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Abstract: Due to its high activation efficiency, waterglass has been widely used for alkali activations
in geopolymer. In this study, the n(SiO2)/n(Na2O) (Ms) of waterglass was selected as the variable
to investigate the role of the silicate structure on the mechanical properties of harden pastes. Ms
was changed by the addition of NaOH to obtain the different silicate group, structure and experi-
ments were performed by employing the liquid-sate 29Si nuclear magnetic resonance (NMR), Fourier
transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and gel permeation chro-
matography (GPC) techniques. Furthermore, selected dissolution, scanning electron microscope
(SEM-EDX), X-ray photoelectron spectroscopy (XPS) and FTIR experiments were used to measure
the development of the amorphous gel and other materials with different curing condition. Results
show that silicate structure of the waterglass was changed via the Si-ONa+ formation and the electric
charge effect of Na+. Under the lower Ms waterglass, the Q0, Q1 and QC

2 structure reverted to the
main structure of the silicate group, which was kind of lower seize, molecule weight, linear or circular
chain lower geopolymerization degree silicon structure. It would accelerate the geopolymerization
speed of prepolymer formation. In addition, higher activity degree of Q0 and Q1 were useful to
increase the formation amount of the gel structure with a low Si/Al ratio and size. Thus, silicate
structure of waterglass controls the amorphous gel properties to adjust the compressive strength of
alkali-activated materials.

Keywords: alkali-activated materials; silicate structure of waterglass; amorphous gel content;
compressive strength

1. Introduction

Recently, emissions of Portland cement into the environment have become a major
impediment in the development of green construction materials. Alkali-activated materials,
which are inorganic polymer, are defined as three-dimensional aluminosilicate amorphous
structures resulting from the reaction of activated aluminum silicate materials and an
alkaline activator, and these have become excellent substitutes to cement materials [1–3].
In addition to the excellent mechanical properties of harden pastes, alkalai-activated
materials also have excellent durability [4,5], fire and acid resistance [6,7] and low energy
consumption of during their production [8]. Due to the excellent properties of geopolymer,
they have been extensively used on an industrial scale [8].

As an important component of alklai-activated materials, alkaline activators solutions
can substantially influence the properties of fresh and hardened pastes. Due to the high
activation efficiency, waterglass has been widely used for alkali activations in geopoly-
mer. However, the complex composition of the waterglass solution makes the adjustment
and control of geopolymer properties difficult. Therefore, two direction of research have
emerged in this respect: (1) reaction mechanism: oligomers (Si [OH]4 and Al[OH]4

−),
which are the original raw materials of producing, are easily affect by the dissolution and
concentration of active Si and Al components. [9] Based on previous investigations [10–15],
waterglass can substantially accelerate the geopolymerization of oligomers; this is because
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of the nature of the silicate (Qn) group in the solution, which plays an important role in
the geopolymerization and production of an amorphous gel and determines the mechani-
cal properties, durability and fire resistance. (2) Silicate structure of waterglass solution:
FTIR [16], Raman spectroscopy [17] and 29Si NMR [18] experiments were used to obtain
the information of structure of waterglass solution. Vidal [19] found the Q0, Q1, Q2, Q3 and
Q4 species in the silicate solution. Furthermore, the Si/M molar ratio is a crucial parameter
that affects the nature of silicate, and an important change point was approximately 1.0.
Hunt [20], Aguiar [21] and Lucas [22] thought that the higher-order Q4, Q3 and Q2 trans-
form to lower-order (Q1 and Q0 because of the breaking of the Si-O-Si bonds to produce
Si-O- groups.

However, these investigations only focused on the silicate structure of waterglass. The
effects of the silicate structure of waterglass on the mechanical properties of geopolymer
hardened pastes, especially on the relationship between the properties of amorphous gel
and the compressive strength, have not yet been investigated in detail. Therefore, in this
study, the structure of waterglass with SiO2/Na2O molar ratio (Ms) was systematically
measured by performing the liquid 29Si NMR, Fourier transform infrared spectrometer
(FTIR), dynamic light scattering (DLS) and gel permeation chromatography (GPC) ex-
periments. Furthermore, in order to accurately investigate the effect of waterglass with
different Ms on the compressive strength, sealed and standard curing conditions were
employed in this study. SEM-EDS and XPS analyses were used to investigate the devel-
opment of the amorphous gel, and selected dissolution in acid was used to assess the gel
content. Based on these measurements, the effect of the structure of the silicate group on
the mechanical properties could be explained comprehensively to provide the development
on the adjustment of geopolymer.

2. Materials and Methods
2.1. Materials
2.1.1. Binder Materials

In this study, in order to improve the early activity of fly ash, slag was added into
the binder materials. Thus, fly ash (abbreviated as FA, being from Da Tang Tongzhou
Technology Co., Beijing, Ltd. China) and blast furnace slag (abbreviated as BFS, providing
by Capital Iron and Steel Company in Beijing, China) were used as the aluminosilicate
binder materials in this paper. The properties (chemical composition, fineness and density)
of binder materials are listed in Table 1 and Figure 1 shows the particle size distribution of
FA and BFS.
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Figure 1. Particle size distribution of raw materials. Figure 1. Particle size distribution of raw materials.
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Table 1. Properties of raw materials.

Chemical Composition/wt %
Fineness/µm Density/gcm−3

CaO SiO2 Al2O3 MgO Fe2O3 SO3 Na2O K2O LOI

FA 5.17 43.57 38.36 0.61 5.39 0.99 0.53 0.81 2.73 10.3 2.20
BFS 40.72 24.96 12.84 0.94 0.53 1.858 0.94 0.34 4.63 11.2 1.96

2.1.2. Alkaline Activators

In this study, NaOH (A.R., >99% pure, Beijing Chemical Works, China) was used
to adjust the Ms of waterglass Ms = 2.42, providing by Hong-Xing Ltd. Beijing, China)
attributing to the high pH environment and did not add any further chemical elements in
the systems. As reported by Vidal [19] waterglass samples with three Ms ratios (Ms = 2.4,
2.0 and 1.5) were prepared by the addition of NaOH. These were stored in a container for
24 h and then returned to the 25 ◦C. The amount of added NaOH is shown in Table 2.

Table 2. Waterglass and NaOH contents and (SiO2)/(Na2O) ratio (Ms).

Waterglass/wt% Sodium Hydroxide/wt% Ms

AA-1 100 0 2.5
AA-2 95.24 4.76 2.0
AA-3 85.42 14.58 1.5

2.2. Experimental Method
2.2.1. Properties of Alkaline Activators

The properties of waterglass were measured by the following experiments, as shown in
Figure 2. Liquid-state 29Si NMR, liquid-state FTIR, DLS and GPC analyses were performed
to investigate the coordination structure, functional groups, size distribution and molecular
weight of the silicate group in the waterglass. These specific analyses are discussed in the
following parts:

Liquid-State 29Si NMR

Bruker Avance III HD 700 MHz (Bruker Daltonics, Billerica, Germany) was used
to record the liquid-state 29Si NMR spectra to acquire the information of coordination
structure of silicate at room temperature. The experiment date was acquired by the BBO
probes. In this study, undiluted waterglass activators were dissolved in heavy water (D2O)
for the measurements.

Liquid-State FTIR

A Nicolst Is10 Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) was used
with 50 µL aliquots of the sample liquid to measure the chemical functional groups of
waterglass at room temperature. A total of 256 scans per sample with different Si/Na molar
ratios were collected at a resolution of 4.0 cm−1, over 4000–500 cm−1.

Dynamic Light Scattering (DLS) of Alkaline Activator Solution

In the present work, the size of flocculated waterglass structure was obtained by the
DLS experiment (Horiba SZ-100Z, HORIBA JY, Paris, France). Waterglass samples with
three Ms ratios were added into the 10 mm × 10 mm optical silica cuvettes to measure
under 826.3 nm laser irradiation.
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Gel Permeation Chromatography (GPC) of Alkaline Activators Solution

A gel permeation chromatography analyzer (1260 Infinity II HT GPC, Agilent, Santa
Clara, CA, USA) was used to investigate the molecular weight distribution of waterglass as
follows: first, 0.1 g of samples (accurate to 0.001 g) was accurately weighed and dissolved
into the mobile phase, i.e., 1 g of distilled water; then samples were added into the analyzer
and finally, the separation time and peak area of components were recorded.
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2.2.2. Preparation and Properties of Geopolymer Pastes
Preparation of Geopolymer Pastes

The geopolymer pastes were prepared according to GB/T8077-2012 [23] (Table 3)
as follows: first, the FA/BFS powder was added in the mixer. then, the alkaline activa-
tions were put into the mixer and finally the mixture was stirred. The well-mixed fresh
geopolymer pastes were cured under the curing condition.

Table 3. Design of geopolymer pastes.

Mix

Mass Ratio

Binder
W/B

Alkaline Activators

FA BFS Ms a Content b

A-1# 0.7 0.3 0.45 2.5 30%
A-2# 0.7 0.3 0.45 2.0 30%
A-3# 0.7 0.3 0.45 1.5 30%

a The Ms is the SiO2/Na2O molar ratio in the alkaline activator; b the content of activators is determined as per
the proportion of the activator to binder. When Ms < 1.5, the silicate structures of alkaline activators easily reunite
to form the sediment.

Curing Conditions

To avoid the impact of curing conditions on the samples with different Ms, two curing
conditions (sealed curing condition, 25 ◦C, isolated air, C-1; standard curing condition,
25 ◦C, 95 % RH, C-2) were employed to investigate the effect of Ms on the compressive
strength of samples until testing time. In this study, samples under the sealed curing
conditions were stored in plastic boxes wrapped with plastic film to keep out the air.

2.2.3. Properties of Hardened Geopolymer Pastes

Compressive strength of hardened geopolymer pastes with different curing conditions.
The compressive strength of hardened samples was investigated using CTM 200 kN

testing machine with a loading rate of 2.4 kN/s. Three samples of 3 d, 7 d and 28 d were
tested and the average value was recorded.
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2.2.4. Microstructure
SEM

The morphology was determined using a scanning electron microscopy (SEM, JEOL
JSM-7001F, Japan) with energy dispersive X-Ray Spectroscopy (EDS). Samples polished in
the Cu paper and then coated with the gold.

XPS

Changes in binding energies of Si-O-Si of the geopolymer were investigated by X-ray
photoelectron spectroscopy (XPS). An Escalab 250Xi instrument (Thermo Fisher Scientific,
Waltham, MA, USA) with Al Ka radiation was used.

2.2.5. Selective Dissolution

According to previous researchers, C-S-H and C(N)-A-S-H are known to be the re-
action products in fly ash/metakaolin geopolymer [24–26]. The independent analysis of
C-S-H and C(N)-A-S-H gel was difficult because of their co-existence in the microstructure,
especially in the early-age samples. Selective dissolving has been used to investigate
the co-existing of C-S-H and C(N)-A-S-H of geopolymer pastes, through salicylic acid
(SAM)/HCl extraction of the geopolymer powder sample. For geopolymer pastes, SAM
extraction involves the dissolution of calcium silicate hydrate and not of unreacted fly ash,
slag or geopolymer [24,25]. Similarly, HCl induces the dissolution of the chief reaction
products of geopolymer, i.e., the aluminosilicate gel and zeolites. However, calcium silicate
hydrate decomposed into silica gel under HCl extraction conditions. Therefore, this study
investigates the C(N)-A-S-H gel via the two steps: SAM-HCl experiments.

SAM extraction: first, the geopolymerization of samples was stopped by using
methanol; then, samples were dried at 60 ◦C and finally 1 g of the geopolymer pow-
der sample was added to a solution containing 4 g of salicylic acid and mixed in 60 mL of
methanol. The mixture was stirred for 2 h, and the suspension was vacuum filtered with
a filter having a 0.2 µm pore size. Furthermore, the insoluble residue was washed with
methanol and stored in a vacuum desiccator.

HCl extraction: first, the geopolymerization of samples was stopped by using methanol;
then samples were dried at 60 ◦C, and 1 g of the activated geopolymer pastes after SAM
extraction was added into 250 mL HCl (1:20, volume). The mixture was stirred for 3 h,
followed by filtration. The insoluble residue was washed with deionized water several
times to realize a pH = 7 of water, dried at 100 ◦C for 24 h and stored in a vacuum desiccator.

3. Results
3.1. Inluence of Ms on the Properties of Waterglass
3.1.1. Composition of Waterglass with Different Ms

29Si liquid-state NMR results for waterglass with the different Ms are shown in
Figure 3. Seven main signals are evident at −72.4, −80.2, −82.3, −88.4, −90.4, −96.5 and
−106.9 ppm corresponding, respectively, to Q0, Q1, Q2, Qc

2, Q3, Qc
3 and a low-intensity

peak Q4 [27–29]. It clearly seen that with the decreasing of Ms of samples, the main
peaks shift to the left centering to Q0, Q1 and Qc

2. This result was the same as those of
Hunt [20], Aguiar [21] and Lucas [22] investigation. The Q0, Q1 and Qc

2 silicate structure
mainly linear or circular chain lower-order structures, which could indicate that the bond
of condensed silicon species was destroyed, result in the depolymerization. Furthermore,
the NBO (Si-ONa+) group was formed by the combination of positively charge Na+ with
small particles and the destruction of the Si–O–Si group. This result agreed with the results
for strength and position of the Si–O–Si peak (108.73 cm−1), as shown in Figure 4.
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3.1.2. Properties of Waterglass with Different Ms

In order to study the effect of the silicon structure on the properties of the waterglass
solution, the particle size distribution and molecular weight distribution were investigated.

Figure 5 shows the results of DLS measurement of waterglass with different Ms. The
intensity is used as the index to evaluate the particle size distribution of samples. The mean
hydrodynamic radius for the SiO2/Na2O ratio of 2.5 is 1514.1 nm. This value was larger
than the size of a single particle (about 1–5 nm) [30], indicating the aggregation of silicate
particles, as confirmed by the SEM image of waterglass in Figure 5a. With the decreasing
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SiO2/Na2O ratio of 2.0 and 1.5, the mean hydrodynamic radius became 560.2 nm and 246.2
nm, respectively, which are lower than those corresponding to the ratio of 2.5.
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Figure 6 shows the molecular weight distribution of the alkaline activators determined
by the GPC measurements. Three peaks can be seen in the curves, including a primary
peak at approximately 4.29–4.31 min (2#), a second peak at 2.19–2.41 min (1#) and a third
peak at 8.31 min (3#), which were assigned to the three types of molecular structures in the
waterglass. With decreasing Ms, the characteristic peak strength and area of the second
and third peaks show a significant increase. However, the trend for the primary peak is
opposite. It well known that the larger molecular weight of samples could not through the
small pore structure of gel column to reduce outflow time, which resulting in the smaller
retention time of molecular [31]. Therefore, the molecule weight of samples obviously
decreases for Ms < 1.5.
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The experimental results show that for Ms = 1.5, i.e., waterglass with linear lower-
order structure, a smaller size and lower molecule weight were observed. This may be
associated with the electric charge effect of Na+ and formation of Si-ONa+. For the lower
Ms waterglass solutions, the free Na+ easily absorbed on the surface of silicate group, thus
increasing repulsion among the group. The formation of linear and circular chain possibly
decreases the probability of agglomerate due to the reduction in the number of contact point
on the surface. Thus, it would efficiently destroy the agglomerate structure of waterglass
with Ms = 2.5 resulting to the decreasing of size and molecular weight of waterglass.

3.2. Mechanical Properties of Geopolymer Hardened Pastes with Different Ms

The compressive strength results for A-1#, A-2# and A-3# samples that were cured for
up to 3, 7 and 28 days, respectively, at the different curing C-1 and C-2 condition are shown
in Figure 7. All showed the same tendency of change in the compressive strength under the
different curing conditions, which indicated that this phenomenon was influenced by the
Ms. It is clearly seen that A-3# samples had the highest compressive strength under the C-1
and C-2 curing conditions at 3 days. Comparing with A-1# samples, the relative increasing
strength ((Compressive strength of A-2#/A-3#− Compressive strength of A-1#) ÷ strength
of A-1#0) × 100%, at same curing age) of A-3# samples reach up to 390%. In addition,
compressive strength of A-2# also has 129% growth rate. As shown in Figure 7, the rate of
increase in the compressive strength significantly decreases with time. It is clear that A-3#
samples with Ms = 1.5 show a high rate of increase in the compressive strength at all curing
conditions: nearly 390%, 204% and 143% at 3, 7 and 28 days, respectively. Furthermore,
the A-3# samples show the highest strength values at 28 days (59.8 MPa under C-1 and
50.3 MPa under C-2), as shown in Figure 7c.
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3.3. Development of Amorphous Gel with the Different Ms
SEM-EDS

Morphology changes of the geopolymer hardened pastes were investigated by per-
forming the SEM-EDX analysis. Figure 8 shows the morphologies of samples with different
Ms after the 3-day curing; the gel structure and particles existed in the samples. Specifically,
flaky particles and gel structure are shown in Figure 8a. According to the EDS experimental
results (Table 4), Na, O and Si were the main elements of flaky particles with Na/Si molar
ratio of 2, which indicates that these could be unreacted waterglass. According to the
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results of previous investigations [16–18], the number of unreacted waterglass particles
of higher Ms ratio. Furthermore, the C(N)-A-S-H gel is observed in Figure 8b (according
to the Table 4). It is clearly seen that unreacted alkaline activators particle do not exist in
the A-3# samples. Comparisons with A-1 and A-2 that the geopolymer hardened pastes
gradually become denser due to the formation of the amorphous gel in the A-3# samples.
Furthermore, the Si/Al ratio of the gel with different Ms ratios is investigated though
SEM-EDX, as shown in Table 4. The gel of A-3# samples had the lowest Si/Al ratio, which
may be related to the charge balance of alkali metal ions.
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Figure 8. SEM images of samples with different Ms under the C-1 curing conditions after 3 days:
(a) A-1, (b) A-2 and (c) A-3.

As is well known, the properties of the amorphous gel are dependent on the chemical
bonds between Si, Al and O. The XPS results are shown in Figures 9 and 10. In addition to
expected Si and Al peaks, the O peak is observed in all the samples. From Figure 6, it can
be seen that the increase in Ms leads to a slight increase in the Si 2P binding energy, from
102.13 to 102.40 eV. Furthermore, the Al2p binding energy decreases from 74.19 to 74.10 eV
between A-1 and A-3. Generally, the tetrahedral aluminum has a lower binding energy
than the octahedral aluminum:73.2–74.35 and 74.1–75.0 eV [32]. Therefore, the structure of
tetrahedral aluminum did not change with the change in Ms.
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Table 4. Chemical compositions determined by EDS of crystals in Figure 8.

Postioion O/wt% Na/wt% Si/wt% Al/wt% Ca/wt% Si/Al

A-1

1 63.22 25.72 11.06 / / /
2 62.13 26.71 11.16 / / /
3 58.80 26.90 14.30 / / /
4 71.88 8.02 14.32 2.06 3.72 6.75
5 70.05 8.82 14.41 2.11 3.61 6.59
6 70.29 8.16 15.06 2.16 3.88 6.72

A-2

1 61.71 25.87 12.43 / / /
2 63.40 26.06 10.54 / / /
3 61.83 27.41 10.76 / / /
4 68.13 9.14 14.35 3.25 5.13 4.25
5 68.59 8.82 13.82 3.29 5.37 4.05
6 68.35 9.05 14.20 3.30 5.10 4.15

A-3

1 69.91 10.34 11.23 4.45 4.08 2.43
2 71.89 9.27 10.15 3.38 5.32 2.89
3 72.06 10.01 9.93 3.28 4.73 2.91
4 69.33 10.25 12.06 3.37 5.00 3.45
5 70.73 12.27 10.34 2.73 3.93 3.65

Materials 2021, 14, x FOR PEER REVIEW 10 of 16 
 

 

Table 4. Chemical compositions determined by EDS of crystals in Figure 8. 

 Postioion O/wt% Na/wt% Si/wt% Al/wt% Ca/wt% Si/Al 

A-1 

1 63.22 25.72 11.06 / / / 

2 62.13 26.71 11.16 / / / 

3 58.80 26.90 14.30 / / / 

4 71.88 8.02 14.32 2.06 3.72 6.75 

5 70.05 8.82 14.41 2.11 3.61 6.59 

6 70.29 8.16 15.06 2.16 3.88 6.72 

A-2 

1 61.71 25.87 12.43 / / / 

2 63.40 26.06 10.54 / / / 

3 61.83 27.41 10.76 / / / 

4 68.13 9.14 14.35 3.25 5.13 4.25 

5 68.59 8.82 13.82 3.29 5.37 4.05 

6 68.35 9.05 14.20 3.30 5.10 4.15 

A-3 

1 69.91 10.34 11.23 4.45 4.08 2.43 

2 71.89 9.27 10.15 3.38 5.32 2.89 

3 72.06 10.01 9.93 3.28 4.73 2.91 

4 69.33 10.25 12.06 3.37 5.00 3.45 

5 70.73 12.27 10.34 2.73 3.93 3.65 

As is well known, the properties of the amorphous gel are dependent on the chem-

ical bonds between Si, Al and O. The XPS results are shown in Figures 9 and 10. In addi-

tion to expected Si and Al peaks, the O peak is observed in all the samples. From Figure 6, 

it can be seen that the increase in Ms leads to a slight increase in the Si 2P binding energy, 

from 102.13 to 102.40 eV. Furthermore, the Al2p binding energy decreases from 74.19 to 

74.10 eV between A-1 and A-3. Generally, the tetrahedral aluminum has a lower binding 

energy than the octahedral aluminum:73.2–74.35 and 74.1–75.0 eV [32]. Therefore, the 

structure of tetrahedral aluminum did not change with the change in Ms. 

0 100 200 300 400 500 600

A-1#

A-2#

Name              O
1S

                  Al
2p

                    Si
2p        

   

                Pos.     At%       Pos.    At%       Pos.     At%

A-1#        531.72    60.68       74.19     5.92         102.40    16.44

A-2#          531.59    60.30       74.16     7.23         102.28    15.76

A-3#        531.45    60.10       74.10     7.63         102.13    13.01

Binding Energy (eV)

Ca
2p

Si
2pAl

2p

O
1s

A-3#

 

Figure 9. XPS curves of samples with different Ms under the C-1 curing conditions. Figure 9. XPS curves of samples with different Ms under the C-1 curing conditions.

Oxygen has a major role in the formation of the geopolymer. As Figure 10 shows, an
unsymmetrical oxygen peak exists, which indicates the presence of different chemical states
of oxygen. According to results of previous studies [33–36], Si–O–Si, Si–O–Al, Si–O–H and
Si–O–Na. Si–O–Si bonds correspond to the silicon skeleton, and the peak ascribed to silanol
(Si–OH) bonds is reported to be located at 532–533 eV. In this study, non-bridging oxygen,
i.e., in Si–O-Na bonds is present in negligible amounts. It is clear that the percentages
of Si–O–Na and Si–O–H bonds increase with decreasing Ms of A-2 and A-3. With the
decreases in Ms, the percentage of the Si-O-Na bonds rapidly increases to a maximum
value of 25.73% in A-3. It is known that Si–O-Na groups situated at the extreme ends of
geopolymer chains are closely related to the size of geopolymer particles [37].
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Figure 10. Fitting of O1S line taken from: (a) A-1, (b) A-2, (c) A-3 and (d) all samples curing
C-1 conditions.

Figure 11 shows the morphology of A-3# samples after the 28 days of curing. With
increasing curing time, the compactness of hydration products on the sample particles
increased. This might explain why A-3# had the highest compressive strength after up to
28 day. A comparison with A-2# and A-1# shows that the Si-O bending intensity of A-3#
decreases because of the higher reaction degree of samples at 28-day, as shown in Figure 12.
It is clear that there exists the higher Al–O stretching peak at A-3# than the A-1# and A-2#.
In the A-3# samples, the T–O stretching band shifts to lower wavenumbers from 1018 cm−1

for Ms = 2.5 to 1010 cm−1 for Ms = 1.5, indicating the formation of the Si–O–Al network.
This shift is attributed to the formation of weaker Al−O bonds. In addition, the Si–O–T
peak with obtuse shape indicates the higher amorphous degree. In order to quantitatively
investigate the gel content of samples with different Ms, selective dissolving was employed.
Results was shown in Figures 13 and 14.
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Based on the investigation of Puligilla [25,26], the method of SAM-HCl selective
dissolution was effective to measure the development of the co-existing of C-S-H and
N(K)-A-S-H gel in the fly ash—slag beads geopolymer. After the selective dissolution using
the acids of SAM and HCl, the morphology of samples is shown in Figure 13. Different acid
caused the dissolution of different product components. A comparison with the samples
that did not undergo dissolution shows that samples after SAM and HCl dissolution had a
low density of structure and highly smooth particles surface, indicating a decrease in the
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number of reaction product covering the particles. However, most reactions product had
been dissolute after the HCl treatment. Therefore, in this study, selective dissolution was
adopted to quantitatively investigate the change in the gel for the different Ms. The results
of experiment are shown in Figure 14. As shown, samples with Ms = 1.5 have the highest
gel content. It also could be seen that the highest amount of gel was obtained in the case of
A-3 samples after the 28-day curing when Ms = 1.5 waterglass was used.

3.4. Relationship Between Waterglass Properties, Gel Content and Compressive Strength

Figure 15 shows the linkage between waterglass properties, gel content and compres-
sive strength. The compressive strength of geopolymer hardened pastes was influenced
by the amorphous gel content, properties of waterglass and structure of silicate group
structure. At Ms = 1.5, increasing the Na+ and OH− contents destroys the Si-O-Si to form
the Si-O-Na and free Na+ ion easily absorbed on the surface of the silicate group, thereby
increasing the repulsion between the group. These could be the reasons for the intrinsic
properties (in terms of particles size distribution and molecular weight distribution) of
the waterglass solution. The lower size and molecular weight may efficiently improve the
chances for contact, thereby accelerating the formation of the amorphous gel. Furthermore,
a higher Na+ content could be helpful for the formation of Si-O-Na resulting in the forma-
tion of the amorphous gel with the lower size and Si/Al ratio. Moreover, it improves the
density of the geopolymer hardened pastes. Thus, the highest compressive strength of the
geopolymer corresponded to Ms = 1.5.
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4. Discussion

The compressive strength of geopolymer hardened pastes was influenced by the
amorphous gel content, properties of waterglass and structure of silicate group structure.
Increasing the Na+ and OH− contents destroys the Si-O-Si to form the Si-ONa+, thereby
increasing the repulsion between the group to form the lower size and molecular weight
of silicate structure. It may efficiently improve the chances for contact, accelerating the
formation of the amorphous gel. Thereby it improves the density of the geopolymer
hardened pastes.

5. Conclusions

In this study, the effects of different Ms of waterglass on the properties of hardened
pastes were studied. The aim of the study was to determine the relationship between the
structure of the waterglass, gel content and compressive strength of samples. From the
obtained results, the following conclusions can be drawn:
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1. With decreasing Ms, branched and agglomerated coordination unit groups of silicon
were destroyed with the formation of Si-ONa+ and the electric charge effect of Na+,
which produces the linear and circular-chain silicon structures with lower sizes and
molecule weight in the Ms = 1.5 waterglass activator.

2. With decreasing Ms, the compressive strength of geopolymer hardened pastes
significantly increases. The highest value 58.9 MPa was obtained for Ms = 1.5 after
the 28 days curing.

3. The waterglass with low Ms (Ms = 1.5) results in the linear and circular-chain silicon
structures with the lower size and molecule weight, which improve the chances of
contact of active component, resulting in the improvement in the formation of the gel
structure with low Si/Al ratio and size. This could be the major reason for the highest
compressive strength of hardened pastes.
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