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Antibiotic treatment for 
Tuberculosis induces a profound 
dysbiosis of the microbiome that 
persists long after therapy is 
completed
Matthew F. Wipperman1,4, Daniel W. Fitzgerald3,5, Marc Antoine Jean Juste5, Ying Taur2, 
Sivaranjani Namasivayam6, Alan Sher6, James M. Bean1,3, Vanni Bucci7 & Michael S. 
Glickman   1,2,3

Mycobacterium tuberculosis, the cause of Tuberculosis (TB), infects one third of the world’s population 
and causes substantial mortality worldwide. In its shortest format, treatment of TB requires six months 
of multidrug therapy with a mixture of broad spectrum and mycobacterial specific antibiotics, and 
treatment of multidrug resistant TB is longer. The widespread use of this regimen makes this one of the 
largest exposures of humans to antimicrobials, yet the effects of TB treatment on intestinal microbiome 
composition and long-term stability are unknown. We compared the microbiome composition, assessed 
by both 16S rDNA and metagenomic DNA sequencing, of TB cases during antimycobacterial treatment 
and following cure by 6 months of antibiotics. TB treatment does not perturb overall diversity, but 
nonetheless dramatically depletes multiple immunologically significant commensal bacteria. The 
microbiomic perturbation of TB therapy can persist for at least 1.2 years, indicating that the effects of 
TB treatment are long lasting. These results demonstrate that TB treatment has dramatic effects on 
the intestinal microbiome and highlight unexpected durable consequences of treatment for the world’s 
most common infection on human ecology.

Each year, up to 3–4% of all deaths worldwide from any cause are attributable to infection with the bacterial 
pathogen Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis (TB) disease, which amounts 
to almost 5,000 TB-related deaths each day1. This colossal disease burden necessitates a thorough understanding 
of both the pathogenic strategies Mtb uses to cause disease, as well as the host susceptibilities Mtb has evolved to 
exploit. Individuals can be Mtb uninfected, infected with latent Mtb, have active TB disease, or be cured through 
antibiotic therapy. Many factors can influence the probability that some individuals transition from one of these 
stages to another, but most defined risk factors compromise immune function2. For example, untreated HIV 
infection, which depletes CD4+ T cells, is associated with elevated risk of TB disease. Overall, immune status 
is also affected by age—the elderly and young infants are at a disproportionately high risk of Mtb infection and 
subsequent TB disease. Furthermore, individuals with germline mutations in pathways involved in controlling 
mycobacterial infection, such as IFNγ and TNFα, have an increased risk of active TB disease3. Despite these 
examples, known immune deficiencies are not sufficient to explain why the incidence of new active TB cases 
hovers over 10 million people each year, with a mortality rate between 1.5–2 million people1. Furthermore, it is 
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unknown why some individuals in TB endemic countries (where Mtb exposure is common) never become Mtb 
infected, why most latently infected individuals never progress to active TB disease, and what may account for 
treatment failure, relapse, and re-infection.

One emerging factor that remains unstudied in the context of TB susceptibility and treatment is the intestinal 
microbiota. The organisms comprising the intestinal microbiota account for the largest exposure of the immune 
system to the environment, and in turn, the composition and metabolic activities of the intestinal bacterial com-
munity (collectively called the microbiome) directly participate in the development and function of peripheral 
immunity4. One example of this microbiome-immune axis is the regulation of peripheral immune function 
through the production of short chain fatty acids (SCFAs) by the intestinal microbiota. SCFAs like butyrate and 
propionate are produced by commensal microbiota primarily in the gut, and can have systemic effects. Butyrate 
inhibits histone deacetylases causing increases in Foxp3+ Treg cell proliferation and circulation in the periphery5, 6. 
Propionate binds to GPCR41, dampening allergic reactions by reducing dendritic cell-mediated Th2 responses7. 
Similarly, babies with depletion of four microbiota constituents are at risk for asthma, and transfer of these four 
bacteria to germ free mice ameliorates Th2-mediated airway inflammation8. A recent example of how these fac-
tors may influence Tuberculosis infection comes from a study suggesting that butyrate-producing bacteria in the 
lung microbiota are positively correlated with increased incidence of active Tuberculosis. Thus, the microbiota, 
and their metabolic activity, may play an active role in immunity to Mtb9.

Although intestinal microbiome composition can be determined by many factors throughout a lifetime, 
it is increasingly well-understood that, in the absence of antibiotic perturbation, it remains relatively stable10. 
The human intestinal microbiota taxonomic composition is dominated by Firmicutes and Bacteroidetes, some-
what lower levels of Actinobacteria and Proteobacteria, as well as low abundance but important phyla like 
Verrucomicrobia, Fusobacteria, and Euryarchaeota11. Antibiotics can target any of these taxa, and have distinc-
tive microbiome-altering effects both during and post treatment. Important examples include reduced diversity 
after fluoroquinolone treatment12, 13, altered microbial carbohydrate metabolism in response to β-lactams14, as 
well as altered bile-acids, dipeptides, alcohols and fatty acids in response to third-generation cephalosporins15. In 
people undergoing cancer treatment, treatment with metronidazole led to substantial derangement of the micro-
biota through its anti-anaerobic activity; in contrast, treatment with intravenous vancomycin had relatively little 
impact16. Although the pre-treatment ecological state of the microbiome generally recovers after stopping anti-
biotic treatment, there are noticeable effects that may persist for weeks, months, and even years after treatment 
is stopped17. Although these are just a few examples, the current model is that antibiotic treatment can result in 
the establishment of an alternative state that could have systemic, and potentially deleterious, consequences for 
immunity and disease susceptibility11.

Little is known about the effects of first-line TB antibiotics on the intestinal microbiome. In contrast to 
commonly used broad spectrum antimicrobials, most first-line antibiotics used to treat TB are narrow spec-
trum agents with Mycobacteria-specific targets (Supplementary Figure S1). A standard course of TB therapy for 
drug-sensitive Mtb consists of the administration of four drugs for two months, Isoniazid (H), Rifampin (R), 
Pyrazinamide (Z), Ethambutol (E), and then the continuation of HR for an additional four months, as recom-
mended by the World Health Organization. Of the four standard TB antibiotics used in “short course” treatment 
(HRZE), only Rifampin, which inhibits bacterial RNA polymerase, is a broad-spectrum antimicrobial that is used 
for non-mycobacterial infections. The effects of this prolonged antibiotic regimen on the intestinal microbiota 
are unknown.

In this study and a companion study in mice18, we characterize the immediate and long-term effects of TB 
treatment with HRZE on microbial diversity, taxonomic composition, and biochemical capacity. We demonstrate 
the substantial and unique disruptive effects of HRZE therapy on intestinal microbiome composition using both 
16S and metagenomic DNA sequencing and demonstrate that durable gut microbiomic dysbiosis is a conse-
quence of TB treatment.

Results
Antimycobacterial treatment alters intestinal microbiota taxonomic composition during treat-
ment without affecting overall diversity.  It is currently unknown if and how the standard regimen 
of antimycobacterial HRZE therapy affects the taxonomic composition of the intestinal microbiota, as none of 
these drugs have been studied, alone or in combination, for their effects in humans. We used a cross-sectional 
enrollment design to determine if and how the intestinal microbiota changes in response to HRZE therapy in 
people from Haiti. All subjects with active TB were recruited from the Haitian community, had recently been 
diagnosed with microbiologically-confirmed M. tuberculosis infection, and have been on a combination regimen 
of HRZE antibiotics for an average of 3.4 months (Treatment group, Table 1). We also assembled two control 
cohorts, community members without TB infection (IGRA-, Mtb uninfected) and community members with 
latent TB (LTBI, IGRA+), see Table 1. For this LTBI cohort, we divided the subjects into two control cohorts 
(LTBI (treatment) and LTBI (Cured)) to ensure appropriate age and sex matching. Using either the DESeq or 
LeFSe analytical pipeline (19, 20 see Methods), we were unable to detect any microbiomic differences between Mtb 
uninfected and LTBI individuals (data not shown), and quantitative Permanova analysis further confirmed this 
finding (Supplementary Table 4, see Methods). Thus, we conclude that LTBI has no detectable effect on intestinal 
microbiome composition.

In comparing individuals on HRZE treatment with LTBI controls, we found that overall microbiomic diversity 
of subjects treated for active TB with HRZE did not differ from Mtb uninfected or LTBI controls, as measured by 
the Shannon diversity index, despite being on therapy for an average of 3.4 months (Fig. 1, Table 1). This lack of 
effect on diversity is in stark contrast to the dramatic and rapid loss of diversity seen with broad spectrum anti-
microbials21, and is consistent with the narrower spectrum of antimycobacterial agents used for treatment of TB. 
Despite little effect on diversity, there was a highly significant loss of specific bacterial taxa with antimycobacterial 
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treatment (i.e., the number of unique OTUs). The number of observed OTUs was significantly lower in the treat-
ment group compared to the Mtb uninfected (two-samples t-test; p = 0.0074) or LTBI-treatment (two-samples 
t-test; p = 0.0122) control groups (Fig. 1b).

Despite the lack of an effect on overall diversity, closer examination of specific microbiomic changes associated 
with treatment revealed substantial changes in the treated group compared to either the Mtb uninfected control 
group or LTBI controls. Principal coordinate analysis on differential taxonomic diversity calculated either using 
16S (Fig. 2a, treatment vs LTBI) or metagenomic DNA sequencing (Fig. 3a, treatment vs healthy) clearly demar-
cates people who are on treatment from those who are not, indicating substantial antimycobacterial-induced 
perturbations. A quantitative test of which variables account for variance between two groups (Permanova) iden-
tified TB treatment (p = 0.023, Supplementary Table 4, see Methods), but not gender or age (Supplementary 
Table 4) as the main driver. Unsupervised hierarchical clustering of the 40 most abundant OTUs highlighted 
similar distinctions between treated and control subjects (Fig. 2c), and revealed that treated subjects clustered 
into two major groups, with the predominant cluster clearly demarcated from LTBI controls (Fig. 2c).

To determine which taxa were significantly affected by HRZE therapy, we used both the LEfSe and DESeq. 
2 pipelines on 16S rDNA sequencing data (see Methods) and observed dramatic changes at the Genus level. 
Subjects taking HRZE have, on average, an enrichment of Erysipelatoclostridium (8.8% in the Treatment group 
vs. 3.4% in LTBI controls), Fusobacterium (0.56% in the Treatment group vs. 0.08% in LTBI controls) and 
Prevotella (7.11% in the Treatment group vs. 3.76% in LTBI controls). HRZE treatment resulted in a 10-fold 
reduction in Blautia, a more than a 200-fold reduction in Lactobacillus and Coprococcus, and a 675-fold decrease 
in Ruminococcus compared to the LTBI group (Fig. 2d). In the Phylum Actinobacteria, there was a nearly 20-fold 
depletion of Bifidobacterium (Fig. 2d).

Although 16S rDNA based taxonomic analysis provides useful information about the relative abundances of 
microbiome constituents, and clearly HRZE treatment induces a profound alteration in the compositional struc-
ture of the gut microbiome, this technique cannot directly interrogate the coding capacity of the microbiota, as 

Group
Number 
of subjects

Average 
Age (range) % female

Time on TB 
treatment

Time since TB 
treatment

Average number of 16S 
reads per patient (range)

Average number of OTUs 
per subject (range)

Shannon 
Diversity

Mtb uninfected 50 33 (19–59) 62 N/A N/A 35951 (690–116638) 230 (19–473) 3.412

LTBI (treatment control) 25 26 (17–32) 52 N/A N/A 41038 (4713–118110) 229 (47–470) 3.341

LTBI (cured control) 26 25 (17–31) 46 N/A N/A 40678 (5788–111151) 243 (47–477) 3.74

Treatment 19 20 (13–32) 54 3.4 months 
(13–258 days) N/A 38489 (4360–140543) 150 (57–118) 3.218

Cured 19 23 (17–27) 35 6 months 424 days 
(34–1202 days) 19283 (4712–118180) 239 (133–356) 3.74

Table 1.  Patient populations analyzed in this study by 16S rDNA sequencing. Data are divided into study 
groups described in the text. The number of subjects, average age, gender distribution, time on HRZE treatment 
or time since treatment, average number of 16S reads and subsequent OTUs, and Shannon diversity index 
are shown, if applicable. Mtb-uninfected controls are IGRA−, people with LTBI are IGRA+ , and are the 
appropriate comparator group for individuals with active TB disease. The LTBI group was divided based on the 
comparisons being made to Treatment and Cured groups, matching for age (see methods).

Figure 1.  (a) Shannon diversity index measured for all groups used in this study, based on 16S rDNA 
sequencing data. The LTBI (treatment) group indicates subjects who are the age-matched controls for the 
treatment group, and the LTBI (cured) group indicates the age-matched controls for the cured group. (b) Raw 
number of observed OTUs clustered at 97% similarity for the indicated groups.
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the gene content of taxonomically identical OTUs can differ substantially. To ask whether HRZE treatment altered 
metabolic coding capacity of the microbiome, we performed metagenomic sequencing and analyzed the coding 
capacity of HRZE treated subjects vs a control group consisting of LTBI and Mtb uninfected subjects (designated 
healthy in Fig. 3). Taxonomic analysis by LEfSe revealed similar depletion of Ruminococcus, Eubacterium, and 
other species as observed with 16S profiling, and differentially abundant species by LeFSe distinguished treated 
from healthy controls (Fig. 3c). Using the HUMANn2 software pipeline22 we observed both enrichment and 
depletion of biochemical pathways within the microbiome of treated subjects, with the most dramatic changes 
including overabundance of fatty acid oxidation and vitamin biosynthesis, and depletion of conjugated bile acid 
biosynthesis with treatment (Fig. 3d, Supplementary Figures S4–6). These results further confirm that HRZE 
treatment broadly perturbs the taxonomic and functional structure of the microbiome.

TB treatment is associated with a lasting intestinal microbiome dysbiosis.  Compelling evidence 
suggests that alterations in intestinal microbiome composition from antibiotics can produce novel microbiome 
ecological states with preliminarily characterized, but poorly defined, health outcomes23. The data presented 
above clearly indicates that HRZE treatment induces a detectable microbiomic perturbation, which could be 
long lasting given the prolonged duration of antibiotic exposure. To determine whether the dysbiosis induced by 
antimycobacterials persists after discontinuation of therapy, we recruited a group of subjects cured of TB through 
6-month HRZE therapy and compared their microbiome composition to age matched LTBI subjects as controls 
(LTBI-Cured cohort, Table 1). The average time since completion of treatment in the cured group was 1.2 years 

Figure 2.  HRZE treatment perturbs the taxonomic structure of the microbiome. (a) NMDS ordination of 
HRZE treated subjects (treatment, purple) or LTBI controls (blue) based on 16S rDNA sequencing (b) Family 
taxonomic distribution of the intestinal microbiota from subjects with LTBI and subjects with TB on treatment. 
(c) Heatmap of the top 50 most abundant taxa generated with DESeq2 showing unsupervised clustering of 
TB cases on treatment vs. LTBI controls. Age and sex are also shown but were not accounted for the in DESeq 
model. Genus and species names are based on OTU identification (Supplementary Table 2) and therefore names 
may be redundant, but represent different 16S-based OTUs. (d) Taxonomic abundance profiling comparing 
treatment vs LTBI participants using LeFSe to determine differentially abundant Genera. Box and whisker plots 
of differentially abundant genera are shown based on the DESeq normalized data. Plots show the first and third 
quartiles of the abundance data, the line represents the median, and the whiskers show 1.5 times the value of the 
interquartile range.
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(mean 417 days, range 34–1202 days, Table 1). We found that taxonomic alpha diversity in the cured subjects 
remained at levels comparable with those in the LTBI control groups (Fig. 1b). Indeed, using a Mann-Whitney 
unpaired t-test, there is a modest but significant increase in Shannon diversity for the cured cases (p = 0.0487, 
Fig. 1b). However, the intestinal microbiomes of cured TB cases were clearly distinguishable from LTBI controls 
when examined by double principal coordinate analysis (Fig. 4a), indicating that HRZE therapy has long-lasting 
effects on microbiome composition (Fig. 4b).

To quantitatively assess the double principal coordinate analysis result, a Permanova test was used to con-
firm that the differences between the two populations were driven by TB status (p = 0.007), rather than gen-
der (p = 0.407) (Supplementary Table 4). Unsupervised hierarchical clustering of the 40 most abundant OTUs 
revealed that, in general, cured individuals clustered away from LTBI controls (Fig. 4c). We therefore asked 
whether the heterogeneity in the cured individuals was correlated with the duration of time since treatment and 
found that both distantly and recently cured people clustered well together, indicating that the persistent dysbiosis 
observed is not simply a marker for time since cure (Fig. 4c).

We used LeFSe and DESeq to analyze differences between cured individuals and LTBI age matched con-
trols. Cured people were depleted in the Bacteroidetes genera Bacteroides and displayed prominent overabun-
dance of Faecalibacterium, Eubacterium, and Ruminococcus (Fig. 4d). Although detrended coordinate analysis 
(DCA) performed with species level abundances on metagenomic data failed to cluster healthy and treated cases 
(Fig. 5a), and community structure was grossly similar (Fig. 5b), using LeFSe, we found that Enterobacter cloacae, 
Phascolarctobacterium succinatutens, Methanobrevibacter smithii, Bilophila, and Parabacteroides are biomarkers 
of cured individuals (Fig. 5c). Pathway abundance analysis revealed that cured cases demonstrated altered cod-
ing capacity compared to controls. (Fig. 5d and Supplementary Figures S7–9). As with the previous compar-
ison of healthy individuals to cases on HRZE treatment, the perturbed pathways represent diverse microbial 

Figure 3.  Taxonomic and biochemical microbiomic perturbation induced by HRZE. (a) NMDS ordination 
plot on metagenomic taxonomy data demonstrating microbiomic differences between healthy individuals 
and subjects on HRZE treatment. For this comparison, the healthy group consists of LTBI and Mtb uninfected 
subjects. (b) Comparative abundance plots between healthy Haitian individuals and cases on HRZE treatment 
showing the most abundant species. (c) Unsupervised hierarchical clustering of significantly altered taxa from 
species-level metagenomic data. (d) Abundance of significantly different KEGG modules between healthy 
volunteers and cases on treatment.
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functions including sugar biosynthesis, protein secretion, and central metabolism. We conclude that TB treat-
ment results in long term taxonomic, metagenomic, and biochemical consequences via perturbation of the intes-
tinal microbiome.

Discussion
We present the first characterization of the short and long term effects of standard HRZE TB antibiotic treat-
ment on the intestinal microbiome. Antibiotics are recognized to perturb the composition of the intestinal 
microbiome, and their use has been associated with potentially deleterious consequences11. This perturbation 
is best documented for broad spectrum antibacterial agents which are active against wide swaths of bacterial 
microbiome constituents. As such, broad spectrum antimicrobials like the fluoroquinolone ciprofloxacin17 may 
cause rapid loss of overall diversity and disruption of the microbiome’s ability to resist pathogenic colonization, 
which can predispose to disease such as Enterococcus domination and C. difficile infection24. However, treat-
ment of TB employs antimicrobial agents with narrower spectrums of activity. Although Rifampin is used for 
non-mycobacterial infections, Isoniazid, Pyrazinamide, and Ethambutol are only prescribed for TB and are acti-
vated by and/or target mycobacterial proteins not widely distributed throughout the bacterial Kingdom. Since 
the turn of the millennium, close to 50 million people have been treated with this or similar regimens, comprising 
almost 10 billion doses each drug, making TB treatment one of the most widely administered antibiotic combina-
tions in the world. Understanding the effects of this antibiotic regimen on microbiome ecology thus has impor-
tant implications for those treated and cured of TB worldwide.

Our data indicates that the narrow spectrum of the TB treatment regimen is reflected in the preserved over-
all diversity in HRZE treated cases. However, this relatively gross measure of perturbation fails to capture the 

Figure 4.  TB treatment induces a lasting alteration in microbiome structure. (a) DPCoA ordination plot of 
cured cases compared to LTBI controls based on 16S rDNA sequencing. (b) Family level taxonomic distribution 
of the intestinal microbiota from subjects with LTBI or who are cured. (c) Heatmap of the 40 most abundant 
taxa generated with DESeq2 showing unsupervised clustering of cured vs. LTBI subjects. Age and sex are also 
shown but were not accounted for the in DESeq model. The number of days that each patient has been off 
treatment is also shown. Genus and species names are based on OTU identification (Supplementary Table 3) 
and therefore names may be redundant, but represent different 16S-based OTUs. (d) Taxonomic abundance 
profiling comparing cured vs LTBI subjects. Taxa are significant from LeFSe (p < 0.05 and LDA cutoff >3.0).

http://3


www.nature.com/scientificreports/

7Scientific Reports | 7: 10767  | DOI:10.1038/s41598-017-10346-6

profound effects of HRZE on specific components of the microbiome. Most dramatic is the depletion of mul-
tiple species of Ruminococcus, Eubacterium, Lactobacillus, and Bacteroides along with a simultaneous increase 
of Erysipeloclostridium and Prevotella. The consequences of this HRZE-induced taxonomic perturbation are 
unknown at present, but several of these bacteria have been associated with immune-inducing phenotypes rel-
evant to TB immunity. Bacterioides (depleted in treated and cured subjects) polysaccharide can modulate host 
inflammatory responses in mice25. Ruminococcus and Coprococcus are two of the most dramatically depleted 
phyla in HRZE treated patients, and these organisms modulate peripheral cytokine production, including IL-1, 
and IFNγ26. Similarly, Bifidobacterium, which we find depleted in HRZE treated cases, can induce a Th17 immune 
response in mice27. Taken together, these findings suggest that the HRZE-induced perturbation of the micro-
biome may have significant effects on peripheral immune responses and overall systemic immune tone. These 
potential effects on immunity, coupled with the well-documented variability in treatment response to TB, may 
suggest that variability in microbiotic perturbation and peripheral immunity could affect the efficacy of TB treat-
ment. The data presented here will now allow for testing of this hypothesis using prospectively collected cohorts 
of TB cases beginning treatment, with the aim to correlate their microbiomic disruption with microbiologic and 
immunologic markers of treatment success.

Our findings are also corroborated by a recent study18 that examined the effect of TB treatment in mice. 
During HRZ treatment in mice, a decrease in species richness is observed, similar to the significant decrease in 
the number of OTUs during HRZE treatment in humans. In mice, RIF is the major driver of taxonomic altera-
tion in the intestinal microbiome, but interestingly, combination therapy gives rise to alterations not found for 
monotherapy of any single antibiotic. Additionally, in both mice and humans, there is a significant decrease in the 
number of Clostridia during treatment, including the genera Blautia, Clostridium, and Roseburia.

The other prominent finding from our study is the long-lasting duration of the microbiomic disruption 
induced by HRZE. Our cured group had completed treatment on average 1.2 years earlier, yet their microbiomes 
were still detectably different from age matched control subjects using unsupervised data analysis. This finding 
suggests that the duration of 6 months of HRZE therapy has long lasting effects on the community structure of 
the microbiome. Furthermore, based on data from Namasivayam et al.18, in both mice and humans there is a 
persistent microbiomic dysbiosis after the completion of HRZ(E) treatment. Although alpha diversity recovers, 

Figure 5.  TB treatment induces a lasting alteration in microbiome structure and function. (a) DCA ordination 
plot on metagenomic taxonomy data in healthy (combined Mtb-uninfected and LTBI community controls) and 
cured individuals. (b) Comparative abundance plots between healthy Haitian individuals and cured subjects 
showing the top 40 most abundant species between the two groups. (c) Unsupervised hierarchical clustering of 
significantly altered taxa. (d) Abundance of significantly different KEGG modules between healthy and cured 
subjects.
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taxonomic profiling in mice and humans, and functional pathway profiling in humans, suggests that 6-month 
administration of HRZ(E) treatment causes persistent changes.

As is the case for the perturbation by HRZE during therapy, the consequences of these changes in cured cases 
will require further study. It is possible that cured individuals could be more susceptible to systemic infection 
due to effects of microbiotic alteration and disruption on peripheral immunity. Multiple epidemiological studies 
have indicated that people cured of TB are at higher risk of a second case of TB due to reinfection28, 29. Although 
multiple environmental and genetic factors likely contribute to this risk, including HIV infection, the findings in 
this study raise the possibility that the persistent microbiomic disruption that accompanies curative TB treatment 
could contribute to post-treatment susceptibility to reinfection, perhaps not just with Mtb, but also with other 
diseases associated with an altered immune state.

In summary, we have shown that TB treatment with HRZE in humans perturbs the intestinal microbiome in 
distinct and long lasting ways. Specific genera of bacteria are depleted during treatment and functional profiling 
demonstrates altered functional pathway composition. These changes, in terms of both taxonomic and metagen-
omic function, are protracted for more than one year after the completion of therapy for TB disease. This study 
should therefore stimulate additional investigations into the role of microbiomic disruption in response to TB 
therapy and post TB health.

Methods
Study Approval.  All volunteers provided written informed consent to participate in this study. All proto-
cols and consent forms have been approved by the GHESKIO and Weill Cornell Medicine institutional review 
boards. All methods and procedures were performed in accordance with the relevant institutional guidelines and 
regulations.

Patient Recruitment and Protection of Human Subjects.  Subjects were enrolled through the 
Tri-Intuitional Tuberculosis Research Unit (TBRU) in conjunction with the GHESKIO Centers, in Port-au-Prince, 
Haiti, where all participants provided written, informed consent. All TBRU protocols and consent forms for sam-
ples collected at GHESKIO were approved by Institutional Review Boards at the GHESKIO and Weill Cornell 
Medicine (see Study Approval). A dedicated clinical field team at the GHESKIO Centers in Port-au-Prince, Haiti 
recruited research volunteers as part of the NIH U19-funded Tuberculosis Research Unit (AI111143). Patient 
Mtb-infection status is determined using quantiferon IFNγ release assay (IGRA) status, and active TB disease is 
determined using standard clinical assessments. All cases with active pulmonary TB receive periodic follow-up 
appointments while on treatment, and anyone with known contact to an active TB patient receives a six-month 
follow-up and is re-screened for IGRA status. All patient samples were de-identified on site using a barcode 
system before they were shipped to NYC for analysis. Human DNA was decontaminated from metagenomic 
shotgun sequencing data before analysis and publication, consistent with the removal of all biometric identifiers 
according the Health Insurance Portability and Accountability Act30. All clinical metadata was collected on site 
and managed through the REDCap data management system31.

Clinical characteristics of study groups from the TBRU study.  We recruited four groups of indi-
viduals using a cross-sectional research study design. To characterize the intestinal microbiomes of individuals 
from the Haitian population, we recruited two groups of control individuals, 50 with no Mtb infection (IGRA-), 
and 25 latently infected by Mtb (LTBI), as defined by a positive Interferon Gamma Release Assay (IGRA) test. To 
determine the effect of HRZE antimycobacterial treatment on the intestinal microbiome, we recruited 19 volun-
teers currently on treatment with HRZE for drug sensitive Tuberculosis. 3 of these treated individuals were on TB 
therapy for longer than the standard 6 months, due to clinician discretion (see Table 1). In addition, to determine 
the duration of the microbiome perturbation of HRZE treatment, we recruited 19 previously treated cases who 
were cured of active TB. The clinical characteristics of the groups are given in Table 1. To appropriately control 
for age, we divided our LTBI group into two distinct control subgroups, designated LTBI (treatment control) and 
LTBI (cured control), since microbiome composition can vary significantly with age32. Given the age range of the 
treatment and cured patients, we used controls under the age of 33 years old for the treatment control group, and 
controls under the age of 30 for the cured control group. All subjects are HIV negative. However, other clinical 
variables, such as diabetes history, were not available.

DNA extraction from stool.  Stool specimens were collected and stored for less than 24 hours at 4 °C, ali-
quoted (~2 mL each), frozen at −80 °C, and shipped to NYC. ≈500 mg of stool from frozen samples was sus-
pended in 500 μl of extraction buffer (200 mM Tris-HCl, pH = 8.0; 200 mM NaCl; 20 mM EDTA), 210 μl of 20% 
SDS, 500 μl of phenol/chloroform/isoamyl alcohol (25:24:1), and 500 μl of 0.1-mm-diameter zirconia/silica beads 
(BioSpec Products). Samples were lysed via mechanical disruption with a bead beater (BioSpec Products) for two 
minutes, followed by two extractions with phenol/chloroform/isoamyl alcohol (25:24:1). DNA was precipitated 
with ethanol and sodium acetate at −80 °C for 1 hour, re-suspended in 200 μl of nuclease-free water, and further 
purified with the QIAamp DNA Mini Kit (Qiagen) according to the manufacturer’s protocols, including Protein 
removal by Proteinase K treatment. DNA was eluted in 200 μl of nuclease-free water and sorted at −20 °C.

16S rDNA sequencing.  Primers used to amplify rDNA were: 563 F (59-nnnnnnnn-NNNNNNNNNNNN-AY 
TGGGYDTAAAGN G-39) and 926 R (59-nnnnnnnn-NNNNNNNNNNNN-CCGTCAATTYHTTTR AGT-39). 
Each reaction contained 50 ng of purified DNA, 0.2 mM dNTPs, 1.5 μM MgCl2, 1.25 U Platinum TaqDNA pol-
ymerase, 2.5 μl of 10 × PCR buffer and 0.2 μM of each primer. A unique 12-base Golay barcode (Ns) preceded 
the primers for sample identification after pooling amplicons. One to eight additional nucleotides were added 
before the barcode to offset the sequencing of the primers. Cycling conditions were the following: 94 °C for 3 min, 
followed by 27 cycles of 94 °C for 50 s, 51 °C for 30 s and 72 °C for 1 min, where the final elongation step was 
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performed at 72 °C for 5 min. Replicate PCRs were combined and were subsequently purified using the Qiaquick 
PCR Purification Kit (Qiagen) and Qiagen MinElute PCR Purification Kit. PCR products were quantified and 
pooled at equimolar amounts before Illumina barcodes and adaptors were ligated on using the Illumina TruSeq 
Sample Preparation procedure. The completed library was sequenced on an Illumina Miseq platform per the 
Illumina recommended protocol.

16S Bioinformatics Analysis.  For 16S MiSeq sequencing, paired-end reads were joined, demultiplexed, 
filtered for quality using maximum expected error (Emax = 1), and dereplicated. Sequences were grouped into 
operational taxonomic units (OTUs) of 97% distance-based similarity using UPARSE33. Potentially chimeric 
sequences were removed using both de novo and reference-based methods (where the Gold database was used 
for the latter)34. Taxonomic assignments were made using BLASTN35 against the NCBI refseq_rna database 
with custom scripts36. Our approach allows for the identification of the top 30 taxa associated with a particular 
OTU, thus the taxonomic nomenclature that we use for 16S is versatile. This OTU calling data is available in 
Supplementary Tables 2 and 3: Supplementary Table 2 has OTU BLASTN results for the LTBI (treatment control) 
and Treatment cohorts, and Supplementary Table 3 has OTU BLASTN results for LTBI (cured control) and Cured 
cohorts. A biological observation matrix (biom)37 file, a taxonomy file, reference sequence file, and tree file were 
constructed using QIIME commands. These files were imported into R38 and merged with a metadata file into a 
single Phyloseq object39. Phyloseq was used for all downstream analysis of 16S taxonomic data, and plots were 
made with the ggplot2 package40.

Shotgun Metagenomic Sequencing.  Between 150 and 200 ng of DNA isolated from stool (vide supra) 
was sheared acoustically. Hiseq sequencing libraries were prepared using the KAPA Hyper Prep Kit (Roche). PCR 
amplification of the libraries was carried out for 6 cycles. Samples were run on a Hiseq 4000 in a 125 bp/125 bp 
paired end run, using the TruSeq SBS Kit v3 (Illumina). There were an average number of read pairs per sample 
of around 11 million.

Shotgun Bioinformatics Analysis.  For the analysis of shotgun metagenomic reads, sequences were first 
trimmed and removed of host contamination using Trimmomatic41 and Bowtie242. Host-decontaminated reads 
were then profiled for microbial species abundances using Metaphlan243, and for abundance of Uniref gene and 
KEGG orthologs, and functional pathways (Metacyc pathways, KEGG pathways, and KEGG modules) using the 
software pipeline HUMAnN222 and in-house written scripts (available upon request). Normalized taxonomic, 
gene, and pathway abundances were then used for downstream statistical analysis in R. All intestinal microbiome 
samples were sequenced using 16S rDNA sequencing, however, only a subset of controls were sequenced using 
metagenomics. Due to sample size limitations, for the metagenomic DNA sequencing comparisons, we combined 
both Mtb uninfected and LTBI individuals into a healthy control group which was used as the comparator for 
metagenomic analyses.

Statistical Analysis.  The ability to detect differentially abundant OTUs between groups of people is critical 
for comparison between groups, and various methods exist and have been validated for this sort of analysis. For 
16S rDNA sequencing, we employed the tools available within the Phyloseq package to manipulate the data and 
metadata for downstream analysis. Raw counts with taxonomy and metadata were piped into the DESeq2 package 
for differential abundance analysis using the negative binomial distribution assumption with zero inflation19. This 
method assumes that for many OTUs, the variance in abundance (i.e., read count) between samples or groups 
exceeds the mean read count (often zero). When this is true, the DESeq method can be used to transform the 
data so that between sample or between group differences may be compared more accurately. Homoscedastic 
abundance data was used to generate heatmaps in Fig. 3c and d, by applying a variance stabilizing transformation 
from fitted dispersion-means to transform the count data. We additionally employed the microbiome-friendly 
linear discriminant analysis, effect size (LEfSe) tool20 to detect statistically significant differences between clinical 
groups. This technique first employs the non-parametric Kruskal-Wallis (KW) sum-rank test between differ-
ent groups of people (i.e., healthy [comprised of Mtb uninfected and LTBI], on HRZE treatment, or cured), 
followed by linear discriminant analysis to estimate the size of the effect (i.e., the degree of significant differ-
ential abundance between a particular OTU, taxa, gene, or pathway between groups). We attempted to employ 
both the DESeq2 and LEfSe methods, and try to emphasize where there is overlap. All figures in the paper that 
are related to 16S sequence analysis are plotted using the normalized and transformed abundances from the 
DESeq2 package. For the statistical analysis of the results from shotgun metagenomics reads, data were imported 
into R and converted to Phyloseq objects with custom scripts. Custom code implementing non-parametric tests 
(Wilcoxon-signed rank) with FDR correction (Benjamini & Hochberg method) as well as LEfSe20 were used 
to test for differential abundances for taxa, and functional pathways. For the LTBI-Treatment and LTBI-Cured 
comparisons p-value threshold was kept at 0.05 for both the initial Kruskall-Wallis test and the subsequent 
sex-matched subclasses Wilcoxon-signed rank tests. We additionally employed the Permanova and Betadisper 
tests using the adonis function in the Vegan package in R. Adonis partitions a distance matrix of OTU count 
data and runs an analysis of variance between groups of samples. Betadisper further supports this conclusion by 
determining if the variance between the two groups is similarly distributed. All box-and-whisker plots were gen-
erated with the ggplot240 function geom_boxplot, which shows the first and third quartiles of the dataset and the 
median of the data in the box, the whiskers show 1.5 times the value of the interquartile range of the box hinge, 
and outliers are shown as dots. All other plots were made using Prism 7.

Data Availability.  All sequencing data and computer code, as well as metadata supporting the findings of 
this study are available from the corresponding authors upon request.
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