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Objectives: [18F]9-fluoropropyl-(+)-dihydrotetrabenazine ([18F]-FP-DTBZ) positron
emission tomography (PET) provides reliable information for the diagnosis of Parkinson’s
disease (PD). In this study, we proposed a multi-atlas-based [18F]-FP-DTBZ PET image
segmentation method for PD quantification assessment.

Methods: A total of 99 subjects from Xuanwu Hospital of Capital Medical University
were included in this study, and both brain PET and magnetic resonance (MR) scans
were conducted. Data from 20 subjects were used to generate atlases, based on
which a multi-atlas-based [18F]-FP-DTBZ PET segmentation method was developed
especially for striatum and its subregions. The proposed method was compared with
the template-based method through striatal subregion parcellation performance and
the standard uptake value ratio (SUVR) quantification accuracy. Discriminant analysis
between healthy controls (HCs) and PD patients was further performed.

Results: Segmentation results of the multi-atlas-based method showed better
consistency than the template-based method with the ground truth, yielding a dice
coefficient of 0.81 over 0.73 on the full striatum. The SUVRs calculated by the multi-
atlas-based method had an average interclass correlation coefficient (ICC) of 0.953
with the standardized result, whereas the template-based method only reached 0.815.
The SUVRs of HCs were generally higher than that of patients with PD and showed
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significant differences in all of the striatal subregions (all p < 0.001). The median and
posterior putamen performed best in discriminating patients with PD from HCs.

Conclusion: The proposed multi-atlas-based [18F]-FP-DTBZ PET image segmentation
method achieved better performance than the template-based method, indicating great
potential in improving accuracy and efficiency for PD diagnosis in clinical routine.

Keywords: Parkinson’s disease, [18F]-FP-DTBZ, image segmentation, striatum subregion, SUVR quantification

INTRODUCTION

Parkinson’s disease (PD) is one of the most common age-
related neurodegenerative disorders (Braak et al., 2003; Rai
and Singh, 2020; Rai et al., 2021a). An increasing number of
evidence suggests that positron emission tomography (PET)
imaging aiming at the assessment of the dopaminergic function
supports a more accurate diagnosis of PD (Frey et al., 1996;
Ravina et al., 2005; Pirker et al., 2010). Vesicular monoamine
transporter type 2 (VMAT2) is the transporter responsible for
the uptake and storage of monoamines. As VMAT2 imaging
by PET provides reliable information for the degeneration
of nigrostriatal dopaminergic neurons, a novel radiotracer
named [18F]9-fluoropropyl-(+)-dihydrotetrabenazine ([18F]-
FP-DTBZ) has been developed (Gilman et al., 1998; Okamura
et al., 2010). Previous studies have revealed that the [18F]-
FP-DTBZ uptake in the striatum is significantly associated
with the severity of PD (Braak et al., 2003; Hsiao, 2014).
Therefore, improvement in the PET image quantification
method is important for objective assessment of PD progression
and diagnosis especially in the early stage (Hsiao, 2014;
Liu et al., 2018).

To quantify the PET images, the target-to-reference standard
uptake value ratio (SUVR) is extensively used, by which the
accuracy of identifying regions of interest (ROIs) directly affects
the credibility of the quantification results (Clark et al., 2011;
Fleisher et al., 2011; Wolk et al., 2012). Magnetic resonance
image (MR)-based methods are widely applied to identify the
target ROIs. With the assistance of structural MR images,
segmentation results could achieve comparable accuracy with
manual segmentation (Andersson et al., 1995; Kuhn et al., 2014).
However, in clinical practice, the acquisition of extra MR images
is expensive and inconvenient when patients take PET scans
(Bailey et al., 2015). Template-based methods have been proposed
to achieve ROI parcellation in the absence of MR data, by
which target PET images are coregistered to a normalized PET
template with predefined ROIs (Andersson et al., 1995; Chang
et al., 2011; Dukart et al., 2011; Kuhn et al., 2014). However,
in dopamine imaging, due to small ROI and heterogeneity of
the tracer distribution, the single template strategy could not
ensure the reliability of spatial normalization, which results in
inevitable segmentation error and may introduce misestimate

Abbreviations: ANTs, Advanced Normalization Tools; [18F]-FP-DTBZ, [18F]9-
fluoropropyl-(+)-dihydrotetrabenazine; HC, healthy control; ICC, interclass
correlation coefficient; JLF, joint label fusion; MSE, mean square error; PD,
Parkinson’s disease; SUVR, standard uptake value ratio; VMAT2, vesicular
monoamine transporter type 2.

in the consequent quantitative analysis (van Rikxoort et al.,
2010). In addition, most of the template-based methods have
not reached quantification at the subregion level, though the
distribution of dopamine receptors varies greatly among the
striatal subregions, especially in the case of patients with PD
(Staley and Mash, 1996; Martinez et al., 2003).

In this study, we proposed a multi-atlas-based [18F]-FP-
DTBZ PET image segmentation method, which implements
reliable MR-free ROI extraction for PET images. Comparisons
between the multi-atlas-based, template-based method, and
the gold standard were conducted on the segmentation
and quantification level. Quantification results were
further analyzed to reveal the most sensitive subregions
in discriminating patients with PD. This would provide
reliable information for PD diagnosis and facilitate efficient
clinical workflow.

METHODS

Subject Enrollment
A total of 2 datasets with 99 subjects recruited from the
Xuanwu Hospital of Capital Medical University were included
in this study. All subjects underwent a PET and a high-
resolution MR scan of the brain. UI dataset with PET/MR
(scanned by United Imaging uPMR790) includes 30 HCs
and 38 PDs. GE dataset with PET/MR (scanned by GE
Healthcare) includes 11 HCs and 20 PDs. The PDs were
diagnosed according to the MDS clinical diagnostic criteria for
PD (Postuma and Berg, 2017). The study was approved by
the Institutional Review Board of Xuanwu Hospital. Written
informed consent was obtained from all participants prior to the
study procedure.

Data Acquisition
UI Dataset
Magnetic resonance imaging data acquisition was performed
using a hybrid 3.0-T PET/MR scanner (uPMR790, UIH,
Shanghai, China) with a 24-channel head/neck coil. A 3D
T1-weighted imaging (T1WI) data were collected from all
participants with the following parameters: TR/TE: 7.86/3.2 ms;
flip angle: 10; FOV: 230 mm × 256 mm; voxel size:
0.5 mm × 0.5 mm × 0.67 mm. Scanning parameters of [18F]-
FP-DTBZ PET imaging were as follows: field of view = 300 mm;
voxel size = 1.17 mm × 1.17 mm × 1.4 mm. All patients with
PD were scanned during their off-state condition (12 h after the
last medication).
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GE Dataset
Positron emission tomography/MRI examinations were
performed on an integrated simultaneous Signa PET/MR
scanner (GE Healthcare). The scan began 90 min following an
intravenous bolus injection of around 222 MBq (6 mCi) of [18F]-
FP-DTBZ and lasted for 15 min. The PET bed position included a
simultaneous 18-s 2-point Dixon scan for MRI-based attenuation
correction as well as additional diagnostic 3D T1 BRAVO MR
images with scanning parameters as follows: TR = 7.9 ms;
TE = 3.6 ms; acquisition matrix = 232 × 224; acquired spatial
voxel resolution 1.00 mm × 1.00 mm × 1.00 mm with a data
acquisition time of 4 min and 17 s. Scanning parameters of
PET imaging were as follows: field of view = 25 cm; matrix
size = 192 × 192; voxel size = 1.82 mm × 1.82 mm × 2.78 mm;
89 slices. Attenuation correction, scatter correction, random
correction, and dead-time correction were performed as well.

Positron Emission Tomography
Segmentation Pipeline
The multi-atlas-based [18F]-FP-DTBZ PET image segmentation
and analysis method were developed by the procedure illustrated
in Figure 1. A total of 20 subjects including 10 HCs and
10 patients with PD were selected randomly from the UI
dataset as the atlas repository (9 men and 11 women). The
remaining subjects in the UI dataset were used for testing, named
cohort UI. GE dataset was used for reproducibility experiment,
named cohort GE.

Atlas Creation
First, the rigid coregistration was performed on the MR images
to the corresponding PET images for each individual in the
atlas repository. A PET template was constructed by averaging
all PET images using the multivariate template construction
method by Advanced Normalization Tools (ANTs1) (Avants
et al., 2009). An MR template was generated using the same
method and coregistered to the PET template. Individual MR
images, as well as the MR template, were segmented using Brain
Label,2 which executes brain parcellation of T1 image based
on pre-selection strategy and multiple atlas likelihood fusion
algorithm (Tang et al., 2013; Wu et al., 2016). By applying
the Brain Label, whole-brain label images consisting of 283
regions, including the caudate, putamen, nucleus accumbens, and
cerebellum, were generated.

After that, the PET images were coregistered to the PET
template using the non-linear registration method by ANTs.
The transform matrix and normalization parameters generated
by these two steps were also applied to the label images.
A manual check on segmentation accuracy for each participant
was performed by a senior neurologist with 7-year experience in
nuclear image processing.

Several image preprocessing methods were applied to the
PET images in the template space, including skull stripping,
partial volume effect correction, smoothing, and histogram
specification. Each individual skull stripped PET image was

1http://picsl.upenn.edu/software/ants
2http://brainlabel.org

corrected for partial volume effect by PETPVC, with kernel
size = 6.0 mm × 6.0 mm × 6.0 mm, number of iterations = 10,
number of deconvolution iterations = 10, alpha value = 1.5,
stopping criterion = 0.01 (Thomas et al., 2016; Alavi et al.,
2018). The VOI mask required by PETPVC was extracted from
the label of the template. An isotropic Gaussian kernel of
3.7 mm × 3.7 mm × 6.6 mm full width at half maximum
was applied for smoothing (Tournier et al., 2019). Global
histogram specification was applied to transform the histogram
of the individual PET images to the histogram of the template,
followed by local histogram specification on the ROI of the
striatum. Through histogram specification, PET image intensity
was normalized to facilitate further comparison. Supplementary
Figure 1 shows the examples of histogram specifications.

Finally, an atlas database including a PET template and 20
atlases was obtained to provide segmentation reference for target
PET images. Each atlas contained a PET image in the template
space with a corresponding label image and its global as well as
local histogram-specified results.

Multi-Atlas-Based Positron Emission Tomography
Segmentation
Target PET images in cohort UI were coregistered to the
template space and followed a similar preprocessing procedure
as PET atlases (skull stripping, smoothing, and global and local
histogram specification) for further evaluation. Mean square
error (MSE) was applied to measure the similarity between target
PET images and atlases. For each target, five best-matched atlases
from the atlas database were selected by following two steps.
In the first step, MSE between each atlas’ global-specified PET
image and the target’s global-specified PET image was calculated.
A total of 10 atlases with the least MSE values were selected as
the candidates for the second step. In the second step, five best-
matched atlases were selected based on MSE calculated between
local-specified regions (i.e., the striatum) on PET images.

The segmentation results were produced by merging the label
images of the best-matched atlases. The joint label fusion (JLF,
operated by ANTs) was performed to fuse the obtained multiple
labels of the PET image for each target participant (Avants
et al., 2009). First, the chosen PET images were coregistered
to the target PET image. Using the warping parameters, label
images of the chosen atlases were warped to the target PET
space and subsequently fused into one label image. Comparisons
were conducted between the multi-atlas-based method and
the conventional template-based method. The template-based
method shared the same PET template as well as its label
generated in section “Atlas Creation,” VOI was selected from
the whole-brain label image, and the target PET image was
coregistered to the template directly for VOI extraction.

Subregion Segmentation
A detailed subregion segmentation criterion based on the
topographic structural information was adopted to find
prominent parts of the striatum for discriminating patients
with PD from HCs. The putamen and the caudate were
divided into anterior, median, and posterior parts, respectively.
Using the median point of the whole putamen pixels under
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FIGURE 1 | Schematic representation of the procedure for the automatic multi-atlas-based PET image segmentation method.

the coronal axis, a sagittal plane was established to separate
the striatum into left and right parts. Then, the bilateral
putamen and caudate were further segmented into three
equal parts along the line determined by their front-end and
back-end points under the sagittal axis. Finally, the striatum
was segmented into seven subregions (bilaterally, including
the anterior putamen, median putamen, posterior putamen,
anterior caudate, median caudate, posterior caudate, and
nucleus accumbens). Figure 2 shows a sample of subregion
segmentation result in 2D and 3D images to illustrate our
subregion segmentation criterion. The total time required to
segment a target PET image was about 20 min [CPU: Intel X(R)
CPU E5-2620 v4 @ 2.10 GHz].

Standard Uptake Value Ratio Evaluation
Standardized uptake value ratios of all seven subregions of the
striatum on each PET image were calculated by dividing the mean
counts per voxel in the target subregions by the mean counts per
voxel in the reference region (Cerebellum):

SUVR =
target uptake

reference uptake
(1)

The result of the MR-based method was applied as the
ground truth. MR images for cohort UI subjects were
segmented by Brain Label and coregistered to PET images. The
subregion segmentation criterion was the same as mentioned
before, and the final results were manually checked by the
experienced neurologist.

FIGURE 2 | An example of a subregion segmentation result. Bilateral
putamen and caudate were divided into three equal parts in length. (A) 3D.
(B) Transverse. (C) Sagittal. (D) Coronal.

Statistical Evaluation
Dice coefficient was applied to measure the similarity
of segmentation results between the multi-atlas-based
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TABLE 1 | Demographic details of participants from UI scanner.

Group Sample size Sex (M/F) Age (years) UPDRS-III HY

HC_UI 30 13/17 56.8 ± 10.5 – –

PD_UI 38 18/20 55.8 ± 15.6 21.5 ± 11.8 1.9 ± 0.9

HC_UI, healthy control from UI scanner; PD_UI, Parkinson’s disease from UI scanner.

TABLE 2 | Dice coefficients of two label generation methods in ROI regions.

Label generation methods ROI regions

Nucleus accumbens Caudate Putamen Striatum

Template-based 0.60 ± 0.04 0.73 ± 0.06 0.75 ± 0.04 0.73 ± 0.04

Multi-atlas-based 0.71 ± 0.05 0.81 ± 0.04 0.83 ± 0.05 0.81 ± 0.04

Data are presented as mean value ± SD.

FIGURE 3 | Segmentation results comparison. Each subgraph consists of a subject’s original PET image, superimposed with seven subregion labels obtained by
two segmentation methods, the multi-atlas-based method (left) and the MR-based method (right). Both PDs and HCs from cohort UI and GE were selected to
demonstrate their segmentation effects at different cross-sectional slices. (A) A 46-year-old HC (male) in cohort UI case 4. (B) A 56-year-old PD (female) in cohort UI
case 20. (C) A 48-year-old PD (female) in cohort GE case 3. (D) A 59-year-old HC (female) in cohort UI case 12. (E) A 61-year-old PD (male) in cohort UI case 32.
(F) A 75-year-old PD (male) in cohort GE case 31.

method and the MR-based method (Dice, 1945). It is
computed by:

dice =
2 |A ∩ B|
|A| + |B|

(2)

where A and B are two different segmentation results,
respectively, and |·| represents the number of voxels within
the segmentation result. A larger dice coefficient means better
overlap. For larger structures, values above 0.8 are usually
accepted as successful results while for smaller structures, values
greater than 0.7 are preferred (Xiao et al., 2015).

The two-way mixed effect interclass correlation coefficients
(ICCs) were calculated to identify the consistency between the
SUVRs obtained by the two segmentation methods (Shrout and
Fleiss, 1979). ICC is calculated by:

ICC =
σ2
s

σ2
s + σ2

s
(3)

where σs denotes variance caused by differences between the
segmentation methods and σs denotes variance caused by
differences between the values in the segmentation results.
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FIGURE 4 | Subregion SUVR correlations. Subregion SUVR correlations between the multi-atlas-based PET segmentation and the MR-based segmentation in
cohort UI. The horizontal axis is the SUVR of each subregion separated by the multi-atlas-based PET segmentation, whereas the vertical axis is the SUVR of each
subregion separated by the MR-based segmentation.

Statistical analysis of demographic details between groups was
performed using a two-sample t-test and effect size. The t-test
was further applied to compare SUVRs between HCs and patients
with PD. Additionally, p< 0.05 was determined significant in our
statistical results.

RESULTS

Demographic Results
Table 1 summarizes the demographic details of participants
from UI scanner. Descriptive data are presented as the
mean ± standard deviation (SD) for continuous variables
and percentage for dichotomous variables. No significant
group differences were found in sex and age. In the PD
group, mean UPDRS-III score was 21.5 (SD = 11.8) and the
median of Hoehn and Yahr stage was 2 (range 1–5). The
demographic details of participants from GE scanner are shown
in Supplementary Table 1.

Segmentation Performance Evaluation
We compared the segmentation accuracy of the striatum
subregions between the multi-atlas-based and template-based
methods on cohort UI. As shown in Table 2, the multi-atlas-based
method showed better segmentation performance. The mean
dice coefficients of the whole striatum, caudate, and putamen all
showed excellent accuracy (dice >0.8). The nucleus accumbens
had the worst performance due to its smaller size. Compared
to the multi-atlas-based method, the template-based method

had a general performance degradation of 8%, which indicated
the multi-atlas strategy held better performance than the single
template strategy.

Figure 3 presents the subregions obtained by the multi-atlas-
based method and the MR-based method. For each case, the
result of the multi-atlas-based method was shown on the left
whereas the result of the MR-based was shown on the right. The
backgrounds were the native PET images. Segmentation results
of the multi-atlas-based method showed good agreement with the
MR-based method in varied conditions and slices.

Quantification Performance Evaluation
The subregion SUVR values were calculated according to
the segmentation results generated by the multi-atlas-based
method and the MR-based method, respectively. The correlation
of results obtained by these two analyses was calculated
and visualized in Figure 4. As demonstrated, SUVR of
all subregions showed great consistency with an average
ICC of 0.953. In contrast, the average ICC between the
template-based method and the MR-based method was 0.815
(Supplementary Figure 2).

Standard Uptake Value Ratio Level in
Diagnostic Groups
Figure 5 and Table 3 show the SUVRs of [18F]-FP-DTBZ
in the subregions of PD and HC groups from cohort UI.
The SUVRs of HCs were generally higher than that of
patients with PD and showed significant differences in all of
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FIGURE 5 | Subregion [18F]-FP-DTBZ SUVRs in cohort UI. In the violin plot,
the central mark indicates the median, and the bottom and top edges indicate
the 25th and 75th percentiles. HC_UI, healthy control from UI scanner; PD_UI,
Parkinson’s disease from UI scanner. Significance: ***p < 0.001 t-test analysis.

the subregions (all p < 0.001). The SUVRs of the median
putamen and posterior putamen in patients with PD could
be separated clearly from HCs without any overlap between
the two groups. The t-test demonstrated SUVR values to
be significantly different in all of the subregions for HCs
and patients with PD (p < 0.001). Supplementary Table 2
shows the effect size of the multi-atlas-based method and the
template-based method. In most subregions, the multi-atlas-
based method obtained better divergence in discriminating HC
and patients with PD.

Reproducibility Experiments
Reproducibility experiments were performed on cohort GE.
The multi-atlas-based PET image segmentation method and the
MR-based method were applied to extract the ROI subregions.
The dice coefficient of the two methods reached 0.792 on
the whole striatum and 0.816, 0.788, and 0.652 on the
putamen, caudate, and nucleus accumbens, respectively. SUVR
of all subregions calculated by the multi-atlas-based method
and the MR-based method is compared in Supplementary
Figure 3 having an average ICC of 0.969. Supplementary
Figure 4 and Supplementary Table 3 demonstrated the
SUVR comparison between HCs and PDs in cohort GE

and showed a similar pattern as cohort UI, indicating that
the multi-atlas-based method could be applied for multi-
center use.

DISCUSSION

In this study, we proposed a multi-atlas-based PET segmentation
method that achieved reliable segmentation performance
in an MR-free situation. Analysis on [18F]-FP-DTBZ PET
quantification showed great potential for our method in
PD diagnosis. The current PET image analysis methods
mainly include the manual method, MR-based method,
and MR-free template-based method. Our multi-atlas-
based method was fully automatic and did not rely on MR
images. Thus, it was operator-independent and had great
reproducibility with high processing efficiency. As compared
to the template-based method, our proposed method used
an atlas database rather than a single template, which
provided a higher parcellation accuracy. In the previous
studies, the PET template was usually generated from HCs or
adapted from existing results such as Montreal Neurological
Institute (MNI) standard space, and target PET images
were coregistered to the PET template directly (Evans
et al., 1993). Given that the binding of [18F]-FP-DTBZ was
affected by VMAT2 distribution, PET images of different
disease severity would present different intensity distributions
according to VMAT2 density (Lin et al., 2011). However,
the coregistration method could not work well when the
image intensity did not reflect the real structure information.
So, coregistration error would be introduced if only one
template is referenced. The multi-atlas selection strategy
could automatically select the most matched atlases using
both global and local information, thus avoiding potential
segmentation degeneration caused by coregistration with
inappropriate images. By comparison, the multi-atlas-based
method showed better accuracy than the template-based
method (Table 2).

Our method further segmented the striatum into seven
subregions. The putamen and the caudate were divided into
three parts, respectively. Our study showed that the reduction
of VMAT2 integrity among patients with PD varies in different
parts of the striatum. The improvement in the segmentation
method helped to further distinguish patients with PD from
HCs. Analysis of SUVR showed that all subregions of patients
with PD exhibited different levels of lower VMAT2 densities

TABLE 3 | [18F]9-fluoropropyl-(+)-dihydrotetrabenazine SUVRs in seven subregions in PDs and HCs from cohort UI.

Subregion APu MPu PPu ACa MCa PCa NAc

Statistical description SUVR mean (SD) HC_UI 3.34 (0.29) 3.57 (0.41) 3.67 (0.47) 3.04 (0.31) 2.97 (0.43) 2.03 (0.39) 2.46 (0.18)

PD_UI 1.99 (0.46) 1.67 (0.40) 1.52 (0.40) 2.14 (0.53) 2.07 (0.53) 1.45 (0.36) 2.14 (0.31)

t-Test analysis t 11.52 15.94 17.09 6.75 6.21 5.36 4.18

p <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 ***

HC_UI, healthy control from UI scanner; PD_UI, Parkinson’s disease from UI scanner. Significance: ***p < 0.001.
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than HCs, suggesting presynaptic nigrostriatal dysfunction in
PD (Lung et al., 2018). The most affected subregion was the
posterior putamen, followed by the rest parts of the putamen and
subregions in the caudate, which was in line with the previous
study (Okamura et al., 2010; Hsiao, 2014). SUVRs in the median
putamen and posterior putamen had the best performance to
discriminate patients with PD from HCs.

The multi-atlas-based method also showed potential in
processing datasets from other institutions and was expected
to be applicable to other PET modalities (Bui et al., 2020).
Reproducibility experiments indicated that our method could
achieve guaranteed segmentation and quantification results on a
different scanner. In this study, [18F]-FP-DTBZ PET was selected
as our imaging modality because VMAT2 has a high density in
striatal regions and shows low sensitivity to drug effects (Lee
et al., 2000; Sun et al., 2012). But the multi-atlas-based method
could be applied to other PETs targeting DAT or AADC as well
(de Natale et al., 2018). Since the generation of PET images
followed the same principle, our method could also be utilized for
some other neurodegenerative diseases which could be examined
by PET such as AD.

Several limitations in this study should be mentioned.
First, a large number of subjects, as well as samples from
other imaging centers for further validation, are warranted.
Due to the limited sample size, our current atlas database
only included 20 cases. Although a significant segmentation
performance improvement has been achieved, more atlases
were expected to provide better segmentation accuracy since
more PET distribution patterns might be included. Second, our
subregion segmentation criterion was restricted to topographic
structural information. Through significant difference has been
found in some of the subregions, the combination of structural
connectivity and functional information might provide more
insights into dopamine function and contribute to better
subdivision (Tziortzi et al., 2014; Rai et al., 2020, 2021b).
Finally, future work to establish the correlation between the
analysis results and the clinical disease severity is needed.
As we did not include H–Y stage information of subjects
in the study, further studies focusing on evaluating the
performances of our proposed method in different severities of
PD are warranted.

CONCLUSION

In this study, a multi-atlas-based [18F]-FP-DTBZ PET image
segmentation method was proposed for PD quantification and
showed better performance than the template-based method.
The application analysis in patients with PD suggests that the
proposed method has potential value for improving the accuracy
and efficiency of PD diagnostic in clinical routine.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because it is for institutional use only. Requests to access the
datasets should be directed to TM, tma@hit.edu.cn.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Institutional Review Board of Xuanwu Hospital.
The patients/participants provided their written informed
consent to participate in this study. Written informed consent
was obtained from the individual(s) for the publication of any
potentially identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

TM conceived and supervised the project. HQ and TS helped the
data acquisition. YP, SL, YZ, and CY analyzed the data. YP drafted
the manuscript. YZ created the figures. CY and HL revised the
manuscript. SL, PC, and JL provided the insight on clinical
aspects. TM, JL, and PC gave final approval to the manuscript.
All authors read and approved the final manuscript.

FUNDING

This study was supported by grants from the National
Key Research and Development Program of China (nos.
2018YFC1312000, 2017YFC0840105, and 2017ZX09304018),
China Postdoctoral Science Foundation funded project (no.
2021M691686), Basic Research Foundation of Shenzhen
Science and Technology Stable Support Plan (no.
GXWD20201230155427003–20200822115709001), National
Natural Science Foundation of China (nos. 62106113, 81901285,
81701726, and 81522021), Beijing Municipal Administration
of Hospitals (nos. SML20150803 and DFL20180802), and
Beijing Municipal Science and Technology Commission (no.
Z171100000117013).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.
2022.902169/full#supplementary-material

REFERENCES
Alavi, A., Werner, T. J., Høilund-Carlsen, P. F., and Zaidi, H. (2018). Correction

for partial volume effect is a must, not a luxury, to fully exploit the potential

of quantitative PET imaging in clinical oncology. Mol. Imaging Biol. 20, 1–3.
doi: 10.1007/s11307-017-1146-y

Andersson, J. L., Sundin, A., and Valind, S. (1995). A method for coregistration of
PET and MR brain images. J. Nucl. Med. 36, 1307–1315.

Frontiers in Aging Neuroscience | www.frontiersin.org 8 June 2022 | Volume 14 | Article 902169

https://www.frontiersin.org/articles/10.3389/fnagi.2022.902169/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2022.902169/full#supplementary-material
https://doi.org/10.1007/s11307-017-1146-y
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-902169 June 7, 2022 Time: 13:34 # 9

Pan et al. A Multi-Atlas-Based Segmentation Method

Avants, B. B., Tustison, N., and Song, G. (2009). Advanced normalization
tools (ANTS). Insight J. 2, 1–35. doi: 10.1007/s11682-020-00
319-1

Bailey, D., Pichler, B., Gückel, B., Barthel, H., Beer, A., Bremerich, J., et al. (2015).
Combined PET/MRI: multi-modality multi-parametric imaging is here. Mol.
Imaging Biol. 17, 595–608. doi: 10.1007/s11307-015-0886-9

Braak, H., Rüb, U., Gai, W., and Del Tredici, K. (2003). Idiopathic Parkinson’s
disease: possible routes by which vulnerable neuronal types may be subject
to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536.
doi: 10.1007/s00702-002-0808-2

Bui, V., Hsu, L.-Y., Shanbhag, S. M., Tran, L., Bandettini, W. P., Chang, L.-C.,
et al. (2020). Improving multi-atlas cardiac structure segmentation of computed
tomography angiography: a performance evaluation based on a heterogeneous
dataset. Comput. Biol. Med. 125:104019. doi: 10.1016/j.compbiomed.2020.
104019

Chang, I. C., Lue, K. H., Hsieh, H. J., Liu, S. H., and Kao, C. H. (2011). Automated
striatal uptake analysis of (1)(8)F-FDOPA PET images applied to Parkinson’s
disease patients. Ann. Nucl. Med. 25, 796–803. doi: 10.1007/s12149-011-
0533-8

Clark, C. M., Schneider, J. A., Bedell, B. J., Beach, T. G., Bilker, W. B., Mintun,
M. A., et al. (2011). Use of florbetapir-PET for imaging β-amyloid pathology.
J. Am. Med. Assoc. 305, 275–283.

de Natale, E. R., Niccolini, F., Wilson, H., and Politis, M. (2018). Molecular
imaging of the dopaminergic system in idiopathic Parkinson’s Disease. Int. Rev.
Neurobiol. 141, 131–172. doi: 10.1016/bs.irn.2018.08.003

Dice, L. R. (1945). Measures of the amount of ecologic association between species.
Ecology 26, 297–302.

Dukart, J., Mueller, K., Horstmann, A., Barthel, H., Möller, H. E., Villringer, A.,
et al. (2011). Combined evaluation of FDG-PET and MRI improves detection
and differentiation of dementia. PLoS One 6:e18111. doi: 10.1371/journal.pone.
0018111

Evans, A. C., Collins, D. L., Mills, S., Brown, E. D., Kelly, R. L., and Peters, T. M.
(1993). “3D statistical neuroanatomical models from 305 MRI volumes,” in
Proceeding of the 1993 IEEE Conference Record Nuclear Science Symposium and
Medical Imaging Conference, (San Francisco, CA: IEEE), 1813–1817.

Fleisher, A. S., Chen, K., Liu, X., Roontiva, A., Thiyyagura, P., Ayutyanont, N.,
et al. (2011). Using positron emission tomography and florbetapir F 18 to image
cortical amyloid in patients with mild cognitive impairment or dementia due to
Alzheimer Disease. Arch. Neurol. 68, 1404–1411.

Frey, K. A., Koeppe, R. A., Kilbourn, M. R., Vander Borght, T. M., Albin, R. L.,
Gilman, S., et al. (1996). Presynaptic monoaminergic vesicles in Parkinson’s
disease and normal aging. Ann. Neurol. 40, 873–884. doi: 10.1002/ana.
410400609

Gilman, S., Koeppe, R. A., Adams, K. M., Junck, L., Kluin, K. J., Johnson-Reene,
D., et al. (1998). Decreased striatal monoaminergic terminals in severe chronic
alcoholism demonstrated with (+)[11C]Dihydrotetrabenazine and positron
emission tomography. Ann. Neurol. 44, 326–333. doi: 10.1002/ana.410440307

Hsiao, I. T. (2014). Correlation of parkinson disease severity and F-18-DTBZ
positron emission tomography. JAMA Neurol. 71, 803–803.

Kuhn, F. P., Warnock, G. I., Burger, C., Ledermann, K., Martin-Soelch, C., and
Buck, A. (2014). Comparison of PET template-based and MRI-based image
processing in the quantitative analysis of C 11-raclopride PET. EJNMMI
Res. 4:7.

Lee, C. S., Samii, A., Sossi, V., Ruth, T. J., Schulzer, M., Holden, J. E., et al. (2000).
In vivo positron emission tomographic evidence for compensatory changes in
presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann. Neurol.
47, 493–503.

Lin, K.-J., Lin, W.-Y., Hsieh, C.-J., Weng, Y.-H., Wey, S.-P., Lu, C.-S., et al.
(2011). Optimal scanning time window for 18F-FP-(+)-DTBZ (18F-AV-133)
summed uptake measurements. Nucl. Med. Biol. 38, 1149–1155. doi: 10.1016/
j.nucmedbio.2011.05.010

Liu, Z. Y., Liu, F. T., Zuo, C. T., Koprich, J. B., and Wang, J. (2018). Update
on molecular imaging in Parkinson’s Disease. Neurosci. Bull. 34, 330–340. doi:
10.1007/s12264-017-0202-6

Lung, H. J., Weng, Y.-H., Wen, M.-C., Hsiao, T., and Lin, K.-J. (2018). Quantitative
study of 18 F-(+) DTBZ image: comparison of PET template-based and
MRI based image analysis. Sci. Rep. 8:16027. doi: 10.1038/s41598-018-34
388-6

Martinez, D., Slifstein, M., Broft, A., Mawlawi, O., Hwang, D.-R., Huang, Y.,
et al. (2003). Imaging human mesolimbic dopamine transmission with positron
emission tomography. Part II: amphetamine-induced dopamine release in the
functional subdivisions of the striatum. J. Cereb. Blood FlowMetab. 23, 285–300.
doi: 10.1097/01.WCB.0000048520.34839.1A

Okamura, N., Villemagne, V. L., Drago, J., Pejoska, S., and Rowe, C. C.
(2010). In vivo measurement of vesicular monoamine transporter type
2 density in Parkinson disease with F-18-AV-133. J. Nucl. Med. 51,
223–228.

Pirker, W., Djamshidian, S., Asenbaum, S., Gerschlager, W., Tribl, G., Hoffmann,
M., et al. (2010). Progression of dopaminergic degeneration in Parkinson’s
disease and atypical parkinsonism: a longitudinal beta-CIT SPECT study. Mov.
Disord. 17, 45–53. doi: 10.1002/mds.1265

Postuma, R. B., and Berg, D. (2017). The new diagnostic criteria for Parkinson’s
disease. Int. Rev. Neurobiol. 132, 55–78.

Rai, S. N., Chaturvedi, V. K., Singh, P., Singh, B. K., and Singh, M. P.
(2020). Mucuna pruriens in Parkinson’s and in some other diseases: recent
advancement and future prospective. 3 Biotech 10:522. doi: 10.1007/s13205-
020-02532-7

Rai, S. N., and Singh, P. (2020). Advancement in the modelling and therapeutics of
Parkinson’s disease. J. Chem. Neuroanat. 104:101752. doi: 10.1016/j.jchemneu.
2020.101752

Rai, S. N., Singh, P., Varshney, R., Chaturvedi, V. K., Vamanu, E., Singh, M. P.,
et al. (2021a). Promising drug targets and associated therapeutic interventions
in Parkinson’s disease. Neural Regen. Res. 16, 1730–1739. doi: 10.4103/1673-
5374.306066

Rai, S. N., Tiwari, N., Singh, P., Mishra, D., Singh, A. K., Hooshmandi, E., et al.
(2021b). Therapeutic potential of vital transcription factors in Alzheimer’s
and Parkinson’s disease with particular emphasis on transcription factor
eb mediated autophagy. Front. Neurosci. 15:777347. doi: 10.3389/fnins.2021.
777347

Ravina, B., Eidelberg, D., Ahlskog, J., Albin, R., Brooks, D., Carbon, M., et al.
(2005). The role of radiotracer imaging in Parkinson disease. Neurology 64,
208–215.

Shrout, P. E., and Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater
reliability. Psychol. Bull. 86:420. doi: 10.1037//0033-2909.86.2.420

Staley, J. K., and Mash, D. C. (1996). Adaptive increase in D3 dopamine receptors in
the brain reward circuits of human cocaine fatalities. J. Neurosci. 16, 6100–6106.
doi: 10.1523/JNEUROSCI.16-19-06100.1996

Sun, J., Xu, J., Cairns, N. J., Perlmutter, J. S., and Mach, R. H. (2012). Dopamine
D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2)
and dopamine transporter (DAT) densities in aged human brain. PLoS One
7:e49483. doi: 10.1371/journal.pone.0049483

Tang, X., Oishi, K., Faria, A. V., Hillis, A. E., Albert, M. S., Mori, S., et al.
(2013). Bayesian parameter estimation and segmentation in the multi-
atlas random orbit model. PLoS One 8:e65591. doi: 10.1371/journal.pone.00
65591

Thomas, B. A., Cuplov, V., Bousse, A., Mendes, A., Thielemans, K., Hutton, B. F.,
et al. (2016). PETPVC: a toolbox for performing partial volume correction
techniques in positron emission tomography. Phys. Med. Biol. 61, 7975–7993.
doi: 10.1088/0031-9155/61/22/7975

Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M.,
et al. (2019). MRtrix3: a fast, flexible and open software framework for medical
image processing and visualisation. Neuroimage 202:116137. doi: 10.1016/j.
neuroimage.2019.116137

Tziortzi, A. C., Haber, S. N., Searle, G. E., Tsoumpas, C., Long, C. J., Shotbolt,
P., et al. (2014). Connectivity-based functional analysis of dopamine release in
the striatum using diffusion-weighted MRI and positron emission tomography.
Cereb. Cortex 24, 1165–1177. doi: 10.1093/cercor/bhs397

van Rikxoort, E. M., Isgum, I., Arzhaeva, Y., Staring, M., Klein, S., Viergever, M. A.,
et al. (2010). Adaptive local multi-atlas segmentation: application to the heart
and the caudate nucleus. Med. Image Anal. 14, 39–49. doi: 10.1016/j.media.
2009.10.001

Wolk, D. A., Zhang, Z., Boudhar, S., Clark, C. M., Pontecorvo, M. J., and
Arnold, S. E. (2012). Amyloid imaging in Alzheimer’s disease: comparison
of florbetapir and Pittsburgh compound-B positron emission tomography.
J. Neurol. Neurosurg. Psychiatry 83, 923–926. doi: 10.1136/jnnp-2012-30
2548

Frontiers in Aging Neuroscience | www.frontiersin.org 9 June 2022 | Volume 14 | Article 902169

https://doi.org/10.1007/s11682-020-00319-1
https://doi.org/10.1007/s11682-020-00319-1
https://doi.org/10.1007/s11307-015-0886-9
https://doi.org/10.1007/s00702-002-0808-2
https://doi.org/10.1016/j.compbiomed.2020.104019
https://doi.org/10.1016/j.compbiomed.2020.104019
https://doi.org/10.1007/s12149-011-0533-8
https://doi.org/10.1007/s12149-011-0533-8
https://doi.org/10.1016/bs.irn.2018.08.003
https://doi.org/10.1371/journal.pone.0018111
https://doi.org/10.1371/journal.pone.0018111
https://doi.org/10.1002/ana.410400609
https://doi.org/10.1002/ana.410400609
https://doi.org/10.1002/ana.410440307
https://doi.org/10.1016/j.nucmedbio.2011.05.010
https://doi.org/10.1016/j.nucmedbio.2011.05.010
https://doi.org/10.1007/s12264-017-0202-6
https://doi.org/10.1007/s12264-017-0202-6
https://doi.org/10.1038/s41598-018-34388-6
https://doi.org/10.1038/s41598-018-34388-6
https://doi.org/10.1097/01.WCB.0000048520.34839.1A
https://doi.org/10.1002/mds.1265
https://doi.org/10.1007/s13205-020-02532-7
https://doi.org/10.1007/s13205-020-02532-7
https://doi.org/10.1016/j.jchemneu.2020.101752
https://doi.org/10.1016/j.jchemneu.2020.101752
https://doi.org/10.4103/1673-5374.306066
https://doi.org/10.4103/1673-5374.306066
https://doi.org/10.3389/fnins.2021.777347
https://doi.org/10.3389/fnins.2021.777347
https://doi.org/10.1037//0033-2909.86.2.420
https://doi.org/10.1523/JNEUROSCI.16-19-06100.1996
https://doi.org/10.1371/journal.pone.0049483
https://doi.org/10.1371/journal.pone.0065591
https://doi.org/10.1371/journal.pone.0065591
https://doi.org/10.1088/0031-9155/61/22/7975
https://doi.org/10.1016/j.neuroimage.2019.116137
https://doi.org/10.1016/j.neuroimage.2019.116137
https://doi.org/10.1093/cercor/bhs397
https://doi.org/10.1016/j.media.2009.10.001
https://doi.org/10.1016/j.media.2009.10.001
https://doi.org/10.1136/jnnp-2012-302548
https://doi.org/10.1136/jnnp-2012-302548
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-902169 June 7, 2022 Time: 13:34 # 10

Pan et al. A Multi-Atlas-Based Segmentation Method

Wu, D., Ma, T., Ceritoglu, C., Li, Y., Chotiyanonta, J., Hou, Z., et al. (2016).
Resource atlases for multi-atlas brain segmentations with multiple ontology
levels based on T1-weighted MRI. Neuroimage 125, 120–130. doi: 10.1016/j.
neuroimage.2015.10.042

Xiao, Y., Fonov, V. S., Beriault, S., Gerard, I., Sadikot, A. F., Pike, G. B., et al.
(2015). Patch-based label fusion segmentation of brainstem structures with
dual-contrast MRI for Parkinson’s disease. Int. J. Comput. Assist. Radiol. Surg.
10, 1029–1041. doi: 10.1007/s11548-014-1119-4

Conflict of Interest: HL was employed by Mindsgo Life Science Shenzhen Co. Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Pan, Liu, Zeng, Ye, Qiao, Song, Lv, Chan, Lu and
Ma. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s)
and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 10 June 2022 | Volume 14 | Article 902169

https://doi.org/10.1016/j.neuroimage.2015.10.042
https://doi.org/10.1016/j.neuroimage.2015.10.042
https://doi.org/10.1007/s11548-014-1119-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

	A Multi-Atlas-Based [18F]9-Fluoropropyl-(+)-Dihydrotetrabenazine Positron Emission Tomography Image Segmentation Method for Parkinson's Disease Quantification
	Introduction
	Methods
	Subject Enrollment
	Data Acquisition
	UI Dataset
	GE Dataset

	Positron Emission Tomography Segmentation Pipeline
	Atlas Creation
	Multi-Atlas-Based Positron Emission Tomography Segmentation
	Subregion Segmentation

	Standard Uptake Value Ratio Evaluation
	Statistical Evaluation

	Results
	Demographic Results
	Segmentation Performance Evaluation
	Quantification Performance Evaluation
	Standard Uptake Value Ratio Level in Diagnostic Groups
	Reproducibility Experiments

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


