity with the multi-item 
sets was crucial since stimulus-similarity depends on the type of tastes that must be remembered rather than 
constraints on the number of items that can be remembered (i.e., capacity). Specifically, for multi-item sets, 
the probability that a probe stimulus shares a taste component with one or more items increases with set size. 
This could lead to increased errors on foil trials with increasing set size and, conversely, inflate the accuracy of 
match trials.

Consistent with these hypothesized effects, trial type was a significant modulator of how recognition accuracy 
changed with set size (rmANOVA: Type {match, foil} × Set size {1,2,3,4,5}, Type × Set size:  F4,76 = 4.19, p = 0.027, 
ηp

2 = 0.18; Type:  F1,19 = 9.58, p = 0.006, ηp
2 = 0.34; Set size:  F4,76 = 37.99, p < 0.001, ηp

2 = 0.67; Fig. 4b). Accuracy on 
foil trials decreased by 35.9% with a set size increase from one to five  (F4,76 = 25.72, p < 0.001). The corresponding 
effect of set size on match trial accuracy was only 10.8% and not statistically significant  (F4,76 = 2.21, p = 0.08).

These results show that the reduction in recognition accuracy with increasing set size (Fig. 4a) was dominated 
by the role of foil trials rather than match trials. Due to the potentially significant role of stimulus-similarity 
effects when interpreting set-level foil and match accuracy, we focused on match trials of individual items to 
identify capacity constraints on individual set items.

Maximum capacity limit of 3 items. With capacity constraints, an accuracy reduction with increasing set size 
(Fig. 4a) might be expected. However, these constraints could be organized in different ways. For instance, the 
hypothesized capacity constraints might have an ensemble effect where all items in the set might be recognized 

Figure 5.  Response times and confidences in Experiment 2. (a) Response times (in seconds) for match and 
foil trials across the set size. (b) Recognition accuracy (in proportion correct) for each confidence level (1 = not 
confident, 4 = very confidence). (c) Confidence for match and foil trials across the set size. Data points are 
means; error bars are SEM. Gray lines represent single-subject data (N = 20).

Figure 4.  Recognition accuracy in Experiment 2. (a) Recognition accuracy across set sizes. The red line is fitted 
to the first three data points with a slope  (m1) of − 0.059, and the blue line is fitted to the last three data points 
with a slope  (m2) of − 0.026. (b) Recognition accuracy of match and foil trials across set size. (c) Serial positions 
for match trials. Recognition accuracy for each item in a given set size relative to the probe. I.e., in set size 5, the 
first item presented is at position − 5 from the probe. Accuracy is the proportion of correct responses (propn). 
Data points are means, error bars are SEM. Gray lines represent single-subject data (N = 20). Filled circles 
represent accuracy significantly above chance (p < 0.05); open circles represent accuracy not significantly above 
chance.
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with similar accuracy, but this overall accuracy might reduce with increasing set  size19–21. Alternatively, capacity 
constraints might be organized in an all-or-nothing manner where certain items in the set might be recognized 
with high accuracy while other items might be lost from memory due to capacity  constraints23.

An important factor in distinguishing these constraints was the sequential presentation of items due to which 
each item is maintained in WM for differing latencies relative to the probe. To equate inter-item latency differ-
ences across set sizes, Fig. 4c shows the recognition (match) accuracy for items at different serial positions in 
each set relative to the probe. For each set size, recognition accuracy across serial positions varied significantly 
(one-way rmANOVA;  S2:  F1,19 = 28.52,  pbonf < 0.001, ηp

2 = 0.60;  S3:  F2,38 = 15.76, p < 0.001, ηp
2 = 0.45;  S4:  F3,57 = 10.72, 

p < 0.001, ηp
2 = 0.36;  S5:  F4,76 = 9.72, p < 0.001, ηp

2 = 0.34). There was a notable recency effect where accuracy was 
highest for the last item in all set sizes (i.e., with the lowest latency to the probe). Recognition accuracy decreased 
as the latency between the item and probe increased. Furthermore, a primacy effect was observable for the set 
sizes 3 and 4.

The prominent recency effect across set sizes also suggests a limited role for sensory adaptation, which would 
predict increases in encoding interference for tastes presented later in the sequence (Fig. 2).

Importantly, the variable accuracy across items and the comparably high recency effect across set sizes was 
inconsistent with an ensemble effect, i.e., on average, a relatively uniform decrease in accuracy across all items 
with increasing set size. To assess whether all the individual set items were held in memory, we tested the 
accuracy at each serial position against random chance (50%) (Suppl. Table 4). All items showed above-chance 
accuracy with the critical exception of items with a latency at − 3 and − 4 relative to the probe (Fig. 4c). Specifi-
cally, these items were item 2 (abbreviated as I2) in S4 (latency at − 3) and items I2 and I3 in S5 (latency at − 3 
and − 4, respectively). Thus, a maximum of only three items could be successfully retained even when the set 
size required more items to be remembered.

We next assessed whether participants were subjectively aware of this capacity limit on the number of remem-
bered items.

Limited subjective awareness of capacity limits. To assess participants’ awareness, we first evaluated RTs (on 
correct trials) as a possible indicator of recognition uncertainty. Mirroring the effects of trial-type on accuracy 
(Fig. 4b), trial type also modulated how the mean RTs on correct trials changed with set size (Fig. 5a; rmANOVA; 
Type {match, foil} × Set size {1,2,3,4,5}; Set size × Type:  F4,76 = 5.47, p = 0.003, ηp

2 = 0.22; Type:  F1,19 = 7.76, p = 0.012, 
ηp

2 = 0.29; Set size:  F4,76 = 1.16, p = 0.326, ηp
2 = 0.06;). Foil RTs increased with set size by as much as 136.7 ms 

from set size one to five  (F4 = 4.03, p = 0.005), while the corresponding change in match RTs was not statistically 
significant  (F4 = 1.39, p = 0.25). This similarity in RTs across match trials was notable since the set sizes S4 and 
S5 were affected by capacity limits on the number of remembered items. A more direct indicator of subjective 
awareness was provided by how participants rated their confidence in their response on each trial. As in Experi-
ment 1, trials with a higher confidence rating also had higher accuracy in Experiment 2 (Fig. 5b; rmANOVA; 
 F4,46 = 6.95, p = 0.004, ηp

2 = 0.27). However, when separated by trial type (i.e., match and foil), confidence on 
correct trials changed with set size (Fig.  5c; rmANOVA; Type {match, foil} × Set size {1,2,3,4,5}; Type × Set 
size:  F4,76 = 12.85, p < 0.001, ηp

2 = 0.404; Type:  F1,19 = 0.09, p = 0.766, ηp
2 = 0.005; Set size:  F4,76 = 24.667, p < 0.001, 

ηp
2 = 0.565). Resolving the interaction via simple main effects analyses, we found a reduction in confidence with 

increasing set size for foil trials  (F4,76 = 29.44, p < 0.001; see Suppl. Table 5 for pairwise tests). However, confi-
dence in match trials remained largely unchanged by set size. Although the match trials exhibited a significant 
influence of set size  (F4,76 = 5.07, p = 0.001 ), except for a single pair, none of the other pairwise differences were 
statistically significant (Suppl. Table 5).

Taken together, the modulation of the RTs and confidence ratings on foil trials but not match trials mirrored 
the dissociation in recognition accuracy (Fig. 4b). As stimulus-similarity effects rather than capacity limitations 
putatively drove this dissociation of match/foil accuracy effects, this finding suggests that the RTs and confi-
dence ratings might be indicators of the subjective uncertainty arising from stimulus-similarity and not about 
capacity per se.

Discussion
We used two novel single and multi-item taste recognition tasks to investigate gustatory WM’s organization and 
capacity limit. Participants reliably recalled single items despite oro-sensory distractions suggesting that tastes 
were actively and resiliently maintained. Participants distinctly and reliably maintained up to three tastes for 
subsequent recognition with varying resolution when multiple tastes were presented. This shows that the concept 
of WM extends to perceptual information from the gustatory system.

Resilient representation of single taste items. WM capacity requires  attention2,38 which can be 
exhausted by various aspects of the task unrelated to WM. In a previous study of gustatory  WM15, the presenta-
tion of each taste stimulus involved three steps: participants were to grasp a cup with the stimulus liquid, take a 
sip, and then spit it out. We used an automated system to deliver the taste stimuli to avoid the detrimental effects 
on WM of such multiple  tasks39. Nevertheless, the oro-sensory stimulation associated with a taste stimulus was 
a potential disturbance that could take up attentional resources and affect WM maintenance. In our test of this 
possibility (Experiment 1), we found that recognition accuracy for a single taste to be well above chance and 
only marginally influenced by the presence of multiple tasteless oro-sensory disturbances. Although recogni-
tion accuracy decreased with each additional disturbance, and hence also with increasing time, these decre-
ments were relatively small (2–6%), suggesting that attentional interference and time-based forgetting played 
only minor roles.
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Sensory interference from residues of prior stimuli or adaptation could have impeded the sensory encoding 
of subsequent  stimuli26,40 and hence lowered recognition accuracy independent of capacity limitations, particu-
larly for the short intervals between consecutive taste presentations. Our results indicate a limited role for both 
these factors. In Experiment 1, item-probe pairs separated by a single tasteless stimulus had a slightly higher 
recognition accuracy as compared to pairs that were not (Fig. 3a). This might be because the tasteless stimulus 
successfully removed the items’ residuals before probe presentation. We thus presented a tasteless stimulus after 
each taste in Experiment 2 to serve as a rinse. If adaptation had a prominent role (as hypothesized in Fig. 2c), 
recognition accuracy in Experiment 1 would have been expected to increase with the increasing time between 
item and probe as adaptation’s detrimental effects faded. However, for the sequential presented items in Experi-
ment 2, adaptation would have been expected to have a more considerable impact on items presented later rather 
than earlier during the sequence. Neither of these predicted effects was evident in our results. Although we cannot 
exclude (cross)adaptation in Experiment 2, its effects were likely ineffectual because the tastes were adequately 
encoded and maintained for later retrieval. Furthermore, accuracy was highest for the last item in a set (recency 
effect; Fig. 4c), which is incompatible with habituation. However, we cannot exclude that a release of adaptation 
compensates for detrimental effects of attentional interference.

Another possible source of encoding-related distortions was crossmodal cueing, including verbalized encod-
ing of the taste qualities. Participants were instructed not to name the stimuli and confirmed this during debrief-
ing. Our results suggest participants’ compliance: recognition accuracy was systematically modulated by the 
chemosensory similarity between stimuli, which is incompatible with a purely verbal encoding of the stimuli. 
Furthermore, the reduction in match accuracy with increasing disturbances in Experiment 1 cannot be explained 
with the ease of remembering a single word over extended periods.

Stimulus similarity assumptions. We used mixtures to expand the gustatory stimulus space beyond 
basic tastes. It is hypothetically possible that a mixture might take up more memory than a simple taste and affect 
performance if a feature-based organization of WM is assumed, which is notably debated in the visual  domain22, 
but  see41. We assumed that stimulus complexity would have only a minor effect, if any, because the fast pace and 
high task-demands in our study precluded an analytic strategy to identify the mixture components and informal 
reports of participants confirmed this. If it had an effect, it would be an underestimation of WM capacity, in line 
with observations in visual  WM22.

We use the qualitative predictions of computational models of stimulus-similarity on recognition to guide 
the interpretation of our findings. The rationale is based on computational models that characterize the critical 
role of stimulus similarity in recognition. Our focus is one influential family of models (the Generalized Context 
 Model42, Noisy Exemplar  Model34,43, where recognition is assumed to involve a comparison of the probe to each 
of the items in a set in memory as illustrated in Fig. 6a. According to these models, each probe-item comparison 
produces an estimate of the similarity of these representations. The similarity values are then summed together 
and compared against a decision-criterion. These models are grounded in the theoretical signal detection view of 
how the summed similarity is converted into a  decision34,43. We used the qualitative predictions of these stimulus 
similarity-based models to guide the interpretation of our findings.

Based on the above stimulus-similarity rationale, the loss in precision in an item’s representation might be 
expected to have a more significant effect on match trials than foil trials (see Fig. 6b). The left panel depicts the 
assumed effect of precision changes on match trials. When the item has high precision, there should be a high 
similarity to the probe representation. Hence, a relative reduction in the precision of this representation should 
lower the probe-item similarity. However, for the foil trials (right panel), we assume that the probe-item simi-
larity might already be low. Hence, any reductions in the precision might not further lower this similarity. This 
rationale accounts for our findings in Experiment 1, where match trials show a more significant reduction in 
accuracy with increasing disturbances than foil trials.

In Experiment 1 and 2, participants did not know in advance whether a trial would be a match or lure trial. 
Therefore, we assume that the decision criterion is the same for match/foil trials. However, it is theoretically 
possible that the number of disturbances (Experiment 1) or the set-size (Experiment 2) could be used as a cue 
for an online adjustment of the decision-criterion34,43–46. Experiment 2 suggests that this might not have been 
the case since the accuracy of the final items’ recognition was similar across set sizes (Fig. 4c).

Performance monitoring. Since WM has been traditionally proposed to represent consciously perceived 
 information27,33,47, we tested whether participants were aware of their memory performance through retrospec-
tive confidence ratings. Metacognitive judgments such as confidence ratings have been proposed to measure 
performance monitoring and perceptual awareness and to track accuracy in numerous, albeit not all, visual WM 
 tasks48,49. In both experiments, confidence tracked overall recognition accuracy, such that trials with higher con-
fidence had a higher accuracy indicating that participants were aware of the tastes (Figs. 3b, 5b). These findings 
align well with previous visual WM observations, where metacognitive awareness tracked recognition accuracy, 
suggesting that participants monitor their performance, crucial for WM  success48.

However, recognition accuracy in our experiments had another important determinant apart from capacity, 
namely, stimulus-similarity. The dissociation between match and foil trials in both experiments suggests that 
the confidence ratings and RTs (which can be viewed as an index of decision difficulty) were indicators of the 
subjective uncertainty related to stimulus-similarity rather than an awareness of capacity limitations.

In Experiment 1, the accuracy on match trials showed a greater modulation by the number of disturbances 
than on foil trials (Fig. 3d), consistent with a reduction in item-probe similarity as the item’s memory representa-
tion degraded. Following this pattern, the confidence ratings were lower for match trials (Fig. 3f), and RTs were 
higher for match trials and increased with the number of disturbances, unlike the foil trials (Fig. 3e).
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This accuracy-confidence link was inverted in Experiment 2, where the foil trials exhibited a substantially 
larger reduction in accuracy with set-size than the match trials (Fig. 4b). Even though a probe might be weakly 
similar to any single item, the cumulative similarity of the probe to the set was higher as set size increased, 
potentially leading to increased misjudgments of foil trials. Again, following this pattern, the confidence ratings 
for foil trials showed a greater modulation by set size than on match trials (Fig. 5c), and the RTs for foil trials 
were larger and modulated to a greater extent by set size than match trials (Fig. 5a). It was especially notable that 
participants seemingly failed to track that they "dropped" one or more items in the larger sets.

Together, our results suggest a subjective awareness of similarity-related uncertainty but not necessarily an 
awareness of capacity limitations.

Figure 6.  Stimulus similarity. (a) When the probe is compared to each item in a set, this comparison estimates 
these representations’ similarities. These similarity values are then summed together and compared against 
a decision criterion. (b) Left panel: for the match trials, when the item has high precision, there should be a 
high similarity to the probe’s representation. Conversely, the relative reduction in the precision of the item’s 
representation should lower the probe-item similarity. Right panel: for the foil trials, it is assumed that the 
probe-item similarity might already be low. Hence, any reductions in the precision might not further lower this 
similarity.
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Storage capacity of gustatory WM. The observed monotonic decrease in recognition accuracy with 
increasing set size in Experiment 2 is in line with findings from other  modalities2,5,23 and could be interpreted 
as an indicator for a limited gustatory WM capacity. However, a set-size-dependent reduction of accuracy is 
insufficient to unequivocally deduce whether shared-resources constrain working  memory19,21 or a slot-based 
fixed item  limit22,23. We examined recognition accuracy at various positions within the sets to address this ques-
tion. While most items were recognized with above-chance accuracy, this was not the case for some items in 
sets larger than 3, indicating that these items were lost from memory due to capacity constraints. The observed 
serial-position effects also show that some items are represented at a better resolution than others. This is incom-
patible with an ensemble effect, which predicts that cognitive resources, on average, to be shared equally among 
items in a  set19–21. Instead, a slot-based limited item model, according to which the maximum number of stimuli 
is discretely and with adequate resolution  represented22,23,50,51, better explains the observed WM performance. 
It is also conceivable that our results reflect the loss of unattended information in gustatory WM. If each new 
item reduces and eventually exhausts the available attentional resources, unattended items may be degraded to 
an extent where recognition is rendered impossible.

Furthermore, we found that trial type (match or foil) was a significant modulator of how recognition accuracy 
changed with set size, such that the set-size dependent accuracy decrease was primarily driven by foil and not 
match trials. This variation is not readily explained by a slot-based limited item model, which would predict a 
comparable performance on foil and match trials. Instead, stimulus-similarity has most likely contributed to, if 
not caused, the set-size-dependent accuracy decrease because it is more likely to occur in larger sets and affect 
foil trials more than match trials. However, stimulus-similarity would be affected by the resolution of represen-
tations rather than the number of items that can be  remembered50,52,53. Taken together, our results advocate a 
hybrid model of gustatory WM with a limited number of slots where items are stored with varying amounts of 
 precision52, for similar argument  see53.
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