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Abstract: Physical inactivity is a worldwide health problem, an important risk for global mortality
and is associated with chronic noncommunicable diseases. The aim of this study was to explore the
differences in systemic urine 1H-NMR metabolomes between physically active and inactive healthy
young males enrolled in the X-Adapt project in response to controlled exercise (before and after the 3-
day exercise testing and 10-day training protocol) in normoxic (21% O2), normobaric (~1000 hPa) and
normal-temperature (23 ◦C) conditions at 1 h of 50% maximal pedaling power output (Wpeak) per day.
Interrogation of the exercise database established from past X-Adapt results showed that significant
multivariate differences existed in physiological traits between trained and untrained groups before
and after training sessions and were mirrored in significant differences in urine pH, salinity, total
dissolved solids and conductivity. Cholate, tartrate, cadaverine, lysine and N6-acetyllisine were the
most important metabolites distinguishing trained and untrained groups. The relatively little effort of
1 h 50% Wpeak per day invested by the untrained effectively modified their resting urine metabolome
into one indistinguishable from the trained group, which hence provides a good basis for the planning
of future recommendations for health maintenance in adults, irrespective of the starting fitness value.
Finally, the 3-day sessions of morning urine samples represent a good candidate biological matrix for
future delineations of active and inactive lifestyles detecting differences unobservable by single-day
sampling due to day-to-day variability.

Keywords: exercise; trained; untrained; 1H-NMR metabolomics; human metabolome; JADBio; biomarkers

1. Introduction

Physical inactivity is a worldwide health problem ranking as the fourth most important
risk for global mortality [1]. The efforts undertaken by the World Health Organization
(WHO) to minimize the time spent sedentary [2] are directed at decreasing the risks for
more than twenty chronic noncommunicable diseases (e.g., coronary heart disease, stroke,
type 2 diabetes, obesity, metabolic syndrome, glucose insensitivity) next to mental health
and neurological problems such as depression and dementia [1]. As physical activity
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in the form of various types of exercise promotes wellbeing and increased quality of life,
understanding the biological mechanisms through which it impacts is of central importance.
Although genetics, lifestyle and environment are likely the most important parameters,
their relative contributions and interactions are not well-understood.

Exercise-related stress alters the chemical steady state of the internal biochemical
environment. The net result is modifications in the rate of production and consumption of
various metabolites within biochemical network affecting the systemic levels of metabolites
relative to the exercise intensity, muscle damage or the extent of the exercise as part of the
lifelong history [3–5].

In respect to the progressively emerging picture of metabolic states characteristic of
various noncommunicable diseases, a number of metabolomic studies have clearly shown
that physical activity results in modifications of hundreds of metabolites associated with
fatty-acid mobilization, lipolysis and metabolism, the TCA cycle, glycolysis, amino-acid
metabolism, carnitine, purine and cholesterol metabolism and insulin sensitivity [1]. Based
on these results, it has become obvious that while the metabolomics patterns may differ
slightly between groups, it was the overall volume of exercise acting as the most important
driver of the metabolomics makeup [6–9], even irrespective of hypoxia [4]. This points
to the multifactorial dose–response relationship between activity (intensity, frequency,
time frame (exposure measured in hours, days, weeks, years, lifelong)) and metabolomic
signatures [1,4].

Metabolomics has become a technology-driven discipline focusing on improved high-
throughput and large-scale data collection, analysis and interpretation. Metabolomes were
characterized utilizing proton nuclear magnetic resonance (1H-NMR) in minimally user-
invasive biomaterial—the first morning urine. The approach of 1H-NMR was utilized in
this study as it is nondestructive, quantitative, cost-effective, reproducible and requires
no sample derivatization [10]. Although the approach captures a modest number of
metabolites (n > 350 in our past studies [4,5,11]) it enables identification of unknown novel
compounds in complex biological matrices such as serum, saliva, urine or feces [4,10]
and has been frequently utilized (>40% of studies) in observational and experimental
studies next to short-term (<1 week) or long-term (>1 week) interventions [1]. The use
of consecutive three-day urine 1H-NMR data points was first tested recently in the form
of a 3-day sliding window within the PlanHab project and showed promising results for
delineation of systemic differences between groups [3–5].

The aim of this study was to explore the differences in systemic urine 1H-NMR
metabolomic signatures between groups of physically active and inactive individuals
before and after a 10-day training protocol in normoxic (21% O2) and normal-temperature
conditions (23 ◦C) of the campaign number 4 within the X-Adapt: Cross-adaptation between
heat and hypoxia project (Figure S1) [12]. The aim of the X-Adapt study itself was to
investigate the effects of a 10-day exercise protocol on aerobic performance in young
males. The X-Adapt training sessions were composed of controlled 60 min normoxic and
normobaric (~1000 hPa) exercise [12] utilizing prescreened participants (graded exercise
test on a cycle ergometer to determine their normoxic VO2max and maximal power output
(Wpeak—the highest workload sustained by incremental exercise until exhaustion). In short,
aerobic fitness was defined using maximal oxygen uptake (VO2max) values (untrained
VO2max < 45 mL·kg−1·min−1; trained VO2max > 55 mL·kg−1·min−1) [13,14]. Untrained
participants were also required to not participate in organized sports, while minimal
cycling and walking for commuting to work were allowed. In contrast, trained participants
performed endurance-type activities (running, cycling, swimming) several times per week.

The X-Adapt urine-sample collection produced by the original project outline de-
scribed before [12,15,16] (i.e.,) was augmented by including two additional urine-sampling
periods, extending the project outline and resulting in the extended sample collection
(Figure 1 and Figure S1). As a result of these extended urine-sampling periods there was
no effect on human physiology or exercise approaches utilized in the X-Adapt project.
The extended sample collection included the additional three-day baseline urine samples
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before the actual start of the X-Adapt campaign 4 [12] and samples collected during the last
three days of the 10-day exercise session. In total, the time span between the two sampling
periods of extended sample collection contained 3 days testing, 1 day rest and 10 days
exercise, amounting to almost 14 days of exercise [12]. This enabled us to capture the daily
variability between the trained and untrained groups before the actual onset of the X-Adapt
campaign 4 and to observe the actual systemic differences in response to the almost 14-day
concerted exercise between the trained and untrained groups. In addition, this enabled us
to perform additional comparisons between the various sections based on 1H-NMR urine
metabolomes collected uniquely over three consecutive days (Figure S1).
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Figure 1. A schematic outline of the X-Adapt project with the two sampling collections designated
below: the X-Adapt urine-sample collection and the extended sample collection (A). The extended
sampling was conducted at days −3, −2, −1 day before the start of the campaign and at days 13,
14, 15 of the X-Adapt campaign 4. T—trained; UT—untrained group of participants. Blue arrows
indicate sampling days within each of the four 3-day urine-sampling series. The X-Adapt urine-
sample collection thus encompasses samples collected during the X-Adapt pretesting and post-testing
periods. The extended sample collection encompasses the urine samples collected before the actual
onset of the campaign (baseline) and during the last three days of training (days 13, 14, 15 of the
campaign). For simplicity, the collection days are linked by hyphens to mark the compatible datasets.
(B) A schematic representation of the X-Adapt urine-sample collection and the extended sample-
collection groups with their respective analyses and comparisons delineated with lines. Solid and
dashed lines designate significant and not significant differences between the groups. Analyses were
conducted on overall group, sample collection and daily basis separately.
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As there is a lack of data and understanding on the differences between healthy
trained and untrained young males and the progressive changes in human metabolomics
responses coupled to introduction of exercise, we first compiled and performed a mul-
tivariate analysis of the exercise dataset [12,15,16] and hypothesized that (i) significant
differences existed in the exercise dataset between trained and untrained groups; (ii) the
2-week experimental setup would enable us to detect overall change in resting urinary
metabolome 3-day sequences; (iii) significant differences existed between the trained and
untrained group’s urinary metabolomes despite the nonsynchronized diet of participants;
(iv) the introduction of scheduled 2-week physical exercise would significantly change
urine 1H-NMR metabolomes in the untrained group at least; (v) discriminant metabolites
could be identified between the trained and untrained groups; (vi) the extended X-Adapt
experiment utilized in this study provided insight into the significantly different metabolic
pathways between the trained and untrained experimental variants, signifying the impor-
tance of the training history of participants for responses in human metabolomes that were
also linked to the VO2max values (the maximal rate of oxygen consumption).

2. Results and Discussion

Twenty male participants 23.5 ± 2.5 years old were recruited for this study and were
divided into two groups (10 participants per group) based on their physical performance
(trained and untrained group). Table S3 represents their baseline characteristics. Partic-
ipants in the trained group were 23 ± 2 years old, 180 ± 5 cm tall, weighed 74 ± 3 kg
and had a body surface area of 1.96 ± 0.08 m2 and body fat of 9.2 ± 2.3%. On the other
side, untrained participants were 25 ± 3 years old, 179 ± 3 cm tall, weighed 85 ± 14 kg,
had a body surface area of 2.05 ± 0.17 m2 and body fat of 16.3 ± 4.9%. VO2peak, Wpeak
and Wpeak per kg were significantly different between the untrained and trained group.
The untrained group had a lower VO2peak (42 ± 5 mL/kg × x min in untrained and
58 ± 6 mL/kg × x min in trained group), lower Wpeak performance (309 ± 46 W in un-
trained and 364 ± 35 W in trained group) and lower Wpeak per kg (3.6 ± 0.4 W/kg in
untrained and 4.9 ± 0.5 in trained group) [12,15–17].

2.1. Integrated Analysis of Exercise Data and the X-Adapt Urine-Sample Collection

In this study, exercise data reported before [17] and 1H-NMR metabolomic data
obtained in this study were explored. The previously reported physiological data [12,15–17]
relevant for metabolomic analyses within the same 3-day series of X-Adapt pre/post-testing
were analyzed. Their integrated analysis in this study showed that significant multivariate
differences existed between the trained and untrained groups at pretesting (Figure 1) before
the onset of the 10-day 50% Wpeak training session and after the training (PERMANOVA;
F = 7.304; p(same) = 0.0001; npermutations = 5000). In addition, nearly significant differences
(p = 0.054) existed between the pre-exercise untrained and postexercise untrained groups,
suggesting a larger magnitude of changes in human exercise-related characteristics than in
those leading active lifestyles.

The nonmetric multidimensional scaling (nmMDS) results also showed significant
groupings separating trained from untrained (Figure 2) showing that significant differences
at the level of human exercise data also remained detectable after the 10-day training
period. A heatmap (Figures 3 and S2) of the measured exercise parameters shows large
differences in measured parameters between trained and untrained groups, but also reflects
significant interpersonal variability within each of the measured parameter. This suggests
that although significant differences in the multivariate description of exercise states can
be reported for the trained and untrained groups before and after the training sessions,
the rate of change within the 10-day training at 50% Wpeak was significantly higher for
the untrained group, as reported before [12]. This observation is further supported by
detailed analyses of the exercise parameters contributing most to differences between
trained and untrained groups, as VO2max values in fact decreased 3.2% and increased for
9.2% in trained and untrained groups, respectively. This observation is in line with past
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observations showing that the pretraining VO2peak and percentage change in VO2peak
with training were inversely correlated, showing that the rate of adaptation is largest in
less physically prepared participants [18]. In addition, the integrated exercise data reported
in this study showed that trained and untrained groups responded differently, as VO2max
of the trained group could not be sustained by 50% Wpeak training in comparison to a
further increase in the untrained group in response to 50% Wpeak training. Taken together,
these results show that during the 10-day 50% Wpeak training, the trained and untrained
groups were becoming more synchronized in terms of measured exercise parameters, as
also suggested before [12,15–17]. A two-way PERMANOVA confirmed that participant
status (trained or untrained) and 50% Wpeak training exercise (pre- or post-training) were
significantly associated with the underlying multivariate exercise data (F = 13.07; F = 2.57
and p(same) = 0.0001; p(same) = 0.038), respectively), while interaction between participant
status (trained or untrained) and time of training exercise (pre-or post-training) was not
significant (status x exercise; F = 0.47; p(same) = 0.79), suggesting that the response of the
two groups to the application of exercise was not uniform.
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In contrast to results from physiological measurements, our 1H-NMR analyses of the
X-Adapt urine-sample collection (i.e., the 3-day morning urine samples taken within the
same timeframes of X-Adapt pretraining and post-training test sessions) did not identify
any significant difference between any groups (PERMANOVA; p > 0.3; npermutations = 5000)
(Figure 1). This is in line with past observations that metabolomes at rest (e.g., systemic
morning urine samples) cannot be indicative of physical status and capacity due to their
gradual return to baseline within 24 h after exercise [19]. In addition, these results point to
the potentially homogenizing short-term responses in trained and untrained individuals
to the standardized pre- and post-testing conducted on three consecutive days utilized
in the X-Adapt study [12]. The normoxic, temperature and hypoxic tests utilized in X-
Adapt were described in detail before [12,15–17]. Moreover, additional in-depth tests of
statistical significance between 1H-NMR metabolomes from trained and untrained groups
on a day-to-day basis also did not produce significant differences (PERMANOVA; p > 0.05;
npermutations = 5000). These results show the lack of significant differences between the
trained and untrained groups on the level of urine 1H-NMR metabolomes in response to
the X-Adapt pretesting and post-testing trials (Figure 1).



Metabolites 2022, 12, 473 7 of 18

2.2. Differences in Urine 1H-NMR Metabolomes between the Trained and Untrained Groups:
The Extended Urine-Sample Collection

In order to elucidate the potentially homogenizing responses in trained and untrained
individuals to the X-Adapt training regimen the extended urine-sample collection (Figure 1)
was analyzed by 1H-NMR. The 1H-NMR fingerprints of trained and untrained groups
were compared to identify the existence of internaldata-structure characteristics for the two
groups of participants. The results of one-way and two-way PERMANOVA showed that
significant differences existed between metabolomes of trained and untrained participants
(p < 0.01). This was also confirmed by the two-way PERMANOVA test, showing that
activity (trained/untrained) was the only parameter significantly associated with the two
groups (p = 0.0001). Regime (pre- or post-test) and the interaction between regime and
activity was insignificant (p > 0.05). This was also confirmed by the nonsignificant change
in the number of metabolites present and the sum of their concentrations in all sampled
groups (Table S1).

The Mann–Whitney test showed that significant differences in distributions between
trained and untrained group existed in physical characteristics of urine such as pH, salinity,
total dissolved solids (TDS) and conductivity. Salinity, conductivity and TDS were signifi-
cantly higher in the untrained group than in trained, while pH was slightly more alkaline
in trained (Figure S3).

Based on the nonparametric approaches described below, we used statistical meth-
ods implemented in MetaboAnalyst 5.0 [20–22]. According to the partial least-squares-
discriminant analysis (PLSDA) of variable importance in the projection (VIP) scores, dif-
ferences existed between the trained and untrained groups of participants at the level
of cholate, tartrate, cadaverine, lysine and N6-acetyllisine (HMDB0000206) as the most
distinguishing metabolites to differentiate the trained and untrained groups (Figure 4). The
first three metabolites were all present at higher concentrations in the untrained group
while concentrations of lysine and N6-acetilysine were higher in the trained group. Pri-
mary bile acid synthesis, glutathione metabolism, aminoacyl-tRNA biosynthesis and lysine
degradation pathways were enriched in the untrained group (Figure 5).

Metabolites 2022, 12, x FOR PEER REVIEW 8 of 20 
 

 

In order to elucidate the potentially homogenizing responses in trained and un-
trained individuals to the X-Adapt training regimen the extended urine-sample collection 
(Figure 1) was analyzed by 1H-NMR. The 1H-NMR fingerprints of trained and untrained 
groups were compared to identify the existence of internaldata-structure characteristics 
for the two groups of participants. The results of one-way and two-way PERMANOVA 
showed that significant differences existed between metabolomes of trained and un-
trained participants (p < 0.01). This was also confirmed by the two-way PERMANOVA 
test, showing that activity (trained/untrained) was the only parameter significantly asso-
ciated with the two groups (p = 0.0001). Regime (pre- or post-test) and the interaction be-
tween regime and activity was insignificant (p > 0.05). This was also confirmed by the 
nonsignificant change in the number of metabolites present and the sum of their concen-
trations in all sampled groups (Table S1). 

The Mann–Whitney test showed that significant differences in distributions between 
trained and untrained group existed in physical characteristics of urine such as pH, salin-
ity, total dissolved solids (TDS) and conductivity. Salinity, conductivity and TDS were 
significantly higher in the untrained group than in trained, while pH was slightly more 
alkaline in trained (Figure S3). 

Based on the nonparametric approaches described below, we used statistical meth-
ods implemented in MetaboAnalyst 5.0 [20–22]. According to the partial least-squares-
discriminant analysis (PLSDA) of variable importance in the projection (VIP) scores, dif-
ferences existed between the trained and untrained groups of participants at the level of 
cholate, tartrate, cadaverine, lysine and N6-acetyllisine (HMDB0000206) as the most dis-
tinguishing metabolites to differentiate the trained and untrained groups (Figure 4). The 
first three metabolites were all present at higher concentrations in the untrained group 
while concentrations of lysine and N6-acetilysine were higher in the trained group. Pri-
mary bile acid synthesis, glutathione metabolism, aminoacyl-tRNA biosynthesis and ly-
sine degradation pathways were enriched in the untrained group (Figure 5). 

 
Figure 4. PLSDA ordination of metabolomics signatures present in the trained and untrained groups 
(a, b) VIP scores of the most important metabolites separating the two groups. The three-day series 
of urine samples of trained and untrained groups were analyzed with MetaboAnalyst. Prior to the 

Figure 4. PLSDA ordination of metabolomics signatures present in the trained and untrained groups
(a,b) VIP scores of the most important metabolites separating the two groups. The three-day series
of urine samples of trained and untrained groups were analyzed with MetaboAnalyst. Prior to the
PLSDA analysis, concentrations were transformed with Log10 normalization and scaled with Mean
Centering approach. Each dot represents one sample of participant per day.



Metabolites 2022, 12, 473 8 of 18

Metabolites 2022, 12, x FOR PEER REVIEW 9 of 20 
 

 

PLSDA analysis, concentrations were transformed with Log10 normalization and scaled with Mean 
Centering approach. Each dot represents one sample of participant per day. 

 
Figure 5. Primary bile-acid biosynthesis, glutathione metabolism and aminoacyl-tRNA biosynthesis 
were enriched in untrained group, based on increased levels of cholate (primary bile-acids biosyn-
thesis), cadaverine (glutathione metabolism) and L-tryptophan and L-cysteine (aminoacyl-tRNA bi-
osynthesis). 

In addition to the multivariate analyses, we also performed extensive machine-learn-
ing modeling using Just Add Data Bio (JADBIO) [23] to investigate the importance of me-
tabolites and physicochemical parameters in urine samples. A total of 181,020 models 
were trained using extensive tuning effort. The most interpretable model was logistic 
ridge regression with the penalty hyperparameter lambda of 10−4 and an area under the 
curve (AUC) value of 0.748. In addition to AUC (Figure 6a); all other thresholds were also 
statistically significantly different from baseline. Data were preprocessed and standard-
ized by imputation of means and removal of constants. Features were selected based on 
the test-budgeted statistically equivalent signature (SES) algorithm with the following hy-
perparameters: maxK = 2, alpha = 0.1, and budget = 3 *nvars. PCA plot (Figure 6b) shows 
that differentiation based on modeled data is not complete, which means that larger 
groups should be formed in the future. 12 metabolites and pH were selected as the most 
important features for distinguishing the trained from the untrained group based on 
urine. Table S2 lists all the important metabolites. The major metabolite selected by JAD-
BIO was tartrate. The power of the model obtained by using only tartrate was 73.8% (with 
95% CI from 69.9% to 77.6%) (Figure S4). We applied the trained model to the test portion 
of our data (30% of our total dataset) and achieved validation performance with an AUC 
of 0.647.  

Figure 5. Primary bile-acid biosynthesis, glutathione metabolism and aminoacyl-tRNA biosyn-
thesis were enriched in untrained group, based on increased levels of cholate (primary bile-acids
biosynthesis), cadaverine (glutathione metabolism) and L-tryptophan and L-cysteine (aminoacyl-
tRNA biosynthesis).

In addition to the multivariate analyses, we also performed extensive machine-learning
modeling using Just Add Data Bio (JADBIO) [23] to investigate the importance of metabo-
lites and physicochemical parameters in urine samples. A total of 181,020 models were
trained using extensive tuning effort. The most interpretable model was logistic ridge
regression with the penalty hyperparameter lambda of 10−4 and an area under the curve
(AUC) value of 0.748. In addition to AUC (Figure 6a); all other thresholds were also sta-
tistically significantly different from baseline. Data were preprocessed and standardized
by imputation of means and removal of constants. Features were selected based on the
test-budgeted statistically equivalent signature (SES) algorithm with the following hyper-
parameters: maxK = 2, alpha = 0.1, and budget = 3 × nvars. PCA plot (Figure 6b) shows
that differentiation based on modeled data is not complete, which means that larger groups
should be formed in the future. 12 metabolites and pH were selected as the most important
features for distinguishing the trained from the untrained group based on urine. Table S2
lists all the important metabolites. The major metabolite selected by JADBIO was tartrate.
The power of the model obtained by using only tartrate was 73.8% (with 95% CI from 69.9%
to 77.6%) (Figure S4). We applied the trained model to the test portion of our data (30% of
our total dataset) and achieved validation performance with an AUC of 0.647.
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the features included in the first signature. Features were standardized with statistical normalization
((x − µ)/σ). A total of 155 samples were included in this analysis for training the model from the
entire dataset. A total of 72 samples belonged to trained and 82 samples belonged to untrained group.

Some metabolites (cholate, tartrate, methanol, N-acetylglucosamine, butanone, caprate)
were selected as the top 25 metabolites using the PLSDA approach in MetaboAnalyst. Both
tartrate and cholate were elevated in the untrained group, which could be related to their
diet. The diet of athletes is much more constant, and the diet was not standardized in the X-
Adapt project. However, the decreased tartrate levels may suggest that tartrate supplemen-
tation is needed in the trained group to reduce metabolic stress, minimize muscle damage,
improve hormone receptor levels, and promote recovery after resistance exercise [24,25].
L-carnitine L-tartrate supplementation increases carbohydrate oxidation rates. Endurance
athletes in particular have higher carnitine uptake in skeletal muscle [24,25]. Tartrate is a
nonhuman metabolite found in grapes, wine, and as an additive in foods [26]. Increased
consumption of tartrate-containing foods and beverages also lowers cardiovascular risk
factors such as LDL cholesterol [27,28]. Tartrate is part of glyoxylate and dicarboxylate
metabolism, which was also observed in the enrichment analysis of metabolic pathways and
enriched in the untrained group. Glyoxylate and dicarboxylate metabolic pathways were
observed in young patients with major depressive disorder. Improving physical activity
improved patients with major depressive disorder and additionally reduced other compli-
cations of cardiovascular disease [29,30]. Inactivity in the bed rest study (e.g., PlanHab) also
led to the development of psychiatric problems after one week of bed rest, showing possible
associations between inactivity, metabolism and mental health problems [4,5,31–44].

Cholate, on the other hand, is one of the primary bile acids that may be involved
in the development of an atrophic state in myotubes [45] and in the invasion of human
colon cancer cells [46], which can be observed in less active and untrained individuals.
Bile acids in general have also been associated with obesity [47], higher BMI, elevated
blood glucose levels [48], liver dysfunction [49] and cardiovascular health [50]. Bile acids
in urine can be used for diagnostic purposes, as it has already been shown that bile acids
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in urine have lower variability and higher stability than bile acids in serum [51]. Elevated
cholate concentrations have also been observed in patients with gastric cancer. In our
work, increased concentrations of cholate were observed in untrained individuals. A
meta-analysis has previously shown that regular physical activity can prevent gastric
cancer [52–54]. A single training run in amateur runners resulted in a significant decrease
in circulating bile acids. Recent studies have also shown that bile-acid concentrations were
higher in less fit women than in fit women [55,56].

Polyamines such as lysine and cadaverine, which were also detected in our study, have
also been associated with the development of various diseases described by the common
term “metabolic syndrome”. It has already been shown that elevated cadaverine concen-
trations may correlate with intestinal disease or colon and liver cancer. Cadaverine was
also elevated in the untrained group and is part of the glutathione metabolism previously
described in men with type 1 diabetes [57]. Metabolic syndrome develops mainly due to in-
activity or lack of exercise [58–60]. Lysine is involved in aminoacyl-tRNA biosynthesis and
was increased in trained group. Aminoacyl-tRNA biosynthesis was associated with higher
physical activity, a less sedentary lifestyle and high-intensity interval training [61–63]. Us-
ing metabolomes in stool and serum, the same metabolic pathway was identified as altered
in endurance cross-country athletes, reflecting modifications in protein synthesis [64].

In contrast, 2-hydroxy-3-methyl- valerate was identified only with machine learning
and was decreased in the trained group, confirming that it may also be involved in affecting
physical function through peroxisome proliferator-activated receptor alpha (PPAR-α) acti-
vation, which is associated with microbial metabolism and insulin sensitivity [65]. PPAR-α
is a hormone-receptor transcription factor involved in energy metabolism. Untrained
participants in X-Adapt are less physically active and have increased levels of 2-hydroxy-
3-methyl valerate, leading to possible activation of PPAR-α, as shown in functionally
impaired older adults [65,66]. N6-acetyl-L-lysine is an acetylated amino acid that is in-
creased in the trained group and plays an important role in regulating gene transcription,
cell-cycle progression, apoptosis, DNA repair and cytoskeletal organization, also decreasing
chances of Alzheimer’s disease shown on rats. Physical activity has previously been shown
to reduce the risk of age-related Alzheimer’s disease [67,68] and metabolic syndrome [69].

We also observed that an increased pH increased the chance of classifying participants
into a trained group. A lower urine pH was associated with chronic kidney disease [70],
chronic heart failure [71] and metabolic syndrome [69,72,73].

Our analyses of the same 3-day-series data on a daily basis did not produce in-
terpretable patterns of significant differences between the daily metabolome groups of
the same 3-day sampling campaign after the correction for multiple comparisons (PER-
MANOVA; p > 0.05; npermutations = 5000) and were not reported. This corroborates our
past observation [5] on the higher resolution of 3-day series of 1H-NMR metabolomes in
contrast to single-day sampling.

2.3. Differences between Trained and Untrained Groups before and after Synchronizing Normoxic
Training Campaign: The Extended Urine-Sample Collection

Our last analysis focused on the exploration of the extended urine-sample collec-
tion between trained and untrained (Figure 1B) to identify differences in morning urine
metabolomes as a result of their original lifestyle and almost 2 weeks of 1h training at 50%
Wpeak (i.e., 3-day exercise tests, 1 day rest, 10 days 1 h training at 50% Wpeak; Figure 1A). The
results of PERMANOVA (p(same) = 0.003; npermutations = 5000; Figure S5) showed that in the
trained group, an active lifestyle supported significantly different metabolomic fingerprints
in comparison to the untrained group (Figure S5). The differences between the trained and
untrained groups were no longer significant at the end of training (p = 0.226), while shared
metabolomics features were present within each of the groups on the relation between pre-
and post-training states (horizontal lines; Figure S5) as the significant differences persisted
in relation to pretrained vs. post-untrained and pre-untrained vs. post-trained (diagonal
lines; Figure S5). The results of this study suggest that exercise introduced changes in
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trained and untrained groups, making their endpoints not significantly different, and was
accompanied by the concomitant decrease in the VO2max values (−3.2%) in trained and
increase (+9.2%) in untrained groups [12,15,16,18].

When all eight groups of metabolomes (Figure 1B) were analyzed, it became apparent
that the first introduction of controlled exercise at pre-exercise tests generated rather similar
resting morning metabolomic urine makeup (i.e., short-term multivariate phenotype) in
the two physiologically significantly different groups, while measurable changes within the
exercise parameters (long-term multivariate phenotype (Figures 2 and S2) were detected
much later. Consequently, the frequency of these training bouts (i.e., life-long exercise) is in
fact a crucial parameter for maintaining a healthy metabolomic phenotype and VO2max
next to other exercise-related parameters. In contrast to WHO’s proposed 75 min to 150 min
of vigorous- to moderate-intensity training, respectively, for adults per week [1,2], our
study showed that a 5 times larger exercise input was effective at bringing the urine
metabolomics makeup and VO2max values closer to the trained group, while obviously for
the maintenance of an active lifestyle pursued by the trained group, much higher efforts
would need to be invested. This finding is also in-line with the past observations on the
difficulties in observing differences between training regimes [74], the effects of which
subsided within 3 h after exercise, even in clinical populations [19]. Putting it simply, long-
term exercise makes us rather similar in health, but a lack of it makes us different in disease.
X-Adapt findings presented in this study on homogenizing effects of exercise are mirroring
our past results from the PlanHab project on negative effects of inactivity [4,5,33,34].

To conclude, morning urine, especially as utilized in the form of 3-day sessions, has
been shown to represent a good candidate biological matrix for delineation of active and
inactive lifestyles in this study, detecting differences unobservable by single-day sampling.
Resting morning urine metabolomes as a result of 1 h 50% Wpeak daily activity provided a
good basis for planning future recommendations for the maintenance of health in adults,
irrespective of the starting fitness value. The maintenance of systemic homeostasis and the
response to nutritional and environmental challenges require the coordination of multiple
organs and tissues. To respond to various metabolic demands, the human body integrates
and builds upon a system of interorgan communication through which one tissue can affect
metabolic pathways in a distant tissue. Dysregulation of these lines of communication
through lack of exercise (sedentary lifestyle) and of highly energetic diets contribute to
human pathologies, including obesity, diabetes, liver disease and atherosclerosis. Increasing
exercise levels in the untrained apparently has the capacity to significantly reconstitute
the interorgan communication towards the levels observed in the healthy trained cohort.
In addition, recent technical advances such as data-driven bioinformatics on layers of
information (microbiome, proteome, metabolome) expanded our understanding of the
complexity of systemic metabolic crosstalk and its underlying mechanisms [75].

3. Materials and Methods
3.1. Project Description

In this study, the fourth campaign of the X-Adapt: Cross-adaptation between heat
and hypoxia–novel strategy for performance and work-ability enhancement in various
environments project (ARRS research project J5-9350) was utilized as source of exercise
data and urine samples for 1H-NMR metabolomics analyses (Figure S1).

The main objective of the X-Adapt project was to determine the metabolic differ-
ences between trained and untrained individuals and the effects of 10 days of training on
metabolism utilizing urinary metabolomics.

During the prescreening procedure, participants completed a graded exercise test on a
cycle ergometer to determine their normoxic (environment with normal O2 concentrations
(e.g., 21%)) maximal-rate oxygen consumption (VO2max) and maximal power output
(Wpeak). Wpeak is defined as the highest workload sustained by incremental exercise until
exhaustion. Aerobic fitness was defined using VO2max values. A VO2max of less than
45 mL·kg−1·min−1 or greater than 55 mL·kg−1·min−1 was considered a requirement for
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participation in the lower-fitness (untrained) or higher-fitness (trained) group, respectively,
consistent with values reported in previous studies [13,14]. To further ensure that VO2max
reflected participants’ true cardiorespiratory fitness levels, untrained participants were also
required to not participate in organized sports. Cycling and walking for commuting to
work were allowed. Accordingly, trained participants performed endurance-type activities
(running, cycling, swimming) several times per week. Participants were informed that
the aim of the study was to investigate the effects of a 10-day exercise protocol on aerobic
performance in young males [12,15–17].

Twenty healthy young male volunteers were recruited to participate in the study.
Inclusion criteria included males between the ages of 18 and 30, nonsmokers, and unmedi-
cated. All participants lived near the sea and had not been exposed to altitudes > 1500 m or
temperatures > 30 ◦C for at least 1 month before the start of the study, which took place in
November and December 2018. None of the participants had a history of cardiorespiratory
or hematologic disease. Participants were instructed to abstain from caffeine and alcohol
consumption throughout the study. They were given detailed information about the study
protocol and potential risks.

The study consisted of three parts: pretraining exercise testing, a 10-day exercise
training program, followed by the post-training exercise testing (Figure 1).

During the pre-exercise tests, participants completed the same maximal exercise
performance test on three consecutive but separate days under thermoneutral normoxic,
thermoneutral hypoxic and hot normoxic conditions as described before [12,15–17]. The
order of exercise tests was randomized and counterbalanced between participants. All tests
were performed at the same time of day for a given participant (±1 h). Exercise training
sessions took place in the morning hours (9:00–12:00). Participants were given a 24 h rest
period before and after the 10-day training to minimize the contribution of fatigue during
the exercise tests [12,15–17].

During the 10-day training session, all participants completed 60 min supervised
cycling sessions daily for 10 days. Exercise was performed on a cycle ergometer (Daum,
Electronic, Furth, Germany). During training, each participant pedalled at a preferred
cadence (between 60 and 90 rpm), which they maintained throughout the experiment via
visual and verbal feedback. Exercise intensity was relatively similar for all participants
and was set at 50% of the Wpeak calculated from the individual Wpeak achieved during
the preparatory graded normoxic exercise test. Participants were only informed of the
time remaining until the end of the exercise session and were allowed to drink ad libitum
during each exercise session. Heart rate and SpO2 were measured with a finger pulse
oximeter (Wristox 3100 Nonin, Plymouth, MN, USA) at 5 min intervals. Ratings of per-
ceived exertion (RPE; 6–20) was also recorded at 5 min intervals. Ambient temperature
was maintained at 24 ◦C. The training room was well-ventilated so that normoxic and nor-
mocapnic (normal arterial carbon dioxide pressure) conditions prevailed during training.
Participants completed all exercise sessions at the same time of day. No other exercise
training was allowed during the study. Sessions were supervised by at least two researchers
to record exercise data and ensure that all participants maintained the desired workload at
all times [12,15–17].

After the completion of 10-day training session, postexercise tests were performed. All
pre- and postexercise tests were performed in a laboratory 300 m above sea level (Ljubljana,
Slovenia). Trials were performed on a cycle ergometer (Daum, Electronic, Furth, Germany)
and included two phases: a 30 min steady-state workout immediately followed by incre-
mental training to exhaustion. Before (pre) and after (post) the 10-day training protocol,
participants performed three trials on three consecutive days. At normal temperature
and normoxic conditions (NOR), participants breathed room air (pre: partial pressure of
oxygen in the inspired air (PiO2) = 143.7 ± 0.8 mmHg, post: PiO2 = 143.4 ± 0.7 mmHg)
and exercised under thermoneutral conditions (pre: Ta = 23.2 ± 0.7 ◦C and relative humid-
ity (RH) = 47.2 ± 2.2%, post: Ta = 23.2 ± 0.5 ◦C and RH = 46.6 ± 5.9%). In the hypoxic
condition (HYP), they inspired a hypoxic gas mixture (pre: PiO2 = 92.2 ± 1.5 mmHg, post:
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PiO2 = 93.2 ± 1.2 mmHg) and exercised in thermoneutral conditions (pre: Ta = 22.8 ± 0.5 ◦C
and RH = 51.2 ± 1.2%, post: Ta = 22.5 ± 0.6 ◦C and RH = 51.5 ± 1.3%). In the hot
condition (HE), the participants inspired room air (pre: PiO2 = 142.6 ± 1.7 mmHg, post:
PiO2 = 142.7 ± 1.8 mmHg), but exercised in a hot environment (pre: Ta = 34.1 ± 0.9 ◦C,
RH = 48.1 ± 4.2%, post: Ta = 34.1 ± 1.1 ◦C and RH = 49.8 ± 3.0%) [12,15–17].

3.2. Sample Collection

Urine samples were collected in four sessions for 3 consecutive days to form 3-day
series of urine samples for all participants (Figures 1 and S1): (i) 3-day baseline data of
participants before the start of X-Adapt campaign, (ii) 3-day pre-exercise testing before
10-day 50% Wpeak training, (iii) 3-day sampling of the last days of 10-day exercise; and
(iv) 3-day postexercise testing after the 10-day 50% Wpeak training. All obtained samples
were frozen at −20 ◦C for further analysis as described before [4,5,76]. For simplicity, the
X-Adapt urine-sample collection was used to denote samples collected during the X-Adapt
pre-exercise and postexercise testing periods. The extended sample collection encompasses
the urine samples collected before the actual onset of the campaign (baseline) and during
the last three days of the 10-day 50% Wpeak training.

3.3. NMR Metabolomics

All collected samples were centrifuged (1.5 mL) at 10,000× g for 30 min to remove fine
particles. Then, 600 µL of supernatant was mixed with 300 µL 1H-NMR buffer as described
before [77] and stored at −25 ◦C until analysis. Before analysis, samples were thawed at
room temperature and transferred into a 5 mm NMR tube. TSP was used as an internal
standard for quantification, as described before [77].

A Bruker Avance NEO 600 MHz spectrometer equipped with a 24-sample SampleCase
autosampler and a 5 mm HCN Cold probe was used for the acquisition of NMR spectra at
25 ◦C. The 1H NMR spectra of the samples were recorded with a spectral width of 9.0 kHz,
relaxation delay of 2.0 s, 32 scans and 32 K data points. A double-pulsed field gradient
spin echo (DPFGSE) pulse sequence was used for water suppression. Total correlated
spectrum (TOCSY) was measured with 1H spectral widths of 7.0 kHz, 4096 complex points,
a relaxation delay of 1.5 s, 32 transients and 144 time increments. An exponential and cosine-
squared function were used for apodization. Zeros were filled before Fourier transform.
TopSpin v. 4.0.9 software (Bruker, Billerica, MA, USA) was used for processing urine
NMR spectra [4,5,76,78]. AlpsNMR R package was used for the visualization of example
spectra [79].

3.4. Physicochemical Parameters of Urine Samples

Urine samples were thawed at room temperature, homogenized. Additional physical
chemical parameters were recorded such as pH, conductivity, total dissolved solids and
salinity using Pocket pro+ Multimeter 2 (Hach Company, Loveland, CO, USA).

3.5. Statistical Analysis and Machine Learning

The resulting spectra were consequently analyzed using targeted quantitative
metabolomics using Chenomx NMR Suite version 8.6 (Chenomx, Inc., Edmonton, AB,
Canada). For the latter, all spectra were randomly ordered for spectral fitting using the
ChenomX profiler and the Human Metabolome Database (https://hmdb.ca/ (accessed
on 24 April 2022)) compound names were used [80]. In this study, spectral deconvolution
utilizing Chenomx and HMDB was used instead of the binning approaches with extensive
normalization as described before [81,82]. An ensemble approach to data analysis was
utilized, employing three different approaches to asymmetric sparse matrix data analy-
sis, establishing significant differences between tested groups as follows: nonparametric
MANOVA (PERMANOVA) [83], MetaboAnalyst [20–22], and JADBIO [23]. Heatmap of
measured physiological parameters was generated using gplots R package. Data were
normalized with scale function.

https://hmdb.ca/
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First, for PERMANOVA, each compound concentration obtained was analyzed as
described before [4,11]. Box–Cox transformation was used. The significance of metabolic
differences between various groups of samples was tested using 1-way and 2-way PER-
MANOVA, and expressed as an overlap in nonmetric multidimensional scaling (nm-MDS)
trait space (using Euclidean distance measures). The stress function was used to select the
dimensionality reduction, whereas Shepard’s plots were used to describe the correspon-
dence between the target and obtained ranks. Benjamini–Hochberg significance correction
for multiple comparisons was used as described before [4,5].

Second, for MetaboAnalyst, log- or cube-root transformation in connection to Mean
or Pareto scaling was utilized as implemented in MetaboAnalyst, followed by supervised
classification using partial least-squares-discriminant analysis (PLSDA) method and ran-
dom forest (RF). Statistical power for the identification of significant differences before and
after treatment was also calculated using MetaboAnalyst Statistical Power module.

Metabolite Set Enrichment (MSEA) was used to identify biologically significant pat-
terns between quantitative metabolome data from different groups. HMDB compound
names were used to link to the KEGG database. Enrichment analysis was performed
using the globaltest package implemented in MetaboAnalyst. The enrichment ratio was
calculated by dividing observed hits and expected hits.

Finally, Just Add Data Bio (JADBIO), a web-based auto-machine-learning platform for
analyzing potential biomarkers [23], was used. JADBIO 1.4.0 with extensive tuning effort
and 6 CPU was used to model various dataset selections next to the overall 336 metabolites
observed in urine samples in all groups (trained vs. untrained) by splitting the total urine
metabolite data into a training set and a test set in a 70:30 ratio. The training set was used
for model training and the test set was used for model evaluation.

The resulting model can be obtained as part of Supplementary Material (File S2) and
run with Java executor for the classification of novel urine samples based on 1H-NMR in
further explorations.

Supplementary Materials: The following Electronic Supplementary Materials are available on-
line at https://www.mdpi.com/article/10.3390/metabo12060473/s1, File S1: Figure S1: Schematic
overview of the X-Adapt project campaigns as described before; Figure S2: Physical characteristics
of trained (T) and untrained (UT) participants involved in X-Adapt project pretesting (pre) and
post-testing (post); Figure S3: X-Adapt nmMDS ordination; Figure S4: Predictive performance of
the highest-scoring models generated in this study; Figure S5: Schematic representation of PER-
MANOVA; Table S1: Sum of concentrations and numbers of metabolites observed in all groups;
Table S2: The most important features for discriminating trained from untrained group; Table S3:
Group characteristics of individuals, Instructions for running a model on a local machine. File S2: The
resulting classification model can be run with Java executor for classification of novel urine samples
based on 1H-NMR. File S3: Example 1H-NMR spectra characteristic of the trained and untrained
groups. File S4: Data table containing metabolite information in micromolar concentration.
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