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The Preconditioning of Busulfan Promotes
Efficiency of Human CD133þ Cells
Engraftment in NOD Shi-SCID IL2Rγcnull
(NOG) Mice via Intra-Bone Marrow Injection
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Abstract
Human CD133þ stem cells were injected into the bone marrow cavity of NOG (NOD Shi-SCID IL2Rgcnull) mice with or
without preconditioning of busulfan in order to assess the efficiency of human CD133þ cells engraftment. Peripheral blood
from CD133þ-engrafted NOG mice was analyzed by flow cytometry. The results showed that human CD19þ B lymphocytes
could be detected at 4 weeks post-transplantation, and human CD4þ, CD8þ subsets of T lymphocytes, CD19– CD14– HLA-
DRþ DCs and CD19– CD14þ monocytes could be detected at 16 weeks post-transplantation. The survival rate of mice in
busulfan-untreated group (100%) was slightly higher than that in the busulfan-pretreated group (83%) (P > 0.05). However, the
differentiation efficiency of CD133þ stem cells in busulfan-pretreated group was significantly higher than that in the untreated
group (P < 0.05). This data imply that CD133þ cells could be a good resource for a humanized mouse model, and the pre-
conditioning of busulfan could be more conducive to accelerating the differentiation of human CD133þ cells in NOG mice by
intra-bone marrow injection.

Keywords
CD133þ stem cells, hematopoietic differentiation, busulfan, humanized mouse model

Introduction

Humanized mouse models with human hematopoietic and

lymphoid systems are regarded as novel approaches to study

the basic immunological mechanisms underlying clinical

diseases, such as infectious diseases, autoimmune diseases,

and cancer1–4. Such models can be established by transplant-

ing human hematopoietic stem/progenitor cells (HSCs) into

immunodeficient mice. However, the efficacy of HSCs

engraftment can be affected by various factors, such as

immunodeficient mouse strains, route of HSCs injection,

HSCs, and irradiation sources.

A popular method for the establishment of a humanized

mouse model is to inject human cord blood-derived CD34þ

cells intravenously into newborn immunodeficient mice with

preconditioning radiation5–8. However, it was reported that

CD133þ HSCs separated from cord blood performed better

than CD34þ in quantity and quality of differentiation after

engraftment. Moreover, it was also suggested that intra-bone

marrow injection (IBMI) provides a more efficient

engraftment of HSCs9–11. As for mouse strains, NOG (NOD
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Shi-SCID IL2Rgcnull) is accepted worldwide to be the best

recipient for HSCs, showing a higher ratio of human cell

differentiation after transplantation1,12. However, radiosen-

sitive NOG mice and the requirement for special equipment

and professionals for irradiation increase the costs of suc-

cessfully achieving humanized mice. Therefore, in present

study, busulfan was used to replace the preconditioning irra-

diation in NOG mice.

Busulfan is commonly used as a preconditioning drug in

clinical transplantation of HSCs, and is also a traditional

therapeutic drug for chronic myeloid leukemia. The side

effects of busulfan included bone marrow suppression, pul-

monary fibrosis, and skin pigmentation. Research has shown

that preconditioning using busulfan is more effective than

irradiation in the case of human B cell differentiation13,14. In

this study, we evaluated the effects on the establishment of

humanized mouse model of intra-bone marrow injection of

human CD133þ stem cells into NOG mice after precondi-

tioning with busulfan.

Materials and Methods

Experimental Animals

Female NOG mice (4–5 weeks old) were purchased from

Beijing Vital River Laboratory Animal Technology Co., Ltd,

(Beijing, China). All mice were placed in a sterile isolator

for a week to acclimate, and all experiments were conducted

under aseptic conditions. The animal experiments were per-

formed in accordance with Chinese Regulations for the

administration of experimental animals, and were approved

by the local authorities and Ethics Committee of Xinxiang

Medical University.

Reagents and Antibodies

Busulfan (B2635, Sigma-Aldrich, St. Louis, MO, USA)

was dissolved in dimethyl sulfoxide (DMSO), stored at a

concentration of 30g/L, and diluted to a working solution

using 0.9% physiological saline just before use. A CD133þ

magnetic beads isolation kit, anti-human CD133-FITC

antibody, and MACS sorting system were provided by

Miltenyi Biotec (Bergisch Gladbach, Germany). Ficoll

lymphocyte separation solution was from Tian Jin Hao

Yang Biological Manufacture (Tianjin, China). Anti-

human CD45-FITC, CD19-PE-Cyanine5.5, CD8-APC-

eFluor®780, anti-mouse CD45.1-Biotin antibody, and Red

cell lysis buffer were from Thermo Fisher Scientific (Wal-

tham, MA, USA). Anti-human CD3-BV421 antibody was

from Biolegend (San Diego, CA, USA). Anti-human CD4-

PE-Cy7, CD56-PE, CD11c-PE-Cy7, CD16-APC, CD3-

APC-H7, CD19-APC-H7, CD14-V450, HLA-DR-V500,

and Streptavidin-BV605 antibody were from BD Bios-

ciences (San Jose, CA, USA).

Purification of CD133þ HSCs

Mononuclear cells were first isolated from umbilical cord

blood by ficoll-density gradient centrifugation after written

informed consent was obtained from healthy women donors

according to the declaration of Helsinki. CD133þ hemato-

poietic stem cells were isolated by using the MACS mag-

netic separation column according to the Manufacturer’s

manual with the CD133þ MicroBead Kit. The purity of

CD133þ hematopoietic stem cells was detected by BD

FACS Caliber flow cytometry after staining the cells with

FITC labelled anti-human CD133 antibody. All procedures

involving human samples were approved by the Ethics

Committee.

Intra Bone Marrow Injection of CD133þ HSCs

Busulfan was administered to 6- to 7-week-old NOG mice

intraperitoneally at dosage of 30mg/kg, 24 h before intra-

bone marrow injection. After anaesthetizing mice with 0.2%
pentobarbital sodium, the upper limb of each mouse was

fixed in supine position, and the area of the knee joint was

disinfected by iodophor. After pulling the proximal tibia to

the front position with a 90� bend of the knee, a 26-gauge

needle was pierced into the bone marrow cavity from the

articular surface of the tibia. A 20 ml suspension of

CD133þHSCs containing 4 � 104 cells was injected slowly

into bone marrow cavity.

Flow Cytometry Analysis

Venous blood was drawn from the orbit of CD133þ-engrafted

NOG mice every other 4 weeks; 30 ml anticoagulant periph-

eral blood was added with antibody mixture, which included

human anti-CD45, -CD19, -CD8, -CD3, -CD4, -CD11c,

-CD56, -CD14, -CD16, -HLA-DR to label human various

leukocytes and mouse anti-CD45.1.antibody to label mouse

leukocytes. After incubating with antibody mixture on ice for

30 min, 500 ml red cell-lysing buffer was added to the periph-

eral blood and incubated at room temperature for 5 min. Cell

sediments were collected by centrifugation, washed three

times with FACS buffer (1�PBS, 2% FBS, 2 mM EDTA)

and then suspended in the same buffer. The samples were

detected by FACS Canto flow cytometer and analyzed by

Flowjo software.

Measurement of Survival Curves in Engrafted-NOG
Mice

Physical and behavioral changes, including rough pelage,

poor ability to ambulate, mental fatigue, increasing intensity

of palpation of the whole body, and the number of deaths in

both groups (n ¼ 6) were monitored every 2 weeks after

engraftment. Individual lifespan data were used to calculate

the Kaplan-Meier estimator, and survival curves were com-

pared using a Log rank test.
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Fig 1. Generation and assessment of humanized mice. (A) Operation of intra-bone marrow injection. (B) Assessment of percent survival of
humanized mice. Six humanized mice in each group were monitored weekly. (C) Differentiation of human CD45þ and CD19þ cells in each
groups at 4 weeks post-transplantation (wpt). D. the significant difference between control and busulfan groups in the ratio of hCD45 to
mCD45 and percentage of human lymphocytes subsets at 4 wpt. **P < 0.01, Data are mean + SEMs in humanized mice (n¼ 6, each group).
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Statistical Analysis

Data were analyzed by GraphPad Prism 5 and expressed as

mean + SEM. Two groups were compared using two-tailed

paired t-test. Differences between multiple groups were

analyzed by one-way ANOVA and Tukey’s post hoc test.

P < 0.05 was considered statistically significant.

Results

Construction of Humanized NOG Mice by Intra-Bone
Marrow Engraftment of CD133þ Stem Cells

First, CD133þ stem cells were purified from human umbi-

lical cord blood by immune-magnetic bead sorting technol-

ogy. Mononuclear cells [(3.6 + 1.2) � 107] were isolated

from 60–80 ml fresh umbilical cord blood by density gradi-

ent centrifugation. And [1.5 + 0.43) � 106] of CD133þ

HSCs were obtained from mononuclear cells by immuno-

magnetic separation with a proportion of (0.42 + 0.15)%.

The purity of CD133þ cells was (93.5 + 2.12)% as deter-

mined by flow cytometry (Fig. S1). Then, 4 � 104 of

CD133þ cells were injected into the bone marrow cavity

of tibia (Fig. 1A). The condition of the mice was monitored

every 2 weeks after engraftment. In busulfan-preconditioned

group (N¼ 6), one mouse with ruffled fur and reduced activity

was observed gradually after engraftment. At 2 weeks post-

transplantation (wpt), hunched posture and increasing intensity

of palpation of the whole body occurred. During the observa-

tion period, one mouse in the busulfan-treated group died at 4

wpt. Excluding pathogen infection and graft rejection, we con-

sidered that lethal busulfan sensitivity may have been the rea-

son. No deaths were observed in the busulfan-untreated group

(n¼ 6). The survival curves of the two groups were not statis-

tically significantly different (P ¼ 0.3) (Fig. 1B).

Differentiation of Human Immune Cells in CD133þ-
Engrafted Humanized NOG Mice

The efficiency of human immune cells differentiated in

humanized NOG mice was estimated by analysis of cell

surface biomarkers. At 4 wpt, the relative percentage of

human lymphocytes in all CD45þ leukocytes of the

busulfan-pretreated group was 7.49+0.4% of CD19þ cells,

7.87+0.38% of CD3– cells, respectively. However, in the

busulfan-untreated group, the corresponding percentages

were 0.72+0.13% and 0.77+0.13%, respectively. Human

CD3þ cells were not detected in either group (Fig. 1C,D;

Table 1). At 16 wpt, the relative percentage of human lym-

phocytes in all CD45þ leukocytes of busulfan-pretreated

group was 20+2.3% of CD3– cells, 16.48+1.2% of CD19þ

cells, 33.54+1.8% of CD3þ cells, 23.66+0.6% of CD4þ

cells, 7.66+1.5% of CD8þ cells, respectively. The ratio of

CD4þ to CD8þ cells was 3.52+0.4%. And the correspond-

ing percentage in busulfan-untreated group was

19.7+1.45%, 17.66+1.5%, 12.2+1.88%, 7.97+1.4%,

3.58+0.46%, respectively. The ratio of CD4þ to CD8þ cells

was 2.2+0.15% (Fig. 2A,B; Table 1).

Compared with the untreated group, the ratio of human

CD45þ to mouse CD45þ in the busulfan-pretreated group

was significantly higher (P < 0.01). And the efficiency of

human CD133þ cells differentiated into CD45þ leukocytes,

CD19þ, CD4þ, CD8þ lymphocytes and the ratio of CD4þ to

CD8þ cells was significantly higher than in the untreated

group (P < 0.01) (Figs 1D, 2B, S2, Table 1). But there was

no significant difference in the differentiation efficiency of

CD19þ lymphocytes at 16 wpt (Fig. 2B, Table 1).

In addition, human CD3– CD19– CD14– HLA-DRþ den-

dritic cells (DCs) and CD3– CD19– CD14þ monocytes were

also detected at 16 wpt. Compared with the untreated group,

there was a significant improvement in DC and monocyte

differentiation in busulfan-pretreated group, exhibiting

increases of seven-fold and three-fold, respectively (Fig.

2C, D, Table 1).

Discussion

NOG (NOD Shi-SCID IL2Rgcnull) mice with the character-

istics of defective T, B, and NK cells were established by

Mamoru Ito by crossing NOD/scid strain mice with a strain

of mice in which the gamma chain of the IL-2 receptor (IL-2

Table 1. Relative Percentage of Mouse and Human Leucocyte in Humanized Mice.

Groups
Cells

Control Busulfan

4 weeksa 16 weeksb 4 weeksa 16 weeksb

mCD45þ 95.7 + 0.15 64.6 + 2.4 88.5+0.76 40.3+1.6
hCD45þ 0.8 + 0.14 32.2 + 2.6 7.9+0.4** 57.5+1.2##

hCD3– CD19þ 0.7 + 0.13 17.7 + 1.5 7.5+0.4** 16.5+1.2
hCD3þ CD4þ — 7.97 + 1.4 — 23.7+0.6##

hCD3þ CD8þ — 3.6 + 0.5 — 7.7+1.5#

hCD3– CD19– CD14– HLA-DRþ DCs — 0.5 + 0.2 — 6.6+2.4#

hCD3– CD19– CD14þ monocytes — 0.6 + 0.3 — 1.8+0.21#

aBlood detected from humanized NOG mice after 4 weeks post-transplantation.
bBlood detected from mice after 16 weeks post-transplantation.
**P < 0.01, *P < 0.05 vs control of 4 weeks; ##P < 0.01, #P < 0.05 vs control of 16 weeks.
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R) was knocked out12. Due to their greater efficiency in HSC

differentiation7,15, NOG mice are used widely as a huma-

nized mice model in by CD34þ stem cell engraftment.

Although an important biomarker for HSCs, CD34 was

found not to be expressed on any of the resulting HSCs, and

CD34– HSCs could differentiate into CD34þ HSCs16–18.

As another important biomarker of HSCs, CD133 was

expressed on both of CD34þ and CD34– stem cells. CD34

was also expressed on 98% of CD133þ stem cells. Regard-

ing potential for differentiation and proliferation in the

absence of serum and mesenchymal cells, it was found that

CD133þ cells in G0 phase had a higher cellular events in

long-term culture and colony formation9–11. The results of

our study show that CD133þ cells could be a better resource

for humanized mice, as we found that the humanized mice

model could be established successfully even using only 2�
104 CD133þ cells for engraftment (data not shown). Further-

more, the route of engraftment can also contribute to the

efficiency of establishment of humanized mice. Using

intra-bone marrow injection, HSCs can directly enter the

bone marrow microenvironment, therefore providing a better

environment for proliferation and differentiation than when

entering peripheral blood via a tail vein19.

According to cell-surface markers in standardized flow

cytometry assays20, our study demonstrated that differen-

tiated human CD3– CD19þ B lymphocytes could be detected

in all NOG mice in busulfan-treated or untreated groups at 4

wpt. And differentiation of CD3þCD4þ and CD3þCD8þ T

lymphocytes could be detected at 16 wpt, accompanied by a

relatively stable proportion of CD19þ lymphocytes. More

importantly, human CD3– CD19– CD14– HLA-DRþ DCs

and CD3– CD19– CD14þ monocytes, which are pivotal par-

ticipants in phagocytosis, antigen presentation and cytokine

production, could also be detected at 16 wpt. These data

suggest that the humanized mice established by intra-bone

marrow injection of human CD133þ HSCs could possess

human innate and adaptive immune cells, as did CD34þ-

engrafted humanized mice21,22. With busulfan precondition-

ing, the proportion of human CD45þ leukocytes, various

human lymphocytes subsets, DCs and the ratio of CD4þ to

CD8þ cells in peripheral blood of NOG mice were signifi-

cantly higher than those of the untreated group (P < 0.05).

Moreover, two subsets of monocytes, classic (CD14þ

CD16–) and non-classic (CD14þ CD16þ), were also differ-

entiated and showed a significant difference between the two

groups (P < 0.05). Although it was reported that busulfan at

30 mg/kg was harmless to NOG mice21, a mouse death in the

busulfan-treated group after transplantation was observed in

our study. But there was no statistically significant differ-

ence in survival rate of the two groups. Excluding pathogen

infection and immune rejection, it should be considered that

the death may have been due to the existence of individual

differences in busulfan sensitivity. This remains to be ver-

ified by further research with large samples.

In conclusion, our study suggested that 1) CD133þ HSCs

could be a good resource for the establishment of humanized

mouse models. 2) Preconditioning with busulfan and intra-

bone marrow injection could be more conducive to acceler-

ating differentiation of human CD133þ HSCs in NOG mice.

This may be an effective and practical method of creating

humanized mice models.
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