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Clinical Implications of Glucose Variability: Chronic 
Complications of Diabetes
Hye Seung Jung
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Glucose variability has been identified as a potential risk factor for diabetic complications; oxidative stress is widely regarded as 
the mechanism by which glycemic variability induces diabetic complications. However, there remains no generally accepted gold 
standard for assessing glucose variability. Representative indices for measuring intraday variability include calculation of the 
standard deviation along with the mean amplitude of glycemic excursions (MAGE). MAGE is used to measure major intraday 
excursions and is easily measured using continuous glucose monitoring systems. Despite a lack of randomized controlled trials, 
recent clinical data suggest that long-term glycemic variability, as determined by variability in hemoglobin A1c, may contribute 
to the development of microvascular complications. Intraday glycemic variability is also suggested to accelerate coronary artery 
disease in high-risk patients.
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INTRODUCTION

Diabetic patients with similar mean glucose levels often ex-
hibit differences in terms of both the number and degree of 
glucose excursions. This phenomenon, termed glucose vari-
ability, has been suggested as a factor associated with diabetic 
complications. The development of continuous glucose moni-
toring (CGM) systems has revolutionized the monitoring of 
short-term glucose variability, and understanding of the role of 
glucose fluctuations is in progress. Here, we provide an over-
view of the methods used to measure glucose variability and 
review the literatures on clinical implications associated with 
glucose variability.

GLUCOSE VARIABILITY MEASUREMENT

Table 1 describes the formulas underlying commonly used mea-
surements and their characteristics. There is no generally accept-
ed gold standard and little consensus regarding which method 
offers the most meaningful assessment of glucose variability. 
Among the most commonly used methods is the standard devia-
tion (SD). It can be calculated from self-monitoring of blood 
glucose (SMBG) levels. Since CGM was available, the mean 
amplitude of glycemic excursions (MAGE) has been widely 
used, too.
 To avoid distortions in variability due to glycemic exposure, 
calculations of glucose variability should be devoid of a time 
component: glucose excursion×time=glycemic exposure, but 
not variability. Similarly, the formula glucose excursion/
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time=slope is the rate of glucose change, but not its magnitude 
[1]. Unlike the integrated measurement of long-term glucose 
control provided by hemoglobin A1c (HbA1c), glycemic vari-
ability requires comprehensive assessment of glycemia. CGM 
systems provide a more accurate measure of glycemia than does 
SMBG; however, issues of reproducibility limit the utility of this 
approach [2]. 

Intraday variability
The simplest method of assessing intra-day variability of serum 
glucose is to calculate the SD or coefficient of variation (CV) of 
multiple SMBG readings taken over the course of a day. Usually 
7-point glucose measures are used, although important fluctua-
tions can be missed simply because they occur between two 
measurements (Fig. 1). Furthermore, it is difficult to obtain in-
formation on nocturnal glycemic patterns. CGM systems are 

able to overcome many of the issues with SMBG glucose 
curves, though the data are still not normally distributed, a con-
dition necessary for calculating the SD. However, the SD corre-
lates well with other variability measures and is the only mea-
surement identified to date where a relationship between glu-
cose variability and mortality in intensive care unit can be dem-
onstrated [3,4]. For these reasons, some groups have suggested 
the SD as the preferred method for assessing intraday glucose 
variability [5].
 MAGE was originally developed using hourly glucose sam-
ples taken from venous blood [6], and it has emerged as the 
preferred method for assessing CGM data. In the example pre-
sented in Fig. 2, 1 SD of the mean glucose level for each 24-
hour period acts as an individualized standard; only one limb 
of the excursion >1 SD, either ascending or descending, is 
used to calculate subsequent excursions. The arithmetic mean 

Table 1. Formulas Used to Describe Glucose Variability

Variability measure Formula Explanation of symbols

 SD
   ∑(xi-x)2

k-1
xi=individual observation
x=mean of observations
k=number of observations

 CV  s
x

s=standard deviation
x=mean of observations

 MAGE
∑ 

 λ
n

   if λ>v
λ=each blood glucose increase or decrease 
 (nadir-peak or peak nadir)
n=number of observations
v=1 SD of mean glucose for 24-hour period

 Adjusted M value MGR +MW where 

MGR=∑  10log 
GRt

IGV      and   MW=
Gmax - Gmin

20

M GR=M-value for glucose readings
M w=correction factor for n<24
GRt=glucose reading at time t
IGV=ideal glucose value
ti=  time in minutes after start of observations of the ith 

observation
Gmax=maximum glucose reading
Gmin =minimum glucose reading

 J-index 0.001×(MBG+SD)2 for glucose measured in mg/dL

 CONGA
∑ (D-D)2 

k*-1

where  Dt=GRt - GRt-m  and D=
∑ Dt

k*

k*=  number of observations where there is an 
  observation n×60 minutes ago
m=n×60
Dt=  difference between glucose reading at time 
  t and t minus n hours ago

 MODD
D=

∑  GRi-GRi-1440

k*

Units are in mmol/L or mg/dL depending on the unity of the glucose values measured. To convert glucose values from mg/dL to mmol/L multiply by 
0.0555. Adapted from Siegelaar et al. [5], with permission from Endocrine Society.
SD, standard deviation; CV, coefficient of variation; MAGE, mean amplitude of glycemic excursion; MBG, mean blood glucose; CONGA, continu-
ous overall net glycemic action; MODD, mean of daily difference.

3

t=ti

t=ti

t=ti

tk*

tk

n

tk*

t=ti

tk*
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of these glycemic excursions over the period of study (24 
hours or longer) is then used to calculate the MAGE; an auto-
mated algorithm has been created for this calculation [7]. Us-
ing this method, the mean glucose value becomes the refer-
ence point for glycemic variability. However, because the 
MAGE represents only major excursions from the mean and 
ignores excursions of <1 SD, this approach disregards smaller 
excursions that may be important.
 The M-value was developed to quantify glycemic control of 
patients with type 1 diabetes mellitus (T1DM) using a refer-
ence value of six blood sugar measurements taken over a 24-
hour period [8]. This approach measures the stability of glu-
cose excursions relative to a user-defined “ideal” value rang-
ing from 80 to 120 mg/dL. As a result, differences in user-de-
fined “ideal” values have limited the ability to compare results 
between studies. In addition, M-values rise in response to in-
creasing glycemic variability and poor glycemic control, mak-
ing it difficult to distinguish between patients with high mean 
glucose levels and high glucose variability. Because hypogly-
cemia has a greater impact on the M-value than does hyper-
glycemia, this method is more relevant as a clinical, rather 
than a mathematical, indicator of glycemic control. A similar 
index which takes into account both the mean glucose level 
and variability of glycemia is the J-index [9].
 In 1999, a new method, continuous overall net glycemic ac-
tion (CONGA)-n, was developed specifically for use with 
CGM data [10]. This method calculates the difference between 

current glucose levels and that of glucose levels n hours previ-
ously, with n varying from 1 to 8 hours; readouts are then calcu-
lated using the SD of these differences. Because CONGA does 
not require arbitrarily defined glucose cutoffs or changes in glu-
cose levels, this approach provides an objective assessment of 
glycemic variability over short time intervals. However, glu-
cose differences are not normally distributed, limiting the appli-
cability of this approach. Furthermore, which time segments 
produce the most useful results has yet to be determined.
 Outside of measuring glucose itself, serum 1,5-anhydroglu-
citol (1,5-AG) levels have been suggested as a means of as-
sessing glycemic excursions [11]. 1,5-AG is a polyol main-
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Fig. 1. Twenty-four-hour glycemic curves of two patients with di-
abetes (red and blue lines). The two patients exhibit different pat-
terns of glycemic variation; however, standard deviations calcu-
lated across all four points, before each meal and at bedtime (ar-
rows), do not reflect this because the glucose measures are similar 
between the two patients at those points.

Fig. 2. Continuous glucose monitoring in a patient with type 1 di-
abetes mellitus. Qualifying excursions are shown as blue arrows 
(only the inflection components in this case). Each inflection in-
corporates several excursions smaller than 1 standard deviation 
(SD) within a given day (44 mg/dL for day 1 and 65 mg/dL for 
day 2). The averaged excursion (that is, mean amplitude of glyce-
mic excursion [MAGE]) is (A) 85.0 mg/dL for day 1 and (B) 
156.5 mg/dL for day 2. MAGE calculated from the entire 48-hour 
time course (SD, 56.5 mg/dL) was 131.5 mg/dL; this level was 
similar across each day of the study period (120.7 mg/dL). Similar 
MAGE values could also be calculated from the descending 
limbs. 
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tained within stable limits in subjects with healthy glucose 
levels. Its reabsorption in the kidney is inhibited by excessive 
excretion of urinary glucose; the higher the plasma glucose 
concentration, the lower the concentration of plasma 1,5-AG 
[12]. Urinary glucose only appears at plasma glucose concen-
trations over 160 mg/dL; therefore, 1,5-AG level seems of lit-
tle use in detecting glucose fluctuations below this range. In 
addition, because both chronic and intermittent hyperglycemia 
are characterized by low concentrations of 1,5-AG, the corre-
lation between glucose variability and 1,5-AG is poor when 
mean glucose levels remain high persistently. Use of the 1,5-
AG concentration as a clinical marker is therefore limited to 
patients with postprandial hyperglycemia with HbA1c levels 
below 8% [13,14]. Even though, 1,5-AG is not able to provide 
a direct measurement of glucose fluctuations, limiting the abil-
ity of this method to measure both the size and frequency of 
glycemic excursions. 

Interday variability
The easiest way to measure interday variability of serum glu-
cose is by calculating the SD of the fasting blood glucose con-
centration [15]. The absolute mean of daily differences 
(MODD) using hourly blood sampling was developed as a 
supplement to MAGE and mean blood glucose testing; this 
approach calculates the mean absolute value of the differences 
between glucose values on two consecutive days at the same 
time [16]. However, the timing of meals can greatly affect 
MODD scores, making a strict dietary regimen essential for 
accurate monitoring.

Long-term variability
The SD of the fasting blood glucose or HbA1c can be used to 
assess long-term variability in serum glucose levels, the latter 
of which having been found to be a significant prognostic fac-
tor for microvascular complications, as discussed below. 
 
CONTRIBUTION OF GLUCOSE 
VARIABILITY TO CHRONIC 
COMPLICATIONS 

It has been suggested that glucose variability may have been 
responsible for differences in microvascular outcomes be-
tween intensively and conventionally treated T1DM patients 
with the same mean HbA1c in the Diabetes Control and Com-
plications Trial (DCCT) [17]. Although this hypothesis has 
since been refuted by the study authors themselves [18], inter-

est in the relationship between glucose variability and chronic 
complications of diabetes has persisted. This interest has yet 
to progress to the point of randomized clinical trials, making 
the connection between these two factors largely speculative.
 Hyperglycemia is thought to induce oxidative stress, which 
has been shown to exacerbate diabetic complications through 
a variety of molecular mechanisms [19]. The proposed contri-
bution of glucose variability is supported by reports that oxi-
dative stress is greater for intermittent as opposed to sustained 
hyperglycemia [20-22], though contradictory evidence has 
also been reported [13,23,24]. 

Microvascular complications
In the case of T1DM, a large proportion of studies have been 
secondary analyses of either the DCCT or the follow-up Epi-
demiology of Diabetes Interventions and Complications 
(EDIC) study. In these studies, the SD of SMBG results re-
vealed no relationship between glucose variability and the risk 
of development or progression of microvascular complications 
(retinopathy and/or nephropathy) [18,25-27]. Glucose vari-
ability did not contribute to the development of neuropathy, 
although neuropathy data were more limited than other clini-
cal covariates [28]. However, according to a prospective ob-
servational study that followed 100 patients with T1DM for 11 
years, the SD of SMBG was found to be significantly related 
only with peripheral neuropathy and a borderline predictor of 
incidence (hazard ratio, 1.73; P=0.07) [29]. Therefore, these 
data suggest that the nervous system may be particularly vul-
nerable to glycemic variability. However, these studies relied 
on SMBG data, which may miss fluctuations occurring be-
tween the measurements. 
 A similar study assessing glycemic variability in T1DM pa-
tients using both CGM and SMBG readings revealed a strong 
correlation between microvascular complications and higher 
glycemic variability by CGM, but not by SMBG [30]. How-
ever, reproducibility remains an issue, with a conflicting report 
demonstrating no significant association between retinopathy 
and measures of glucose variability using CGM data in either 
T1DM or type 2 diabetes mellitus (T2DM) [31]. More studies 
are therefore necessary to determine the relationship between 
intraday glycemic variability and microvascular complica-
tions. In the meantime, long-term fluctuations such as HbA1c 
variability and the CV/SD of fasting blood glucose have been 
implicated in the development of retinopathy or nephropathy 
in T1DM [32] and T2DM [33,34] by retrospective analyses. 
However, even these associations remain controversial [35]. 
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Macrovascular complications
In terms of the DCCT study, the SD was not a predictor of car-
diovascular events in patients with T1DM [36]. As for T2DM, 
some evidence of long-term variability in fasting plasma glu-
cose as a prognostic factor for cardiovascular mortality has 
been seen in elderly patients [37]. Recent 7-point glucose data 
from the HEART2D study comparing basal insulin and pran-
dial insulin after acute myocardial infarction (Fig. 3) reported 
no association between the mean absolute glucose (MAG), an 
intraday assessment of glucose variability, and the endpoint of 
combined cardiovascular events [38]. Because neither SD nor 
MAGE was significantly different between the two treatment 
groups, this interpretation has been challenged in part due to 
the reliance on MAG, with no other methods used to assess 
variability [39]. In the meanwhile, in patients with acute myo-
cardial infarction, MAGE from CGM data collected at the 
time of admission independently predicted major adverse car-
diac events [40,41]. A subsequent cross-sectional study also 
showed that short-term glucose variability, as determined by 
CGM, was associated with the severity of coronary artery dis-
ease [42]. When we look at studies of surrogate endpoints 
such as subclinical atherosclerosis, more supportive evidence 
for associations with glucose variability can be found both in 

T1DM and T2DM [43-46]. However, a substantial proportion 
of the T2DM studies included mixed populations of patients 
treated with diet alone, diet and oral antidiabetic medications, 
and insulin. As such, this may have been a confounding factor 
in many of the findings, requiring further subgroup analyses to 
more accurately assess risk factors in this population.

CONCLUSIONS

While the data remain very heterogeneous, some conclusions 
can be drawn from this literature review. First, in the absence 
of a true gold standard for determining glucose variability, 
MAGE and SD have become the go-to methods for variability 
testing. CGM systems appear to be preferable to SMBG for 
capturing variability because of the larger number of data 
points possible with this approach. Second, little supporting 
evidence linking short-term glucose variability and microvas-
cular complications exists, with full confirmation requiring 
use of a CGM system, particularly in patients with T1DM. 
The bulk of the T1DM data were derived from a single study 
(DCCT), limiting the generalizability of some conclusions; 
further studies are necessary to determine whether these find-
ings are consistent across different populations. Prospective 
analyses examining the effects of long-term variability on mi-
crovascular complications are also needed. As for macrovas-
cular complications, although the HEART2D trial suggested 
that lowering glucose variability does not improve cardiovas-
cular outcomes in T2DM patients after acute myocardial in-
farction, subsequent studies demonstrated that glycemic vari-
ability has a probability of accelerating coronary artery disease 
in high-risk patients with T2DM. Large-scale randomized 
controlled trials are necessary to establish such a risk. 
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Fig. 3. Glycemic measures in a randomized controlled trial com-
paring prandial and basal insulin in patients with cardiovascular 
disease (HEART2D study). Seven-point mean self-monitoring of 
blood glucose profiles at baseline (dotted line) and throughout the 
study (solid line) are indicative of the treatment strategy. Only the 
change in the mean absolute glucose level, an alleged measure of 
glucose variability, was significantly different between treat-
ments, with no observable differences in standard deviation or 
mean amplitude of glycemic excursion. Therefore, accurate inter-
pretation of the relationship between glycemic variability and the 
endpoint of combined cardiovascular events in this trial is pru-
dent. Adapted from Raz et al. [47], with permission from Ameri-
can Diabetes Association. aP<0.05 between treatment.
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