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Simple Summary: The efficiency of producing embryos using in vitro technologies in cattle species
remains lower when compared to mice, indicating that the proportion of female gametes that fail
to develop after in vitro manipulation is considerably large. Considering that the intrinsic quality
of the oocyte is one of the main factors affecting embryo production, the precise identification of
noninvasive markers that predict oocyte competence is of major interest. The aim of this review was
to explore the current literature on different noninvasive markers associated with oocyte quality in
the bovine model. Apart from some controversial findings, the presence of cycle-related structures in
ovaries, a follicle size between 6 and 10 mm, a large slightly expanded investment without dark areas,
large oocyte diameter (>120 microns), dark cytoplasm, and the presence of a round and smooth first
polar body have been associated with better embryonic development. In addition, the combination
of oocyte and zygote selection, spindle imaging, and the anti-Stokes Raman scattering microscopy
together with studies decoding molecular cues in oocyte maturation have the potential to further
optimize the identification of oocytes with better developmental competence for in vitro technologies
in livestock species.

Abstract: The efficiency of producing embryos using in vitro technologies in livestock species rarely
exceeds the 30–40% threshold, indicating that the proportion of oocytes that fail to develop after in vitro
fertilization and culture is considerably large. Considering that the intrinsic quality of the oocyte is
one of the main factors affecting blastocyst yield, the precise identification of noninvasive cellular
or molecular markers that predict oocyte competence is of major interest to research and practical
applications. The aim of this review was to explore the current literature on different noninvasive
markers associated with oocyte quality in the bovine model. Apart from some controversial findings,
the presence of cycle-related structures in ovaries, a follicle size between 6 and 10 mm, large number of
surrounding cumulus cells, slightly expanded investment without dark areas, large oocyte diameter
(>120 microns), dark cytoplasm, and the presence of a round and smooth first polar body have been
associated with better competence. In addition, the combination of oocyte and zygote selection via
brilliant cresyl blue (BCB) test, spindle imaging, and the anti-Stokes Raman scattering microscopy
together with studies decoding molecular cues in oocyte maturation have the potential to further
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optimize the identification of oocytes with better developmental competence for in-vitro-derived
technologies in livestock species.

Keywords: oocyte competence; livestock production; assisted reproductive technology; embryo
development; micromanipulation; in vitro production

1. Introduction

In recent years, new knowledge in the field of assisted reproductive technologies (ART, has
allowed researchers and practitioners to reach new hallmarks in oocyte and sperm in vitro competence.
Gamete competence is the ability to undergo successful fertilization and develop a normal blastocyst
that is capable of implanting in the uterus and generate viable offspring [1]. Many researchers are
focused on identifying cellular and molecular markers to select the most competent oocyte and
spermatozoon to produce embryos with higher implantation potential [2].

Although it is well known that the most common applications of ARTs in livestock species are
for research purposes, some techniques, particularly in vitro embryo production (IVP), have become
commercially viable and are extensively used for animal breeding [3]. Nonetheless, the efficiency of
IVP technologies in livestock species, such as bovine, equine, and porcine, measured as the proportion
of immature oocytes that reach the blastocyst stage, rarely exceeds the 30–40% threshold [4], which
means that the proportion of oocytes that fail to develop following in vitro maturation, fertilization,
and culture is considerably large. Contrary to humans, where eggs are mainly collected at the MII stage,
in livestock species, the oocytes have to be matured in vitro due to the difficulty of obtaining a sufficient
number of in vivo matured oocytes [5]. Additionally, given that the most frequent source of ovaries is
slaughterhouse-derived animals, many important factors that influence oocyte quality, such as age of
the donor, the stage of the estrous cycle, nutritional status, genetic potential, presence of a reproductive
disorder, and others, are often unknown [6]. Therefore, it is almost impossible to avoid the retrieval of
a heterogeneous population of oocytes that have a distinct ability to undergo maturation and support
early embryonic development after fertilization, which is known as developmental competence or
oocyte quality [7].

Considering that the intrinsic quality of the oocyte is one of the major factors affecting early
embryonic development [8], and that embryo culture conditions have a crucial role in determining
blastocyst quality [9], the precise selection of competent oocytes is vital for IVP technologies in
livestock. Recently, the new arrival of bovine embryonic stem cells (ESCs) [10,11] emphasizes the
already existing challenge in the selection of competent oocytes for the production of high-quality
embryos through in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) or somatic cell
nuclear transfer (SCNT), and derivation of pluripotent stem cell lines, with promising applications in
research or industry, such as in vitro breeding programs [12]. Usually, for IVP and micromanipulation
procedures (ICSI and SCNT), the choice of the oocytes lie in morphological features that are easily
assessed with light microscopy [13]. The major difference and/or advantage of conventional IVF
compared to micromanipulation procedures is that fertilization can occur during gamete co-incubation
when the oocyte has reached or is close to nuclear and cytoplasmic maturity [14]. Conversely, during
micromanipulation procedures, the operator must accurately assess the maturity of the oocyte and,
therefore, its competence [15]. Because the criteria used for grading and selecting oocytes vary among
researchers, could be easily misinterpreted, and depend on the expert’s evaluation and experience, the
identification of noninvasive cellular or molecular markers that predict oocyte competence is a major
research goal [16,17]. Despite efforts for finding molecular factors associated with oocyte quality, it is
still challenging to find a visual marker that accurately predicts embryonic competence. Thus, this
article reviews the current literature on different noninvasive markers that have been correlated with
oocyte quality in cattle and explores the utility of each grading system.
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2. Morphological and Visual Markers for the Selection of the Best Oocytes

2.1. Ovarian Morphology

During the retrieval of oocytes from slaughterhouse material, the collection of ovaries based on
the presence or absence of estrus cycle structures, i.e., presence or absence of follicles and corpus
luteum (CL), has been used as a straightforward noninvasive criterion to access developmentally
competent oocytes. However, there are discrepancies among different studies in this regard. Early
studies indicated that the presence of a dominant follicle (>10 mm) in one or both ovaries had a negative
effect on in vitro developmental competence of oocytes derived from the subordinate follicles [18–20].
Manjunatha et al. [21] reported that embryonic development was higher in oocytes coming from
ovaries with a CL and no dominant follicle, whereas gametes coming from ovaries that had a CL and
a dominant follicle showed higher competence only when oocytes were derived from the dominant
follicle. In agreement with this notion, Pirestani et al. [22] reported that oocytes derived from ovaries
containing a large follicle (~20 mm) were less competent compared to those derived from ovaries
containing a CL. Similarly, Penitente-Filho et al. [23] classified cumulus–oocyte complexes (COCs)
under the stereomicroscope and indicated that ovaries with CL yielded a larger number of competent
oocytes than ovaries without CL. However, the oocytes used in the latter study were not subjected to
IVP to confirm their developmental competence. Overall, these studies indicate that the presence of a
dominant follicle in the bovine ovary would negatively influence the subsequent embryo development,
while the presence of a CL favors oocyte competence. In contrast, more recent studies indicated that the
presence of a CL has negative effects on the developmental competence of ipsilateral oocytes [24,25].
However, this “negative” effect does not influence the competence of oocytes originated from large
follicles (10–20 mm) as much as those derived from small and medium follicles (<9 mm) [25].

Ovaries without structures indicative of estrus cyclicity have less competent oocytes than
others [21,26], as indicated by the presence of fewer than 10 follicles 2–5 mm in diameter and no large
follicles [27]. In addition, other authors indicated that the developmental competence of bovine oocytes
from antral follicles (2 to 8 mm) is not affected by either the presence of a dominant follicle or the phase
of folliculogenesis [27–31]. Thus, despite the few discrepancies, it seems that the selection of ovaries
based on the presence of cycle-related structures could help optimize access to oocytes with better
developmental competence for in-vitro-derived technologies. Nevertheless, the positive or negative
effects of ovarian structures on oocyte competence require further investigation to determine more
precisely how these ovarian structures impact subsequent in vitro embryonic development.

2.2. Follicle Size

One of the most used criteria to obtain competent oocytes is the size of the follicle. Research
over the past decades indicates that bovine oocytes gain competence at late stages of the follicular
phase, when signs of atresia are observed for the first time, such as a slight expansion in the outer
cumulus layers and some cytoplasmic granulations [7,32]. Therefore, the recommendation is that
oocytes recovered from follicles between 6 and 10 mm develop more frequently to more advanced
embryonic stages [7,33–36]. Although the acquisition of competence begins when the follicle reaches
3 mm and the effect of size becomes more important at 8 mm [19,37,38], success is not guaranteed even
if the oocytes come from larger follicles [39].

The acquisition of oocyte competence seems to be due to the substrate support received and to
the developmental phase at the time of removal from the follicle [7,32,34]. Recent reports indicate that
the follicular fluid (FF) microenvironment of large follicles has higher levels of electrolytes, glucose,
reactive oxygen species, glutathione, superoxide dismutase activity, lipids, cholesterol, pyruvate, and
estradiol [33,40,41]. Moreover, oocytes derived from larger follicles also show a different transcriptional
pattern for chromatin remodeling and metabolic pathways, such as lipid metabolism, cellular stress, and
cell signaling, with respect to those coming from smaller sizes, which would favor their developmental
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potential [41,42]. Therefore, these findings indicate that large follicles (>6 mm) provide an appropriate
microenvironment for the oocyte leading to better embryonic development.

2.3. Morphology of the Cumulus–Oocyte Complexes

The quality of COCs can be influenced by multiple factors, both intrinsic and extrinsic. Intrinsic
factors include breed, age, reproductive status, metabolic and nutritional status, hormonal levels, and
stage of the estrous cycle [43], whereas key extrinsic factors include the timing between slaughter
and oocyte withdrawal from the ovary, morphology and methods of collecting the COCs, storage
temperature of the ovaries, collection media, and micromanipulation skills of the operator [44].

Since intrinsic factors are more difficult to control when using slaughterhouse ovaries from
cows of unknown origin, the morphology of the COC is relatively easy to evaluate and is often the
most common criterion used to select and classify a standard collection of bovine oocytes [45–47].
Morphological criteria include the number and appearance of cumulus layers and the cytoplasmic
features of the oocyte, such as the texture or brightness of its cytoplasm. Basically, the healthiest COC
quality (Class I) relates to a complete cumulus cover with several compact cell layers; medium quality
(Class II) has only partial cumulus cover and/or slightly expanded cumulus containing fewer than five
cell layers; lastly, the worst quality (Class III) has a darker cytoplasm and the presence of dark spots
with expanded cumulus, all indicative of follicular atresia (Figure 1). However, such classification
criteria vary among laboratories.
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Figure 1. Representative images of bovine cumulus–oocyte complexes (COCs) after ovary withdrawal
classified according to COC morphology. (A,B) Complete cumulus cover with several compacts (red
arrows) and slightly loose (black arrows) cell layers; (C) partial cumulus cover and loose cell layers
with signs of early atresia (red arrow); (D) COC showing clear signs of atresia (red arrow) and a
black-punctate cytoplasm (black arrow).
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The study by Wit et al. [30] classified COCs into three groups: (i) compact and bright, (ii) less
compact and dark, and (iii) strongly expanded cumulus with dark spots, where developmental capacity,
measured by in vitro embryo production, was correlated with COC appearance. Moreover, less
compact and darker COCs showed faster meiotic resumption. Another study using similar categories
reported that COCs with darker cumulus and ooplasm were the most competent in terms of cleavage
and blastocyst yield after IVF and parthenogenetic activation [48]. In addition, this study showed that
developmental competence was related to calcium currents in the plasma membrane and calcium
stores in the cytoplasm of immature oocytes [48]. The report by Bilodeau-Goeseels et al. [49] divided
COCs into six classes on the basis of their cumulus and ooplasm features. These authors found that,
although oocytes with fewer than five layers of cumulus cells (CC) showed lower cleavage rates, their
developmental potential to the blastocyst stage was similar to oocytes with more than five layers of CC.
More recently, De Bem et al. [37] found that class III COCs, considered to be of poor morphological
quality, were superior in terms of blastocyst development to the intermediate class II group, but similar
to class I COCs, albeit without differences in blastocyst quality. Emanuelli et al. [50] indicated that
COCs with partial (fewer than five cell layers) and expanded cumulus had higher levels of DNA
fragmentation after in vitro maturation (IVM) and lower competence compared to healthier ones, in
accordance with the report by Yuan et al. [51]. However, blastocysts derived from COCs with varied
morphologies exhibited no variations in terms of quality assessed by the number of cells. In addition,
Emanuelli et al. [50] further concluded that these differences were due to better nuclear maturation
through enhanced maintenance of metaphase II (MII) block by COCs showing full cumulus coverage.

Thus, despite these contradictory results, most studies agree that COCs showing signs of early
atresia yield high blastocyst rates compared to morphologically healthy COCs. Nonetheless, advanced
atresia, with signs such as cytoplasmic granulations, fewer than five cumulus layers, and expanded
cumulus with dark cellular masses or, strictly, its complete absence, show lower in vitro potential
as measured by cleavage rates and blastocyst formation [30] (Figure 1C). Additionally, although
morphological classification seems to influence the proportion of blastocysts formed, such criteria may
not influence their quality. Therefore, when selecting COCs according to their cumulus investment
and ooplasm texture, the ideal would be to target COCs with several cumulus cell layers (more than
or at least five layers), compact and/or slightly expanded, with or without dark areas in the oocyte
and cumulus.

2.4. Lipid Content

The morphological appearance of the ooplasm commonly assessed to select the oocytes [52,53]
is influenced by lipid content in livestock species, such as cattle, pigs, and horses [54–56]. Lipids, in
the form of lipid droplets (LDs), are signaling molecules with important roles in oocyte maturation
and competence acquisition [57]. In the late stage of oocyte maturation and during preimplantation
development, endogenous oocyte lipids work as an energy source [58,59] and as a lipid factory for
energy reserve [60]. Failure to use lipids in oocytes has been shown to be related to inadequate nuclear
maturation [61,62]. The number of LDs present in the cytoplasm increases as the oocyte grows [63]
and, although the ooplasm organization does not undergo major changes during in vitro maturation to
MII [56], the type and number of lipids in the LDs seem to be more dynamic and to undergo changes
during meiotic progression to MII [59,64].

LDs aggregate in the form of dark clusters that can be seen in the ooplasm as a cytoplasmic
darkness [55,65] (Figure 2). Cytoplasmic darkness can be homogeneous, affecting the entire cytoplasm
or concentrated in the center, with a clear peripheral ring that gives the cytoplasm a darkened
appearance (Figure 2B,D). This opaque appearance is more intense in pigs and domestic cats, followed
by cows and finally sheep and goats, whose ooplasm is lighter. In the case of horses, lipid polarization is
commonly observed, which facilitates the visualization of the spermatozoon within the oocyte [55,66].
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Figure 2. Denuded MII bovine oocytes after 24 h of IVM. (A,C) oocytes showing a homogeneous dark
cytoplasm. Black arrows depict the first polar body; (B,D) oocytes showing a heterogeneous pale and
punctuated cytoplasm. Black arrows indicate the first polar body, while red arrows depict dark areas of
intense lipid accumulation (cytoplasmic granulations).

Several studies investigated the relationship between oocyte lipid content and competence.
For instance, cytoplasm color can be used as a marker of lipid content and as predictive of the embryonic
potential [67], as oocytes with a uniform and brown or dark cytoplasm contain more intracellular
lipids than oocytes with a granular or pale cytoplasm [65]. Most studies demonstrated that oocytes
with rough granulations or very pale ooplasm yield a lower preimplantation development [49,53,67].
Jeong et al. [68] classified the ooplasm in three categories: dark, brown, and pale. In this study,
the content of mitochondria and the proportion of oocytes that reached the blastocyst stage were
higher in darker oocytes. Moreover, Nagano et al. [67] reported that sperm penetration, monospermic
fertilization, cleavage, and blastocyst rates were higher in oocytes with a brown ooplasm compared
to those with pale or very dark ones. Moreover, brown oocytes with a dark edge or with dark spots
showed, under electron microscopy, an organelle arrangement similar to in vivo matured oocytes, and
pale or black oocytes appeared to be degenerating and/or aging [67]. The authors concluded that a dark
ooplasm is associated with a lipid accumulation and better developmental competence, while a pale
ooplasm would indicate fewer organelles and poor developmental potential [69]. Interestingly, a study
by Prates et al. [70] distinguished fat areas of different color shades using the Nomarski interference
differential contrast (NIC) as the fat gray value of porcine oocytes, reflecting alterations in lipid content,
and proposed this tool as an appropriate and noninvasive technique to evaluate the lipid content of a
single oocyte before or after in vitro maturation. Recently, the study of Jasensky et al. [71] reported the
use of anti-Stokes Raman scattering (CARS) microscopy as a new non-invasive tool for the quantification
of lipid content in mammalian oocytes. This study showed that the ~2 min of laser exposure was
enough for a quantitative comparison of lipid content in mice oocytes at different developmental stages,
as well as in oocytes of others mammalian species, and, more importantly, without detrimental effects
(without the need to attach fluorescence labels) for subsequent preimplantation development. Thus,
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its application in live-cell imaging of oocytes is promising to provide alternative and/or additional
information in order to improve the accuracy of subjective morphometric measurements.

Taken together, as stated by the review of Nagano and colleagues [69], a dark ooplasm indicates
an accumulation of lipids and good developmental potential, a light-colored ooplasm indicates a
deficiency of lipid stores and poor developmental potential, and a black ooplasm indicates aging and
low developmental potential (Figure 2). Finally, the use of NIC and CARS should be further investigated
as a potential noninvasive tool to evaluate the lipid content of single oocytes in livestock species.

2.5. Cumulus Expansion and Oocyte Size

Another parameter that is often used as an indirect indicator of oocyte quality is the degree of
cumulus expansion following maturation, typically after 20 to 24 h of culture in an in vitro maturation
environment. Grades 1 to 3 (sometimes 4) are attributed to increasing degrees of expansion (1: modest
expansion, characterized by few morphologic changes compared to before maturation, 2: partial
expansion, and 3: complete or almost complete expansion) [72–74].

Although the expansion of CCs has been described as the basis for oocyte maturation [75] and early
reports supported the idea that quantity and quality of the expanded cumulus mass were correlated
with developmental capacity [76], its usefulness as an indicator of developmental potential in bovine
seems to be modest [77]. For instance, studies by Anchordoquy et al. [78], Dovolou et al. [79], and
Rosa et al. [80] reported that, under different experimental conditions, the cumulus expansion index
was not indicative of blastocyst yield or quality. Similarly, another study indicated that inhibition
of cumulus expansion by enzymatic hyaluronidase degradation did not affect cleavage or blastocyst
development [81]. Nonetheless, as shown by Fukui et al. [82], more than an indicator of developmental
competence, CCs and their expansion play an important role in fertilization by inducing the acrosome
reaction and, therefore, promoting higher fertilization rates.

In addition to follicle size, oocyte size has been used as a noninvasive quality parameter. Although
it is difficult to measure the precise diameter of the oocyte during IVF, oocyte selection based on
diameter can be used as a routine step during micromanipulation protocols. The study of Fair et al. [83]
classified oocytes recovered from slaughterhouse ovaries into four groups (<100 microns, 100 to
110 microns, 110 to 120 microns, and >120 microns). Rates of resumption of meiosis to MII were higher
for oocytes >110 microns. Moreover, oocytes <110 microns were transcriptionally active, suggesting
that they were still in the growth phase of oogenesis [83,84]. Similarly, Anguita et al. [85] reported
that cleavage and blastocyst rates were higher in oocytes >110 microns. Moreover, Otoi et al. [86] and
Arlotto et al. [29] found that oocytes >115 microns had better rates of nuclear maturation and a lower
incidence of polyspermy after IVF, but cleavage rates and development to the blastocyst stage were
optimal in oocytes >120 microns. Huang et al. [87] and Yang et al. [88] compared oocytes collected from
initial antral follicles (0.5–1 mm in diameter) cultured in vitro for 14–16 days with oocytes collected
from antral follicles (2–8 mm in diameter), cultured, and submitted to IVM. The authors reported
better maturation rate for oocytes >115 microns, optimal for oocytes >120 microns, but developmental
competence was only high for oocytes collected from antral follicles and of size >120 microns.

These results suggest that bovine oocytes acquire meiotic competence with a diameter of
115 microns, but full developmental competence is acquired around 120 microns, possibly because
smaller oocytes have not yet completed their growth phase [46]. Thus, the selection of follicles
between 6 and 10 mm, with oocyte diameters >115 and <130 microns, has the potential to optimize
developmental outcomes.

2.6. First Polar Body Assessment

At the end of IVM and after the removal of CCs, it is easy to perform a detailed observation of
morphological features [13], including the assessment of oocyte shape, cytoplasm color and granulation,
regularity and thickness of the zona pellucida, size of the perivitelline space, presence of vacuoles, and
presence or absence of the first polar body (PB1) and its morphology. Extrusion of PB1 in mammalian
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oocytes is a cellular landmark of meiotic maturation, and its assessment is frequently used as an
indicator of nuclear maturation [89]. Thus, its absence indicates that the oocyte is immature or that it
has degraded due to aging; however, its presence does not guarantee that the oocytes have completed
their maturation process, and some of them remain incompetent despite exhibiting morphologic
features of nuclear maturation [90].

In bovine species, extrusion of PB1 begins at 16–18 h after IVM [91–94]. Nonetheless, oocytes
acquire the highest developmental competence at around 5–10 h after PB1 extrusion [14,95]. Dominko
and First [95] indicated that oocytes that extruded their PB1 after 16 h of IVM were only capable of
reaching higher developmental competence after 24 h of in vitro culture. Thus, cytoplasmic maturation
in cattle occurs several hours after nuclear maturation, probably between 24 and 30 h after the beginning
of IVM.

Unfortunately, there are no studies that analyzed the influence of the first PB morphology on
oocyte competence in cattle. However, one study using porcine oocytes indicated that PB1 with
a smooth or intact surface was indicative of a more advanced cytoplasmic maturation and better
embryonic development in vitro than those with a fragmented or rough surface [96]. Despite lacking
studies in domestic species, studies in humans investigated the association between PB1 morphology
and oocyte competence [97,98]. Ebner et al. [99] conducted a retrospective study using 70 consecutive
ICSI cases in which oocyte classification based on PB1 morphology revealed that oocytes with intact,
well-shaped PB1 yield better fertilization and high embryonic quality. Later, Ebner et al. [97] confirmed
the relationship among PB1 morphology, fertilization, and blastocyst quality, as well as a positive
effect on implantation and pregnancy rates. Similarly, Rose et al. [100] reported that oocytes with an
intact PB1 show better fertilization and embryonic development, whereas those displaying a PB1 with
morphological abnormalities such as a larger size, irregularities, coarse surface, or fragmentation are
less competent during an IVF protocol, having poor implantation capabilities after embryo transfer.
In contrast, others did not report any correlation [101–103]. Thus, there is a lack of consensus on the
impact of PB1 morphology on oocyte competence and embryonic development in humans. It is also
important to note that some PB1 abnormalities may be an artefact of oocyte manipulation (mainly
during the denudation process) or aging [104].

In summary, although the selection of oocytes with PB1 of a homogeneous, round shape with a
smooth or intact surface may be indicative of a better oocyte, the usefulness of this selection criterion
in livestock requires further research to establish its real predictive value for oocyte competence.

2.7. Polarized Light Microscopy

Polarized light microscopy (PLM) has been used in different mammalian oocytes since it allows
the noninvasive assessment of subcellular features such as the meiotic spindle and zona pellucida
birefringence (ZPB). To learn about the principles and equipment required for PLM in detail, readers
are directed to excellent reviews on the subject [105,106].

2.7.1. Evaluation of the Meiotic Spindle and Zona Pellucida Birefringence

Using PLM, it is possible to locate and evaluate the morphology of the meiotic spindle to confirm
egg maturation, which has been positively correlated with developmental competence [90,107–109].
This method avoids damaging the spindle during the ICSI procedure, considering that the position of
the PB1 can be altered when CCs are removed during preparation for ICSI [110]. Furthermore, PLM
has been successfully used to remove the meiotic spindle and chromosomes (enucleation) in mice [111],
bovines [112], and pigs [113], with an average efficiency of 90% and, more importantly, avoiding the
exposure to ultraviolet (UV) rays and their detrimental effect on embryonic development.

In livestock species, the dark appearance of the ooplasm, attributed to high lipid contents, is
known to interfere with spindle imaging [113] and, as in humans, precludes the detection of meiotic
spindle abnormalities [102,113,114]. Therefore, spindle birefringence should be carefully considered
as an index of gamete quality and chromosome alignment in some species. In pigs, a negative PLM
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signal was associated with to reduced maturation and poor development potential [113]. In the same
study, when the PLM system was used for spindle removal, the overall enucleation efficiency was
92.6%, indicating that PLM is an effective tool for performing enucleation in pigs. A few years later, the
same group evaluated the use of PLM to assess the meiotic spindle of in vitro matured bovine oocytes
after vitrification and warming [115]. They were able to confirm the presence of the meiotic spindle in
99% of the analyzed eggs. Moreover, after vitrification and warming, meiotic spindles were detected
in 79% of oocytes. Interestingly, thawed oocytes that displayed a positive PLM signal showed better
competence in terms of cleavage and blastocyst rates after parthenogenetic activation, indicating that
PLM can be a useful tool for assessing post-warming viability in vitrified bovine oocytes.

Overall, these studies demonstrate that PLM efficiently detects the meiotic spindle of livestock
oocytes and does not affect early embryonic development. However, the selection of cattle oocytes on
the basis of the presence of a PLM signal does not seem to offer improvement in IVP outcomes yet.

2.7.2. Assessment of the Zona Pellucida Birefringence

In addition, PLM has been used for the evaluation of the ZPB, which in humans has been
associated with oocyte quality [116–118], although this is still under debate [119,120]. The few
studies in cattle showed that a lower ZPB is related to high-quality oocytes and improved blastocyst
development [121,122], whereas two studies in horses reported conflicting results, indicating beneficial
effects of both low ZPB [123] and high ZPB [124]. Because most of the studies with PLM were carried
out in mice and humans with conflicting results, its potential application and practical use in cattle
and other livestock species needs further assessment. Contrary to humans, where the number of
highly valuable oocytes from donors is relatively low, livestock oocytes obtained from slaughterhouse
ovaries allow a more stringent selection. Furthermore, assessment of the meiotic spindle can be a
laborious procedure, which delays the overall process of in vitro manipulation and embryo production.
Thus, its application will require showing a clear advantage over conventional approaches using the
morphological criterion mentioned above for oocyte selection. However, PLM might be beneficial
when individual oocytes are of high value, such as oocytes recovered from elite cows by ovum pick-up
(OPU) [111,113].

2.8. Brilliant Cresyl Blue (BCB) Staining

Another approach that demonstrated predictive potential is the evaluation of glucose-6-phosphate
dehydrogenase (G6PDH) activity via brilliant cresyl blue (BCB) staining. BCB is a dye that determines
the intracellular activity of G6PDH. Activity of G6PDH is observed during the oocyte growth phase
(BCB−: colorless cytoplasm, increased G6PDH) due to the demand of ribose-6-phosphate for nucleotide
synthesis. This activity is low (BCB+: colored cytoplasm, low G6PDH) in oocytes that have completed
their growth phase [125]. This technique has been successfully employed in various species, including
cattle [125–127].

Although previous reports found that the developmental competence of oocytes with low G6PDH
activity (BCB+) was higher than that of oocytes with a high G6PDH activity (BCB−), the absence
of differences in terms of embryonic development between BCB+ and the untreated control group
decreases the utility of the BCB test in IVP technology [128]. However, it is unquestionable that BCB+

oocytes have statistically higher developmental competence than BCB− oocytes, both in IVF and
somatic cell nuclear transfer (SCNT) [128].

Later studies continued to show only a trend of BCB+ oocytes toward greater developmental
potential. Better blastocyst rates at day 7 were reported by Silva et al. [129], and a study by
Fakruzzaman et al. [130] reported higher blastocyst quality on the basis of total apoptotic cells and
mitochondria numbers. Similarly, Castaneda et al. [131] indicated that the higher lipid content of
BCB+ bovine oocytes might be associated with their better developmental competence. Interestingly,
another article indicated that co-culture with BCB− oocytes during IVM affects negatively the capacity
of BCB+ oocytes to undergo embryonic development [132]. However, other authors suggested that
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the BCB test is not sufficient for identification of the most competent gametes [133]. Nonetheless,
the combination of oocyte and zygote selection using BCB staining would improve the efficiency
of embryo selection [134]. Therefore, the BCB test can be a valuable tool when used together with
classical morphological classification and could be useful for the selection of oocytes with a higher
implantation potential. Nonetheless, an assessment of the effects of BCB staining on post-implantation
development is necessary to elucidate its usefulness for IVP technologies, not only for research but
also in the industry of animal production. A summary of the morphological and visual indicators
associated with oocyte competence is shown in Table 1.

Table 1. Summary of the morphological and visual indicators of oocyte competence.

Reference Criteria Recommendation

[28,30,31] Ovarian morphology Presence of cycle-related structures

[7,33–35] Follicle size >5 mm

[30,49,50]
Morphology of the
cumulus–oocyte complexes
(COCs)

COCs with at least five layers of cumulus cells
(CC), compact and/or slightly expanded
cumulus, with or without dark spots in the
oocyte and cumulus

[53,67,68] Lipid content
Dark ooplasm indicates high competence,
light-colored indicates lacking lipids and poor
competence, and black ooplasm indicates aging

[77–80] Cumulus expansion and oocyte
size

Not associated to oocyte quality; important role
in fertilization

[29,83,86,135] Oocyte size Diameters >115 and <130 microns

[96–99] First polar body (PB1) morphology PB1 of a homogeneous, round shape with a
smooth or intact surface

[112,114,115] Meiotic spindle and zona
pellucida birefringence

Useful tool for micromanipulation procedures
(intracytoplasmic sperm injection (ICSI) or
somatic cell nuclear transfer (SCNT)) and for
assessing post-warming integrity of meiotic
spindle of vitrified bovine oocytes

[121,122] Zona pellucida birefringence
(ZPB)

Lower ZPB is related to high quality oocytes
and improved blastocyst development

[115,128–130,134] Brilliant cresyl blue staining BCB+ oocytes have higher developmental
competence than BCB− oocytes

3. Non-invasive Molecular Approaches

Many studies are being performed in mammals in order to find molecular markers predictive
of oocyte quality. So far, most of the data show considerable variations, perhaps due to different
experimental conditions and/or the criterion of quality/competence, resulting in varied scientific views.

3.1. Cell Death (Apoptosis) in Cumulus Cells

Because morphological evaluation prior to maturation does not allow to discriminate the atretic
oocytes from healthier ones [135], one of the earlier noninvasive markers of oocyte competence was
the level of apoptosis in CC, seen as DNA fragmentation, externalization of phosphatidylserine (EP),
and/or the expression ratio of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) genes (BCL-2/BAX). Early
studies found that the CC of bovine COCs undergo progressive apoptosis during IVM [136], and this
was negatively correlated with the oocyte developmental capacity [51]. However, results reported by
Janowski et al. [137] supported the notion that follicular cells surrounding the more competent oocytes
have a higher degree of apoptosis. Later, Warzych et al. [138] showed that the level of apoptosis in CC
was not associated with morphology or the oocyte meiotic stage, suggesting that the extent of apoptosis
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in CC is not a reliable quality marker for gamete competence. Similarly, the study of Anguita et al. [135]
showed that embryonic developmental potential increased together with oocyte diameter, but this
developmental competence was not related to the incidence of apoptosis. Recently, another study
indicated that optimum control of the meiosis block, nuclear maturation, and developmental potential
were associated with less DNA fragmentation in CC [50].

Similarly, in the human model, the majority of related studies have focused on granulosa cells
(GC) isolated from FF during oocyte collection. Apoptosis, evaluated by EP, of GC was negatively
associated with egg and embryo numbers in IVF/ICSI cycles, pregnancy rate, and live birth rate after
IVF [139,140]. However, contrarily, it was also reported that the EP in GC is not related to follicular
quality and oocyte competence during ICSI [141]. Thus, in the bovine and human models, it is still
controversial whether apoptosis of GC and/or CC can impact the developmental potential of the oocyte.

3.2. Transcriptomic and Proteomic of Cumulus Cells

Many new genomic tools helped to deepen the understanding in the area of oocyte–cumulus
communication, as well as molecular pathways required for the acquisition of competence in
mammalian gametes and embryos. For instance, recent advances in RNA-Seq technology offer a global
transcriptomic approach for identifying differentially expressed genes associated with competence and
embryonic development.

Among the molecular approaches, study of the transcriptomic profile of the surrounding cumulus
is one of the most popular attempts at finding molecular markers associated with gamete competence in
mammals. The “noninvasive” strategy is based on profiling the gene expression of a small biopsy before
IVM, maintaining COC integrity, and following the embryonic development of the respective oocyte.
This is also called “oocyte fate” [142]. Although several studies in cattle already found several genes in
CCs from germinal vesicle (GV) [16,35,143–151] and MII oocytes [144,152] to be associated with oocyte
competence, only a few reports matched the oocyte fate with the transcriptomic profile obtained from
the CCs or granulosa cells (Table 2). There is some consensus regarding pathways correlated positively
with oocyte competence, including the cell cycle (CCND1, CCNB2, and CCNA2 genes) [143,145,153],
cell growth and proliferation, (CD44, TGFB1, EGF, FGF11, PRL, and GH genes) [35,147–149,154], and
steroidogenesis (HSD3B2 and CYP11A1 genes) [16,154]. On the contrary, genes related to cellular
apoptosis would be associated with a low competence (ATRX, KRT8, ANGPT2, KCNJ8, and ANKRD1
genes) [142,147,152,155].
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Table 2. Summary of studies performing transcriptomic and proteomic analysis of CC and/or GC.

Reference Oocyte Stage Criterion of Developmental
Competence Technique Used Genes and/or Pathways Associated with High Competence Genes and/or Pathways Associated with

Low Competence

Transcriptomic

[16] GV GC collected 2 h before and 6
h after LH surge

qPCR and microarray
analysis

TNFAIP6, HAS2, HSD3B2, PLOD2, CHSY1 (differentiation, cell
growth, protein translation, apoptosis-related, lipid and
glucose metabolism, ECM formation)

ENO1, DNAJB6, GJA1, SYNPO, ZNF330,
MYO1D (protein synthesis cellular
movement, cell signaling, molecular
transport, nucleic acid metabolism)

[35] GV follicle size (1.0–3.0, 3.1–6.0,
6.1–8.0, and ≥8.1 mm) qPCR FSHR (follicle stimulant hormone receptor), GH (cell growth),

and EGF (cell growth and differentiation) N.A

[142] GV Cell arrest and oocyte fate qPCR and microarray
analysis

GATM (post-translational modification, amino-acid
metabolism, and free-radical scavenging)

AGPAT9 (lipid metabolism), CLIC3 (chloride
ion concentration control, cell volume
regulation, and apoptosis), KRT8 (cellular
assembly and organization, apoptosis)

[143] GV Follicle size (>5 mm vs.
<2mm) qPCR and SSH

Oct4, Msx1 (transcription factors), Znf198 (TFGb and activin
signaling), NDFIP1(posttranslational modification), CCNA2
(cell cycle), SLB (stabilization and translation of mRNAs
encoding histones)

N.A

[144] GV Adult vs. prepuberal donors qPCR and microarray
analysis N.A CTSB, CTSK, CTSS, and CTSZ (cathepsin

family of lysosomal cysteine proteinases)

[145] GV
OPU 6 h post LH vs.
slaughterhouse oocytes after 6
h IVM

qPCR and microarray
analysis

PTTG1, CDC5L, CKS1B, CCNB2 (cell cycle), PSMB2, PRDX1
(cell metabolism), RGS16 (cell signaling), SKIIP (gene
expression), and chromatin support H2A

BMP15, GDF9, CCNB1, and STK6
(follicle–oocyte interaction and cell cycle)

[146] GV Brilliant cresyl blue staining qPCR N.A CTSB, CTSK, CTSS, and CTSZ (cathepsin
family of lysosomal cysteine proteinases)

[147] GV GC collected after FSH
withdrawal

qPCR and microarray
analysis

SMAD7, STAT1 (transcription), PRL and GH (cell growth,
proliferation), BMPR1B, IGF2, RELN, and TFPI2 (follicle
growth), NRP1 (angiogenesis), GFPT2, TF, and VNN1
(oxidative stress response)

KCNJ8 and ANKRD1 (apoptosis and
inflammation)

[148] GV Follicle size (>8 mm vs.
<3mm)

qPCR and microarray
analysis

FGF11 (cell growth, and differentiation), IGFBP4 and SPRY1
(cell cycle, DNA repair)

ARHGAP22, COL18A1, and GPC4 (cell
cycle, signaling)

[149] GV
IVM plus FSH or phorbol
myristate acetate (PMA)
treatment

qPCR and microarray
analysis

HAS2, INHBA, EGFR, GREM1, CD44, TNFAIP6, PTGS2,
HSP90B1, SERPINE2, PTX3 (differentiation, cell growth,
protein translation, apoptosis, lipid and glucose metabolism,
ECM formation)

N.A

[150] GV Follicle size and oocyte fate qPCR GPC4 (regulation of growth factors, adhesion, signaling,
proliferation, and differentiation) N.A
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Table 2. Cont.

Reference Oocyte Stage Criterion of Developmental
Competence Technique Used Genes and/or Pathways Associated with High Competence Genes and/or Pathways Associated with

Low Competence

[151] GV COCs morphology and
oocyte fate qPCR N.A FSHR, IGF1R, CYP11al, and HSD3β (cell

growth, cell differentiation, steroidogenesis)

[153] GV Maturation outcome and
oocyte fate RNA-seq CCND1, BMP15, GDF9, H19, KLF4, GPC1, SYCP3, and CTSB

(cell cycle, meiosis, cell signaling, metabolism, and apoptosis) N.A

[154] GV FSH withdrawals; follicles
from 5 mm aspirated by OPU

qPCR and microarray
analysis

CYP11A1 (steroidogenesis), NSDHL (cholesterol synthesis),
GATM (creatine biosynthesis), MAN1A1 (functional gap
junction-mediated communication), VNN1 (oxidative stress
response), NRP1 (angiogenesis), TGFB1 (cell growth and
differentiation)

N.A

[155] GV Chromatin compaction,
follicle size, and BCB staining

qPCR and microarray
analysis

GATM (posttranslational modification, amino-acid metabolism,
and free-radical scavenging), MAN1A1 (functional gap
junction-mediated COC communication), ZIP8 (zinc
transporter)

ANGPT2 (cell death, apoptosis)

Proteomic

[156] MII Matured in vivo vs. IVM MALDI TOF
KEGG pathways of the complement and coagulation cascade,
ECM–receptor interactions, steroid biosynthesis, glucose and
carbohydrate metabolism

N.A

[157] GV COC morphology and follicle
size (>2 mm to 8 mm) 2-DLCMS Integrin signaling, actin cytoskeleton signaling, ephrin receptor

signaling, PI3K signaling, MAPK signaling N.A

[158] GV COC morphology and follicle
size (>2 mm to 8 mm) 2-DLCMS 4395 proteins were expressed in the CCs; 858 proteins were

common to both CCs and oocytes N.A

MII: meiosis II, GV: germinal vesicle, CC: cumulus cells, GC: granulosa cells, qPCR: quantitative reverse transcription PCR, RNA-seq: RNA sequencing, IF: immunofluorescence,
SSH: suppressive subtractive hybridization, BCB: Brilliant cresyl blue, 2-DLCMS: two-dimensional liquid chromatography-tandem mass spectrometry, MALDI TOF: matrix-assisted
laser desorption/ionization-time of flight, ECM: extracellular matrix, MAPK: mitogen-activated protein kinases, PI3K: phosphatidylinositol 3-kinase, IVM: in vitro maturation. * N.A =
not available.
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On the other hand, studies analyzing the proteomic profile of the cumulus–oocyte complex (COC)
are scarce. Moreover, most of them have done invasive analysis in a pool of oocytes; thus, oocyte fate
could not be followed (Table 2). Nonetheless, the few studies described many proteins involved in
cell signaling that may have a role in cumulus–oocyte communication and competence. Most of the
proteins are involved in components of integrin, actin cytoskeleton, mitogen-activated protein kinases
(MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways, extracellular matrix (ECM)
receptor interactions, steroid biosynthesis, and glucose and carbohydrate metabolism, which may have
implications in various reproductive processes such as oocyte development and maturation [156–158]
(Table 2). A recent study reported a highly sensitive approach to characterize the CC proteome from
a single COC after in vivo or in vitro maturation [156]. This method shows the potential to directly
connect the cumulus proteome to the developmental potential of the corresponding oocyte, as already
performed at the gene expression level.

3.3. Follicular Fluid Analysis

It is well known that the composition of FF has an impact on the developmental capacity of the
oocyte and, thus, the resulting embryo. Excellent articles reviewed the importance of FF on oocyte
physiology and fertility [159–161]. This fluid contains proteins, cytokines, growth factors, steroids,
metabolites, and other indeterminate factors [159]. Therefore, by studying its composition, it should be
possible to predict oocyte competence and fertilization outcomes [162–164]. Metabolites in the FF, such
as glucose and potassium, have already been positively associated with oocyte quality in cattle [41,165].
However, studies linking the FF features with the respective oocyte fate in bovines have not been
performed yet. Reports in humans have positively associated the presence of anti-Müllerian hormone
(AMH) in FF with competence of the respective oocyte [166,167], although with some contradictory
results [168,169]. Conversely, a recent study that used a large population of transferred embryos
matching FF samples indicated that the AMH level in FF following withdrawal from the ovarian
follicle is closely linked to the oocyte’s competence, and it is a suitable predictor of a live birth after
single embryo transfer [170]. In the cow, it was already reported that AMH concentrations can be
predictive of the number of ovulations and embryos produced in response to ovarian stimulation by
FSH [171–173], making it a suitable molecule to be related to the oocyte competence.

In addition, other molecules in FF of cattle that show promising results are microRNAs (miRNAs).
The bovine FF contains free miRNAs, as well as some associated with exosomes [174,175]. Recently, the
study of Pasquariello et al. [176] showed, for the first time, the miRNA content of different populations
of oocytes categorized according to their competence. Interestingly, they discovered that the most
differentially expressed miRNAs (miR-24, miR-10a, and miR-320a) in FF found in highly competent
follicles were part of the regulation of the neurotrophin signaling pathway, which supports follicle
formation and development, as well as the TGF-βsignaling pathway that controls the production of
ovarian peptide hormones. Therefore, linking FF molecules such as AMH or miRNAs with gamete
competence is an encouraging strategy in the field of oocyte selection. However, we have to consider
that it will be applicable only when the fast collection and analysis of FF from individual follicles
become practicable.

4. Conclusions and Future Perspectives

The classification and selection of oocytes in livestock species for in vitro embryo production
and for micromanipulation techniques, such as ICSI and SCNT, can be one of the most important
steps to reach superior embryonic development and quality. Although more sophisticated methods
(qRT-PCR, global transcriptomic, and proteomic analysis) have been studied since a few decades ago,
the lack of a quick enough method producing reliable results hinders the implementation of these
technologies. Moreover, molecular analysis requires high-tech equipment and technical staff that
would be cost-ineffective in most research laboratories. Thus, although oocyte selection based on
morphologic criteria appears to be insufficient to distinguish more competent gametes, in real practice,
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when 100–300 oocytes are waiting to be processed during micromanipulation experiments, it seems
to be the only available strategy so far. Furthermore, studies that perform embryo transfers are also
important to effectively evaluate developmental potential, as successful embryo implantation is highly
dependent on the quality of the embryo and the intricate relationship it establishes with the uterine
endometrium. Ultimately, with the advent of bovine embryonic stem cells, greater scrutiny of oocytes
with high developmental potential is necessary, for the production of stable pluripotent stem cell
lines to be used in basic science, forward and reverse genetics, epigenetics, gene imprinting, and the
production of animal models with applications in animal production. Thus, in addition to improving
the conditions to support in vitro maturation, the implementation of new tools for the assessment of
gamete competence, together with studies decoding molecular cues in oocyte maturation, will improve
our understanding of this complex process and will more precisely identify the synchrony between
nuclear and cytoplasmic maturation in livestock species.
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