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The classification of electroencephalogram (EEG) signals is of significant importance in
brain–computer interface (BCI) systems. Aiming to achieve intelligent classification of
EEG types with high accuracy, a classification methodology using sparse representation
(SR) and fast compression residual convolutional neural networks (FCRes-CNNs) is
proposed. In the proposed methodology, EEG waveforms of classes 1 and 2 are
segmented into subsignals,and 140 experimental samples were achieved for each type
of EEG signal. The common spatial patterns algorithm is used to obtain the features
of the EEG signal. Subsequently, the redundant dictionary with sparse representation
is constructed based on these features. Finally, the samples of the EEG types were
imported into the FCRes-CNN model having fast down-sampling module and residual
block structural units to be identified and classified. The datasets from BCI Competition
2005 (dataset IVa) and BCI Competition 2003 (dataset III) were used to test the
performance of the proposed deep learning classifier. The classification experiments
show that the recognition averaged accuracy of the proposed method is 98.82%. The
experimental results show that the classification method provides better classification
performance compared with sparse representation classification (SRC) method. The
method can be applied successfully to BCI systems where the amount of data is large
due to daily recording.

Keywords: electroencephalogram, common spatial patterns, sparserepresentation, residual convolutional neural
networks, fast compression

INTRODUCTION

Brain–computer interface (BCI) is one of the research hotspots in the fields of biomedicine and
signal processing in recent years. Brain–computer interface technology is a human–computer
interaction method based on brain signals. It provides a communication channel for non-
neuromuscular control. Brain–computer interface is a communication system that enables the
human brain to interact with the external environment without relying on the peripheral nervous
system and muscles.

In the BCI system, electroencephalography (EEG) signal is the manifestation of brain nerve
electrical signals. It is also the basis of signal processing in the system. Electroencephalography
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signals comprehensively reflect the physical and chemical
activities of the nervous system and are powerful tools for
analyzing neural activity and brain conditions (Wu et al.,
2008). Any changes in brain function and structure caused
by neurological brain diseases can lead to abnormal brain
electrical signals. In clinical medicine, the information processing
of EEG signals not only provides an objective basis for the
diagnosis of certain brain diseases, but also provides effective
treatment for some brain diseases (Thornton, 2002). For a
long time, doctors need to manually detect and analyze the
waveform characteristics of EEG, with intensive labor and strong
subjectivity. Therefore, the classification of EEG signals is of
great significance to the identification, morbid prediction, and
prevention of brain diseases.

In the BCI, the EEG signal is the main medium for human–
computer interaction. An important part of the BCI system is
processing the collected EEG signals to determine the type of
commands issued by the brain.Motor imaging (MI) signal is
a type of EEG signals. It refers to brain signals generated by
imagining limb movement without actual limb movement. By
analyzing the MI signal, it is possible to judge the imaginary’s
movement intention and operate the external device. At present,
the motion imaging control has great potential application value
in various fields such as sports function rehabilitation, motor
function assistance, and so on. Therefore, the MI signal becomes
the most commonly used signal in the BCI.It is also the EEG
signal studied in this article. Because of the non-stationarity
of the EEG signal and the influence of a large number of
background waveforms and artifacts, EEG classification is a
challenging problem. At present, researchers have done a lot
of work in various fields to study the feature extraction and
classification of EEG signals.

Common spatial patterns (CSPs) is a popular method of
extracting features in EEG studies. The CSP method has
been applied successfully in many EEG classification studies
(Ramoser et al., 2000; Grossewentrup and Buss, 2008; Mousavi
et al., 2011; Keng et al., 2012). Other well-known feature
extraction and dimension reduction methods such as principal
component analysis and independent component analysis are
also used frequently to improve the EEG classification accuracy
(Ince et al., 2006; Guo et al., 2008; Talukdar et al., 2014).
Autoregressive model and power spectral density estimation are
also common feature extraction algorithms for EEG classification
(Argunsah and Cetin, 2010; Seth et al., 2017). In the classification
part, the frequently used classification methods include linear
discriminant analysis (Rajaguru and Prabhakar, 2017), Bayesian
method (Bashashati et al., 2016), BP neural network (Gao et al.,
2012), support vector machine (SVM) (Liu et al., 2012), and so
on (Wang et al., 2006; Yang et al., 2012; Roeva and Atanassova,
2016). The characteristics of EEG signals mainly include the
following aspects: randomness, weakness, catastrophe, non-
stationarity, low frequency, and non-linearity. Therefore, it
is difficult to determine the representation and appropriate
description (Gao et al., 2018).

Sparse representation is a fast developing field by constructing
sparse linear models. It represents a given input signal
as a linear superposition of base signals selected from a

predetermined dictionary (Chen, 2016).It can find a suitable
dictionary for ordinary densely expressed signal samples, and
convert the samples into a suitable sparse expression form.
Sparse representation can simplify learning tasks and reduce
model complexity. Sparse representation has a large number
of applications in the fields of signal acquisition, denoising,
and image restoration (Elad and Aharon, 2006; Yang and Li,
2009; Li et al., 2013). The classification of EEG signals based
on sparse representation is also developing gradually. Shin
et al. (2015) proposed simple adaptive sparse representation-
based classification (SRC) schemes for EEG classification,
and the proposed adaptive schemes show relatively improved
classification accuracy as compared to conventional methods
without requiring additional computation. Zhou et al. (2012)
proposed a method to learn a new dictionary with smaller
size and more discriminative ability for the classification, and
the experimental results of the EEG classification show that
the proposed method outperforms the SRC method. Sreeja and
Samanta (2020) proposed a weighted SRC (WSRC) for classifying
MI signals to further boost the proficiency of SRC technique, and
the experimental results substantiate that WSRC is more efficient
and accurate than SRC.However, there is a contradiction between
dictionary size and algorithm recognition accuracy.

Deep learning methodologies show outstanding performances
in pattern recognition problems (Huang et al., 2019). Although
the traditional pattern recognition method has been widely
adopted, there is still a problem of relying on experience
and prior knowledge in the process of manually selecting
EEG signal features. In addition, feature extraction algorithms
and feature classification algorithms use different objective
functions so as to affect the pattern recognition accuracy. The
deep learning neural network can extract more distinguishable
and interpretable features of EEG signals. Meanwhile, the
classification method based on deep learning neural network
includes feature extraction and feature classification in a frame so
as to avoid the loss of signal information caused by separating the
two steps. Therefore, EEG classification based on deep learning
related techniques has become a research hotspot. A deep belief
network model (An et al., 2014)was applied for two class motor
imagery (MI) classification, and the proposed model was shown
more successful than the SVM method. Tsinalis et al. (2016) used
convolutional neural networks (CNNs) to learn a single-channel
EEG-based classification task filter for the automatic scoring of
the sleep stage.Yang et al. (2015) used CNN to classify MI EEG
signals. Chambon et al. (2018) proposed an end-to-end deep
learning method to extract information from the EEG channel,
which can finally correctly classify 91% of sleep stages from EEG
signal.A recurrent CNN architecture was proposed by Bashivan
et al. (2015) to model cognitive events from EEG data. A deep
learning network with principal component–based covariate shift
adaptation was proposed by Jirayucharoensak et al. (2014) for
automatic emotion recognition.

Because the EEG signal contains a lot of noise and redundant
information, it is not effective to obtain classification information
directly from it. The sparse representation method can effectively
remove the redundant information and retain the feature
information that is beneficial to classification to best express the
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signal feature information. Meanwhile, the deep learning neural
network has a wide range of applications in pattern recognition.
Therefore, we combine the advantages of these two methods.
We innovatively use the sparse features of the EEG signal as the
input terminal of the deep neural network model and train the
deep neural network model parameters to realize the automatic
classification of the EEG signal.

In this article,we propose an intelligent EEG classification
method based on sparse representation and enhanced deep
learning networks.The features of the EEG signal are obtained
through the CSP algorithm, and then the redundant dictionary
with sparse representation is constructed based on these features.
Subsequently, the sparse features were utilized as input of the fast
compression deep learning networks to achieve the classification
of EEG signals.The dataset downloaded from the website of
BCI Competition 2005 (dataset IVa) and BCI Competition 2003
(dataset III) was used as the training and testing data. The
classification results using the proposed method can reach an
averaged accuracy of 98.82%.

The rest of this article is organized as follows. In Methods,
we explain the methodology used for the EEG classification,
including methodology overview, database and segmentation,
and data preprocessing. We also explain the sparse representation
classification model and the proposed fast compression deep
learning networks. In Results, numerical evaluation and
experimental results of EEG classification are shown, including
evaluation metrics and the experimental classification results.
Finally, we give the discussion and conclusion in Discussion.

METHODS

Methodology Overview
The overall procedures of the proposed EEG classification
method based on sparse representation and fast compression
deep learning networks are shown in Figure 1. The original
EEG signals were shared by the BCI Competition database
(Blankertz et al., 2006). First, EEG waveforms are segmented
into subsignals. Then the EEG signal features are obtained
through the CSP algorithm, and the redundant dictionary
with sparse representation is constructed based on these EEG
signal features. Subsequently, the sparse features were utilized
as input of the fast compression deep learning networks to
complete the classification of EEG signals. Finally, EEG types are
classified by the fast compression residual CNNs (FCRes-CNNs)
classifier intelligently.

Database and Segmentation
The experimental data in this article comes from the databases
in BCI Competition 2005 (dataset IVa) and BCI Competition
2003 (dataset III).The databases contain datasets recorded by five
different healthy subjects (aa, al, av, aw, ay). All five subjects
underwent BCI experiments with three MI exercises of left
hand, right hand, and right foot. In this experiment, only two
types of right hand (R) and right foot (F) were used for data
analysis, and they are named class 1 and class 2. Each EEG
signal has 118channels.The common goal of BCI Competitions

EEG  Original Signal

EEG  Sub-Signal Signal

Signal  
Segm entation

Training 
Set

Test
Set

Feature Extraction

CSP
algorithm

Sparse Representation

Dictionary Design

L1 min
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Fast Down-sampling 
Convolutional module

Residual convolutional 
module

Classification module

Fast Compression 
Deep Learning Networks

Classification Results

FIGURE 1 | Overall procedures in EEG classification based on the proposed
method.

was to classify these MI tasks by using EEG signals recorded
at C3, Cz, and C4 channels.First, the EEG signal is filtered by
a bandpass filter of 0.05 to 200 Hz. Then, the EEG signal is
digitized at a frequency of 1,000 Hz. Finally, the EEG signal
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is down-sampled to 100 Hz, and it is analyzed offline by the
Berlin research team.

During the experiment, the subjects were seated in a
comfortable chair, with their arms resting naturally on the
armrests.At the beginning of the experiment, a visual cue in
the form of a shoulder appeared in the center of the screen,
informing the subjects of the MI task to be performed. The
subject’s imagination time was 3.5 s.After the end of the MI, the
subjects had a short time to rest and the rest time varied randomly
from 1.75 to 2.25 s.

Data Preprocessing
First, EEG waveforms need to be segmented to the 3-s time
samples, and140 experimental samples can be achieved for each
type of EEG signal. To reduce the interference from other sources
such as electrooculogramsand electromyograms, 8- to 15-Hz
bandpass filters were applied in this article (Gao et al., 2018).The
CSP method is an effective method in the feature extraction
problem of motion imaging signals.It is suitable for two classes
(conditions) of multichannel EEG-baBCIs, so this article adopts
the CSP method to filter the EEG signals and extract energy
features. When the number of CSP filters is set as 32, after filtering
operation, training and testing EEG samples can be converted to
32 CSP eigenvalues, which can be used for data classification.

Sparse Representation Classification
Model
Sparse representation represents a given input signal as a linear
superposition of a small set of base signals selected from a
predetermined dictionary. It can be said that the problem of
sparse representation is a problem of representing a given input
signal as simply as possible. For the EEG signals, a feature vector
can be obtained by CSP (Legendre and Fortin, 1989):

asvi = [ v1i, v2i, . . . ,vmi] ∈ Rm (1)

where m is the sample dimension. If all the characteristic vector
signals from different types of EEG signals are put in A, the
matrix A can be written as the following form:

A = [ v1, v2, . . . ,vn] ∈ Rm×n (2)

Rajaguru and Prabhakar (2017) declared that if the training data
from the ith category are enough, the test sample y from the same
category can be shown as a linear combination of the training set
associated with subject :

y = ∝1v1 +∝2v2 +· · ·+ ∝nvn (3)

where∝ is the coefficient vector, and its elements are not all zero.
By concatenating Ai, the dictionary matrix A for all k classes can
be acquired as i = 1, 2, .......k. The dictionary can be given as
follows:

A = [ A1,A2, . . . ,Ak] ∈ Rm×k (4)

If the EEG feature signal y is the tested signal, y can be written as
a linear combination of.

allnk training data.

y = Ax = x1,1v1,1 + x1,2v1,2 +· · ·+

x1,nv1,n + x2,1v2,1 +· · ·+ xk,nvk,n (5)

where x = [v1,1, v2,2, . . . ,vk,n]T ∈ Rnk are the coefficients
vectors. In the ideal case,

x = [ 0, 0......., vi,1, vi,2, . . . ,0, 0......., 0] is a vector, which is
mostly zero value except for those elements corresponding to
the class of ith; thus, the corresponding class of EEG feature
signals can be classified. The two types of sparse presentation
classification operations are shown in Figure 2.

The test sample feature vector can be expressed as a linear
combination of feature vectors of the training sample. The sparse
coefficients x are used to encode the identity information of the
test sample. The sparse coefficients are obtained by solving the
linear equation of (5). Because the number of CSP filters is smaller
than the number of training samples, the solution of x is not
unique so that Eq.5 is underdetermined. New theories of sparse
representation and compressed sensing have pointed out that
L1 norm optimization can be used to solve underdetermined
linear equations as long as x is sufficiently sparse. Based on the
vector x and the test signal y, L1-norm minimization equation
can be listed as follows:

x̂1 = arg min||x||1subjects.t.Ax = y (6)

In the ideal case, when we obtained the estimate, it should
have non-zero element corresponding to y. Through analyzing
the indices of the non-zero elements in x̂1, the class of y can be
determined. However, because of the modeling limitations and
noise, x̂1 is not exactly zero but is close to zero. To resolve this
problem, the following equation will be calculated generally as
follows:

r1(y ) =
∣∣∣∣y − Aδi(x)

∣∣∣∣
2 (7)

The test samples are classified according to the approximation
residuals. The smaller the approximation residual, the closer
the test sample is to this category. Therefore, the test sample
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FIGURE 2 | Sparse representation classification model.
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is discriminated as the smallest category that approximates the
residual. For each class i, δi(x) is obtained by nulling all the
elements corresponding to the other class, then class i can be
classified by analyzing the residuals, that is:

class
(
y
)
= arg miniri(y) (8)

Residual Neural Network Theory
Convolutional neural network is a special deep feedforward
neural network designed by the inspiration of the concept of
“receptive field” in the field of biological neuroscience (Liu, 2018).
For traditional CNNs, the learning ability of the network will
increase as the depth of the network increases. Meanwhile, the
convergence speed of the network will slow down, and the time
required for training will also become longer (Huang et al.,
2020). The aim of residual networks is to address the degradation
problem, which is defined as the decrease in accuracy as depth
becomes greater than a certain threshold (He et al., 2016).
Convolutional neural networks composed of residual block local
deep neural networks units can address the degradation problem
by facilitating the learning of identity mappings and solve
difficulty in tuning of deep networks.

The residual neural network draws on the ideas of Highway
networks (Srivastava et al., 2015). When the number of network
layers reaches a certain threshold, the learning rate will decrease,

and there is a risk of accuracy rate decline. The input of each
layer in the general conventional CNN is derived from the output
of the previous layer (Qin, 2019). It will be easily paralyzed
if a network with many layers is performed with gradient
calculations. The network structure of the residual network is
similar to a “short circuit” structure. The output of the previous
layers in the residual network does not go through the middle
multiple network layers but directly serves as the input part
of the network layer behind (Ji, 2019). Therefore, the residual
structure has transformed the learning objectives. It no longer
learns a complete mapping relationship from input to output,
but the difference between the optimal solution H (x) and the
input congruent mapping x (Huang et al., 2020). The residual
calculation formula is as follows:

F
(
y
)
= H (x)− x (9)

The residual network can be regarded as a type of architecture
consisting of a stack of residual blocks. The input data in
the residual network come from different combinations of the
previous network structure. This method introduces sufficient
reference information to extract the effective features of the input
EEG signal data (Liu, 2018). Because the paths in the network are
relatively independent of each other, the regularity of the deep
learning network structure is improved greatly.
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FIGURE 3 | The architecture of the proposed FCRes-CNN.
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Proposed Convolutional Networks
In this section, we propose the FCRes-CNNs. As shown in
Figure 3, the FCRes-CNN is mainly composed of a fast down-
sampling module, three residual convolution modules, and a
classification module. In the proposed FCRes-CNN model, the
learning rate is set as 0.001, and the batch size parameter
is set as 2,500.

In the proposed convolutional networks, convolutional layer
with a stride of three is applied in the fast down-sampling
module. Although a pooling layer also has effect of data
compression, reducing overfitting, it will lose most of the original
signal information while increasing network depth and spatial
information loss due to the averaging nature of the pooling layer.
Compared with the pooling layer, the convolutional layer with
a large stride can adaptively learn the convolution kernel while
compressing the input data (Huang et al., 2020). Therefore, we
applied a convolutional layer with a large stride instead of a
pooling layer in the fast down-sampling module.

The fast down-sampling module consists of a convolutional
layer, a random dropout layer, and a batch-normalization layer.
The convolutional layer with a stride of 3 is the main part
of the fast down-sampling module. A random dropout layer
and a batch-normalization layer follow the convolutional layer
to enhance the generalization of the networks model. The fast
down-sampling module can effectivelysimplify the calculation
of deep network models, reduce data redundancy, and promote
model learning (Huang et al., 2020).

Convolutional layers in series are applied in the residual
convolution module, which are followed by residual short circuit.
Then, a random dropout layer is added after the convolutional
layer, and the max-pooling layer is applied to down-sample the
EEG signal feature vectors.

In the classification module, a convolution layer is first used
to reduce the dimension of the feature vectors. Then, a flattened
layer follows the convolution layer. After the flattened layer, a
random dropout layer is applied to prevent overfitting.

RESULTS

Evaluation Metrics
The accuracy and loss were used as the evaluation criteria in the
pattern recognition field.Therefore, we used the two evaluation
criteria for the classification performance of EEG types.The
accuracy and loss were calculated through Eqs10 and 11.

Accuracy (%)=
TP+TN

TP+TN+FP+FN
×100 (10)

where TP stands for true positive, meaning the correct
classification as class 1 of EEG; TN stands for true negative,
meaning correct classification as class 2 of EEG; FP stands for
false positive, meaning incorrect classification as class 1 of EEG;
and FN represents false negative, meaning incorrect classification
as class 2of EEG (Yin et al., 2016).

As for the metric of loss, it is defined as the difference between
the predicted value of the EEG classification model and the true

value for aspecific EEG sample (Huang et al., 2020). In this study,
the mathematical expressionof categorical cross entropy loss is
shown as Eq.11.

loss = −
1
n

n∑
i=1

ŷi1lnyi1 + ŷi2lnyi2 +· · ·+ ŷimlnyim (11)

where n represents the number of EEGsamples; m represents the
number of EEG types; ŷ represents the predictive output value;
and y represents the actual value.

The Experimental Classification Results
In classification for the EEG signals of classes 1 and 2, each
class can get 140 groups of 32 eigenvalues after the above
data processing. Based on the training samples, the redundant
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dictionaries of sparse classification algorithm were constructed by
using the CSP eigenvalues obtained by classes 1 and 2. Then, we
scrambled all the EEG training sample data randomly and then
selected the last 100 samples as the testing set. This approach
ensures that the distribution of the training set and testing set is
random and uncertain, and it can better reflect the classification
effect of the proposed classifier.

The classification of EEG signals was completed based on the
classification algorithm described insection “Methods.” The raw
EEG waveforms are segmented into subsignals. The features of
the EEG signal are obtained through the CSP algorithm. Then the
redundant dictionary with sparse representation is constructed
based on these features. Finally, the sparse features were utilized
as input of the fast compression deep learning networks to
complete the classification of EEG signals. The experiment runs
on a PC with 16GB of memory and 16GB of GPU memory.

Figure 4 represents the accuracy and loss curves of the sparse
representation algorithm (SRC) and the proposed classification
method (SRC +FCRes-CNN). From Figure 4, we can find that the
accuracy value curve convergence rate of the proposed model is
faster than that of SRC model, and the final accuracy convergence
value of the proposed model is also much higher than that
of SRC model. The loss value curve convergence rate of the
proposed model is faster than that of SRC model, and the final
loss convergence value of the proposed model is also much lower
than that of SRC model. From these results, we can conclude
that the proposed model achieves a higher average accuracy with
lower loss than the SRC model based on the classification results
of EEG signals. The proposed model outperforms the SRC model
in the EEG classification application.

In the contrast experiment, the SRC model achieved an
average accuracy of 88.79% and an average loss of 18.10%. In
contrast, the proposed SRC +FCRes-CNN model achieved an
average accuracy of 98.82% and an average loss of 4.74%. In this
article, the total number of EEG training trials is 280. For the
training process of deep learning, the number of samples is still
insufficient. If the number of training samples is sufficient, the
accuracy of classification will be further improved.

DISCUSSION

In this article, we proposed an EEG classification method based
on sparse representation enhanced deep learning networks.

The original EEG signals were shared by the BCI Competition
database. In the procedure of the proposed method, EEG

waveforms of classes 1 and 2 are segmented into subsignals.The
3-s time samples after the prompt to conduct the classification
experiment was applied, and 140 experimental samples can be
achieved for each type of EEG signal. The CSP algorithm is used
to obtain the features of the EEG signal. Then the redundant
dictionary with sparse representation is constructed based on
these features. Finally, the sparse features were utilized as input
of the fast compression deep learning networks to complete the
classification of EEG signal. The EEG classification is performed
in the FCRes-CNN classifier automatically and intelligently.

The accuracy result of the proposed method on BCI
Competition dataset Iva and dataset III is 98.82%, which is
higher than the sparse representation classification method. The
proposed method performs higher classification accuracy than
other methods in literature by a training even using only a few
samples, which is 280 trials in this article.We believe that the
proposed method is of great significance for BCI applications that
require real-time EEG classification of daily life use.
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