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The dual-basin Gō-model is a structural-based coarse-
grained model for simulating a conformational transi-
tion between two known structures of a protein. Two 
parameters are required to produce a dual-basin poten-
tial mixed using two single-basin potentials, although  
the determination of mixing parameters is usually not 
straightforward. Here, we have developed an efficient 
scheme to determine the mixing parameters using the 
Multistate Bennett Acceptance Ratio (MBAR) method 
after short simulations with a set of parameters. In the 
scheme, MBAR allows us to predict observables at vari-
ous unsimulated conditions, which are useful to improve 
the mixing parameters in the next round of iterative  
simulations. The number of iterations that are necessary 
for obtaining the converged mixing parameters are  
significantly reduced in the scheme. We applied the 
scheme to two proteins, the glutamine binding protein and 
the ribose binding protein, for showing the effectiveness 
in the parameter determination. After obtaining the  
converged parameters, both proteins show frequent  

conformational transitions between open and closed states,  
providing the theoretical basis to investigate structure-
dynamics-function relationships of the proteins.
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Proteins often undergo conformational transitions during 
their function [1–5]. In many cases, the binding or unbinding 
of a ligand induces a large amplitude domain-level transition 
between active and inactive states [6–11]. Elucidating the 
mechanism for such conformational transitions connects 
protein structural information with functional understanding 
and opens the way for interference with existing processes 
and design of new compounds.

Molecular dynamics (MD) simulations are widely used to 
investigate conformational dynamics of proteins [12–18]. 
Recent advancement in the development of high-performance 
computers has sparked the interest in simulating the dynamics 
of systems of enormous size scales such as large biomolec-
ular complexes and biomolecules in cellular environment 

Structure‑based coarse‑grained (CG) Gō models are used with great success to sample protein dynamics on long 
time scales. Here, we combine two Gō type single‑basin potentials to sample conformational transitions between 
two states of a protein. CG models are highly parameter‑dependent and detecting appropriate parameters is a 
time‑consuming task. In this study, we propose a scheme for parameter refinement of CG models using the Multi‑
state Bennett Acceptance Ratio (MBAR), a statistical weighing method. Using MBAR, free energy profiles can be cali‑
brated without simulations. We demonstrate conformational transitions between two reaction states of soluble 
proteins by applying the scheme.
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functions of the two single‑basin potentials. In the super
position approach [38,59], the mixed potential is resolved  
by solving an eigenvalue equation. Both schemes ensure a 
smooth transition between the two basins. Structure‑based 
CG models in general heavily rely on system‑dependent 
parameters, which are determined properly for successful 
MD simulations. Conventionally, the parameter determina-
tion in exponential mixing is done by trial and error, by per-
forming multiple rounds of short simulations with different 
parameters while assessing the frequency of conformational 
transitions. This laborious process can be very time consum-
ing, especially for large systems or for potentials in which 
more than a single parameter needs to be determined.

Here, we apply the Multistate Bennett Acceptance Ratio 
(MBAR) analysis method [61] for an efficient determination 
of parameters in the exponential-mixing dual-basin poten-
tial. The scheme that we propose consists of short simula-
tions with multiple candidates of mixing parameters and an 
estimation of improved parameters based on MBAR. MBAR 
statistically calculates the optimal estimators for computing 
free energies of unsampled data using sampled data at dif-
ferent conditions. Without performing an enormous number 
of simulations, this scheme can sample the parameter space 
efficiently and allows a severalfold faster parameter deter-
mination. We apply this scheme to the dual-basin Gō simu-
lations of the Glutamine Binding Protein [6] (GBP, Fig. 1) and 
the Ribose Binding Protein [62,63] (RBP, Supplementary 
Fig. S1), and discuss the quality of the predicted parameters 
and the stability of the extended sampling simulations.

Theory and Methods

The potential energy function of the dual‑basin 
structure‑based Gō model

We use the single‑basin KBGo potential [51,52] as 
described in the original works [37,43]. The DoME model 
[54] potential carries the same functional form as the KBGo 
potential. It differs only in the non‑bonded native contact 
parameters, which are set inversely proportional to the  
magnitude of inter‑domain motions (and a constant value for 
intra‑domain contacts). Domain classification is obtained 
from the Motion Tree calculation [64,65].

The macro-mixing approach of exponential Boltzmann 
weighing [37] (exponential mixing) for mixing two single-
basin potentials, which we use in the study, is shown in Eq. 
(1).

exp (− 1
kBTmix

 E(R)) 

= exp [− 1
kBTmix

 (V1(R) + C)] + exp [− 1
kBTmix

 V2(R)],
	 (1)

[19–23]. However, all-atom MD simulations are able to sim-
ulate conformational dynamics that happen for several tens 
of microseconds using conventional PC-clusters or super-
computers. For reaching the millisecond time scale, in which 
large‑scale conformational motions of proteins occur, MD 
simulations based on coarse-grained (CG) models [24–29] 
are more suitable [24,30–33].

Structure-based off-lattice Gō models [34–36] are often 
used in CG MD simulations with remarkable success [36–
44]. Based on the original Gō model [45–47], the potential 
function used in such simulations consists of an attractive 
potential between non-bonded contacts that exist in the 
native structure (native contacts) and a repulsive potential 
between all other non‑bonded pairs. The simulations realize 
funnel‑shaped free energy landscapes for protein folding  
and dynamics, successfully explaining many experimental 
results [48–50]. A revised model was developed by  
Karanicolas and Brooks [51,52], in which residue‑type‑ 
dependent knowledge‑based energy terms (the Miyazawa‑
Jernigan contact energies [53]) are applied to the native  
contacts (hereafter, we refer to it as KBGo model). Folding 
pathways for proteins predicted using this model were in 
excellent agreement with experimental results. Moreover, the 
robustness of the folding pathways against competing non-
native interactions was demonstrated. The Domain Motion 
Enhanced (DoME) model [54], developed more recently, 
emphasizes inter-domain motions while keeping intra‑
domain regions relatively rigid. This model is, in particular, 
useful for simulating large-scale domain motions of pro-
teins, by making the simulation robust against temperature 
changes.

The off-lattice Gō models presented above predominantly 
stabilize a single conformation and are referred to as single‑
basin models. For simulating transitions between two stable 
states, two single‑basin potentials are mixed to form a dual-
basin potential. The mixing of potentials can be obtained 
using two main approaches, the microscopic (micro-mixing) 
and macroscopic (macro‑mixing). In micro-mixing [39,55–
57], energetic terms are added as individual terms to form 
the mixed potential. The mixed potential is in fact a single-
basin potential of one state, to which contact energies of  
the other state are added as perturbations. In macro-mixing 
[37,38,43,58,59], the two single-basin potentials are pre-
defined and all energetic terms are coupled to each other in 
the mixed potential. The micro-mixing approach is suitable 
for systems with a high degree of similarity, in which transi-
tions between the two states can be described by addition of 
contacts. The macro‑mixing approach is often successful in 
describing large‑scale transitions with little overlap between 
the contact sets of the two states. For example, the sheet to 
helix transition in Arc repressor was successfully described 
using the macro‑mixing potential [37].

The exponential Boltzmann weighing [37,43,60] (expo-
nential mixing) is a macro‑mixing approach in which a 
dual-basin potential is constructed by summing the partition 
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tary Fig. S3), and the final selection of parameters (stage E 
and E1–E4 in Supplementary Fig. S3). In order to estimate 
the potential of mean force (PMF) from MBAR, both OP 
and CL states as well as transitions between them needs to be 
sampled. Thus, manually detecting an approximate parame-
ter range is required (stage C) prior to using the MBAR anal-
ysis for the parameter refinement (stage D). In both stages C 
and D, the approach is to iteratively perform simulations 
with a set of parameters, asses their quality, set modified 
parameters, and use them for the next round.

We use the distance root-mean-square displacement [66] 
(dRMS) as a reaction coordinate for quantifying the similar-
ity of frames during the simulations to the OP (dRMSOP) and 
CL (dRMSCL) native structures. dRMS is calculated between 
atom pairs, which in the reference state were separated by at 
least four atoms in sequence and between 6–50 Å in space, 
and for which the difference in distance between the two 
reference states was larger or equal to 5 Å. Along the manu-
script, time-series of dRMSCL is used for visualizing state 
populations during each simulation.

The equilibrium constant Keq between the CL and OP 
states is defined as:

Keq = 
pCL

pOP

 

,	 (2)

where kB is the Boltzmann constant, V1 and V2 are the single-
basin potentials to be mixed, and Tmix and C are the mixing 
parameters. Tmix is related to the barrier height between the 
two basins (a lower value corresponds to a higher barrier). C 
determines the energetic offset between the basins. The 
mixed potential function was implemented while adhering 
to all the details described in the original works [37,43]. We 
define the open (OP) basin as basin 1 and the closed (CL) 
basin as basin 2.

Parameter searching
Given the structures in the OP and CL states, we need to 

determine a pair of parameters (Tmix, C), which allow proper 
transitions between the two states under the dual-basin expo-
nential mixing potential. The overall scheme for determin-
ing the mixing parameters is presented in Figure 2. Our 
workflow consists of three major stages that are: the manual 
detection of an approximate range of proper parameters 
(stage C and Supplementary Fig. S2), the MBAR‑assisted 
parameter refinement (stage D and D1–D11 in Supplemen-

Figure 1 Structures of GBP in the unbound (left side at each panel) 
and bound (right side) forms, colored according to secondary elements 
(A) or domains (B). PDB codes written below the protein structures. 
RMSD values were calculated between the unbound and bound forms, 
fitted by their Cα atoms. The bound form in panel A shows the bound 
ligand (glutamine) in a stick representation. Domain classification in 
panel B was performed according to the Motion Tree [64,65]. Domain 
name notations were taken from Ref. [6].

Figure 2 Overall flowchart describing the procedure presented in 
this work. Detailed schemes are shown in Supplementary Figures S2 
and S3. Letters assigned to each stage are compatible to naming of 
stages in Supplementary Figures S2 and S3.
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physical quantity 〈A(x)〉 for an unsimulated target condition 
(marked by ‘estim’ and a hat symbol) by calculating the ratio 
of partition functions using the results of eq. (3) [61],

.〈A(x)〉estim

‹

 = 
∫ A(x) exp [−uestim(x)]dx
∫ exp [−uestim(x)]dx

 = ∑
j
  ∑

n
 wjn A(xjn)

	 (5)

Here, for the estimation of the PMF, indicator functions are 
employed for A(x) along the axis of the dRMS. uestim(x) is the 
reduced potential energy in the unsimulated target condition 
in which we attempt to estimate the PMF. wjn is the weight of 
configuration n in condition j with respect to the target con-
dition. .〈A(x)〉estim

‹
 is the estimated probability density defined 

as the expectation of an indicator function. We mark this step 
as MBAR2. MBAR1 and MBAR2 were performed using  
the MATLAB MDToolbox (https://github.com/ymatsunaga/
mdtoolbox) [67].

The procedure in the MBAR-assisted refinement stage 
follows a similar progression as the preliminary manual 
stage. However, instead of manually guessing the parame-
ters for the next round and confirming by MD simulation,  
we perform several iterations of MBAR2. Once the weight 
factors are obtained by solving Eq. (3) using simulation  
trajectories, iterations for estimation of parameters can be 
performed without simulations (D2–D7 in Supplementary 
Fig. S3). The inclusion of MBAR-assisted parameter esti
mation reduces the number of MD simulation rounds with 
unsuccessful parameter choice.

The Keq value for an estimated parameter set (KMBAR) is 
obtained from the estimated PMF (PMFMBAR). This process 
of guessing Tmix and C and estimating KMBAR is performed 
iteratively until the target Keq (Ktarget) is included in the range 
of KMBAR.

The results of each simulation round are assessed and a 
decision is made on whether to end the parameter search 
(step D10 in Supplementary Fig. S3). For each of the simu-
lations in the round, in addition to Ksim values, dRMSCL and 
dRMSOP are calculated at the free energy minimum of each 
of the two basins. The conditions for ending the refinement 
stage are as follows: 1) Ksim for all simulations are in an 
acceptable range around Ktarget (in this case we used the range 
0.2–5), 2) There is at least one pair of Tmix and C for which 
Ksim is close enough to Ktarget (in this case we allowed a  
deviation of 25% from Ktarget), and 3) both basins’ minima  
are located outside the intermediate basin region in the  
(dRMSCL, dRMSOP) space, defined as the rectangular area 
confined by 2 Å at the bottom limit and the dRMS value 
between the native states in the top limit. This ensures that 
the simulated ensembles do not sway too far from the native 
states.

Final selection of mixing parameters
Once a satisfactory parameter pair is detected in stage D, 

all simulations of the last round are elongated to 2 μs, Ksim 

where pCL and pOP are the populations in the CL and OP 
states, respectively. The populations at each dRMSCL bin are 
obtained from the PMF along dRMSCL, using the relation 
dG=−kBTlnp. Trajectory frames are assigned to either the 
OP or CL states according to their dRMSCL values, where the 
cutoff value is determined at the location of the barrier in 
between the two basins of the PMF plot. It is possible to 
determine proper mixing parameters for any target Keq. In 
this study, we set the target Keq value to 1.

Manual parameter search until two states are sampled
At this stage (C in Fig. 2 and Supplementary Fig. S2), we 

detect Tmix and C for an approximate range, which produces 
transitions between the two states within a single simulation. 
We start by using large increments of extreme values and 
gradually narrow the search range by reducing the incre-
ments until an acceptable range is detected. At each round, 
we perform a series of simulations (five in this case) with 
different sets of parameters, and initiate simulations from 
both the OP and CL states (ten simulations in total). Tmix or C 
are fixed alternatively at each round, while the other param-
eter is varied.

Parameters for the next round are determined according to 
the behavior of the current round by varying their values 
according to the direction which leads to proper state transi-
tions. In case one of the states is sampled in excess, C is 
varied in the direction which stabilizes the other state, or in 
case transition frequency is too low, Tmix is increased.

MBAR-assisted parameter refinement
Once two states are sampled, the MBAR analysis method 

is used for speeding up the parameter search process (D in 
Fig. 2 and D1–D11 in Supplementary Fig. S3).

The MBAR method [61] allows to estimate the expecta-
tion of any physical quantity 〈A(x)〉 (in this case, the PMF) 
for an unsimulated condition by reweighing simulated data 
performed under various conditions (in this study, condi-
tions refer to combinations of Tmix and C).

The first step of MBAR method estimates the free energies 
f̂ i of simulated conditions by iteratively solving the following 
nonlinearly coupled equations:

f̂ i = −ln ∑K
j=1 ∑

Nj
n=1 

exp [−ui(xjn)]
∑K

k=1 Nk exp [f̂ k − uk(xjn)]
	 (3)

where i and j indicate conditions, and K is the total number 
of conditions. Nj is the total number of configurations (simu-
lation frames) in condition j. ui is the reduced potential 
energy defined as:

ui(x) = βEi(x) = 
1

kBT  Ei(x),	 (4)

kB is the Boltzmann constant, and T is the simulation tem-
perature. Ei(x) is the potential energy for condition i (here, 
combinations of Tmix and C). We mark this step as MBAR1.

In the next step, we can estimate the expectation of a 
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Results and Discussion
Acceleration of parameter searching using MBAR

Figure 3 shows the dRMSCL time‑series for the parameter 
search rounds (C–E in Fig. 2 and Supplementary Figs. S2 
and S3) for GBP in the KBGo model. For this system, two 
manual iterations (stage C) were required for sampling two 
states, and five rounds of MBAR‑assisted iterations and an 
additional 2 μs elongation for identifying Tmix,final and Cfinal.

In round 1 (stage C1 in Supplementary Fig. S2), observ-
ing dRMSCL values, a few conformational transitions between 
the OP and CL states occur in the simulations with C=−25, 
while for C=−50 the protein resides solely in the OP state, 
and for C=0, +25, +50 solely in the CL state. We selected 
C=−25 and executed simulations with different Tmix values 
in round 2 (stage C5). Transitions are observed at simula-
tions with Tmix=15000 (only OP simulation), 20000, and 
25000 (both OP and CL). At this stage, the procedure 
advances to the MBAR-assisted simulations rounds. In 
rounds 3–7 (stages D2‑D11 in Supplementary Fig. S3), we 
performed simulations with parameters selected by estimat-
ing PMFMBAR and KMBAR using f̂ i given from the previous 
simulations (stage D8). During these rounds, conformational 
transitions are observed 50–100 times per simulation. In 
round 7, criteria for ending the search are fulfilled where a 
pair of simulations produced Ksim values within the desired 
range (encircled). In round 8, the set of simulations with 
identical conditions to round 7 were performed for 2 μs,  
after which Tmix,final and Cfinal were selected according to the 
simulation pair that produced Ksim values closest to Ktarget 
(encircled). A single simulation of 500 ns required roughly 
100 minutes to complete on 8 cores of Intel® Xeon® E5-2680 
v3 CPUs. The available computing resources enable running 
all 10 simulations of a round in parallel. Thus, detecting  
Tmix,final and Cfinal (not including the 10 μs‑long sampling) for 
the current system required approximately 18 hours.

The MBAR2 iterations (D2–D7 in Supplementary Fig. S3) 
serve as substitutes for MD simulations and therefore consti-
tute the core of the speedup achieved in the current method. 
The number of MBAR2 rounds for the current system was 
between 2‑4 per round (data not shown). Assuming that each 
MBAR2 iteration is equivalent to one round of MD simula-
tion, we would need to perform from 10 (2 MBAR2 rounds 
×5 rounds of MBAR‑assisted rounds) to 20 (4×5) additional 
simulation rounds per system. Therefore, without using the 
MBAR analysis, we estimate that an extra simulation time of 
50–100 μs will be required. Using the MBAR analysis 
results in substantial acceleration of the parameter searching 
process. This effect is expected to be even more prominent 
for larger systems in which physical simulation times are 
severalfold longer. The MBAR analysis calculation time is 
independent of system size and is negligible comparing to 
MD simulation times, thus the reduction in total calculation 
time is expected to be even greater.

values are calculated, and the parameter pair used for the 
simulations for which Ksim values have the smallest average 
(between the OP and CL simulations) deviation from Ktarget is 
selected as the final parameter set.

Simulation details
For both target systems GBP and RBP, crystal (native) 

structures of the OP (unbound) and CL (bound) states are 
available (PDB codes: 1GGG/1WDN [6] and 1URP [63]/ 
2DRI [62] for OP/CL of GBP and RBP, respectively, Fig. 1A 
and Supplementary Fig. S1A). Residues 5‑224 were used for 
GBP (one residue from the N‑terminus and two from the 
C‑terminus were removed from the CL structure) and 1–271 
for RBP. dRMS values between the native structures were 
8.964 Å and 7.125 Å for GBP and RBP, respectively. The Cα 
models were created and single‑basin KBGo potentials were 
built using the MMTSB server (https://mmtsb.org/) [51,52].

Initial values for Tmix and C were set in ranges of 15000  
to 30000 and −50 to +50, respectively. Values were chosen 
based on a previous study [43], in which macro‑mixing 
parameters for Adenylate Kinase (AdK) were determined.

Simulations were performed using the MD program 
GENESIS [68,69], in which both single‑basin and dual‑
basin potential schemes were implemented. Simulations 
were performed in the NVT ensemble using the Langevin 
thermostat. The timestep of integration was 0.02 ps. All 
bonds were constrained using the SHAKE [70] algorithm. 
Native interactions were calculated without truncation, 
whereas repulsive non‑native interactions were truncated at 
a distance of 20 Å.

The simulation temperature in the dual‑basin potential 
was set to ~0.9 Tf. Tf is the folding temperature of the pro-
tein, and was determined in a 500 ns single‑basin potential 
simulation in the KBGo model as the temperature for which 
the protein shares its time equally between the folded and 
unfolded states. Unfolding was identified using the RMSD 
of the protein to its own initial native structure. If the OP and 
CL simulations exhibite different Tf values, the lower value 
of the two is used. Dual-basin simulations were performed  
at 240 K and 260 K for GBP and RBP, respectively. After 
identifying the parameters which satisfy the mixing criteria, 
we performed a 10 μs sampling simulation with the final 
parameters. The final parameters and Keq calculated for the 
sampling simulations are summarized in Table 1 for all four 
cases.

Table 1 Final parameters for macro-mixing simulations

System Property KBGo DoME

GBP Cfinal −22.4 −29.0
Tmix,final 21000 25000

Ksim,OP/CL 1.25/1.25 1.00/1.12

RBP Cfinal −1.12 −11.25
Tmix,final 4500 7000

Ksim,OP/CL 0.85/0.86 1.15/0.89
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the frequency of transitions between the basins. When one 
basin is exceedingly stabilized with respect to the other, 
transitions to the less stable basin are difficult and the 
chances of the simulation residing in the stable basin for  
prolonged times increase. This brings to uneven sampling, 
which results in poor convergence between the two simula-
tions as well as with predicted properties (PMFMBAR). This  
is observed during the MBAR‑assisted parameter search-
ing where parameters which produce large or small KMBAR 
values are used. For example, the top simulation in round  
5 in Figure 4 for which KMBAR=1.52 and the two Ksim values 
deviate both from each other and from KMBAR (2.66 and 0.74 
for the OP and CL simulations, respectively). This issue can 
be resolved by sufficient simulation time. Thus, if the desired 
Ktarget is much larger or smaller than 1, longer simulation times 
should be used for an accurate parameter determination.

We start the search with a wide range of parameters (5000 
to 25000 and −50 to +50 for Tmix and C, respectively), and 
gradually narrow the search until the desired behavior (Keq) 
is obtained with good enough precision, finally converging 
to parameter values of 21000 and −22.4 for Tmix and C, 
respectively. This ensures the robustness of the method in a 
sense that the final answer does not depend on the choice of 
initial guess. Structure-based models such as the one used 
here are constructed from structural information of the pro-
tein. The number of contacts, as well as the boundaries of the 
rigid domains are different from system to system. There-
fore, the parameter values differ according to the system.  

Characterizing the quality of the MBAR-prediction
PMFs along dRMSCL and the values of Keq calculated from 

the PMFs (Ksim) are shown for each round of the parameter 
searching process in Figure 4. In rounds 1–2, PMFsim does 
not cover both the OP and CL states and Ksim values (in cases 
where they could be calculated) are far from the targeted Keq. 
MBAR‑predicted PMF (PMFMBAR) plots are shown in black 
for rounds 3‑8. In round 3, there is poor overlap between 
PMFsim and PMFMBAR. The overlap becomes progressively 
better with the rounds. Figures 5A and 5B present values for 
Ksim and the difference between Ksim and KMBAR, respectively. 
From the figures we learn that the MBAR‑assisted search 
drives Ksim closer to Ktarget and Ksim closer to KMBAR.

We characterize the quality of the MBAR prediction by 
the similarity between PMFMBAR and PMFsim. There are two 
aspects which influence the quality of prediction. The first is 
the similarity between the parameters with which the weight 
factor f̂ i is calculated (data from the previous simulation 
round) and the parameters for which MBAR2 predicts the 
PMF for (to be used in the current simulation round). Higher 
similarity between the two parameter sets results in a more 
accurate prediction. Indeed, values of Tmix ranging from 
5000 to 25000 were used for estimating PMFMBAR in round 
3, whereas a much smaller Tmix range (18000–23000) was 
used for all later rounds. This illustrates the importance of 
narrowing the parameter range for achieving accuracy in the 
prediction.

Another aspect regarding the quality of prediction lies in 

Figure 3 Time‑series of dRMSCL for simulation rounds performed for determining the macro‑mixing parameters for GBP in the KBGo model. 
Five simulations per initial structure (OP and CL, left and right panels at each round, respectively) were performed at each round. At each round one 
parameter was fixed for all simulations (a single value which is written above the plot) and the other was varied (five values written in order of top 
to bottom in the dRMS plots). The length of the simulation for all rounds except round 8 was 500 ns. “manual”, “MBAR” and “2 μs elongation” stand 
for the three stages along the parameter tuning process. “manual” for the manually adjusting the parameters until two states are sampled (stage C in 
Fig. 2). “MBAR” for stages in which parameters were estimated using MBAR analysis using simulation data of the previous stage (stage D), and 
“2 μs elongation” for elongating the last “MBAR” round (round 7) to confidently determine a single set (Tmix, C) of optimal parameters (stage E).
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simulation time. Transition rates obtained in the current 
study are higher than those of actual conformational transi-
tions (which occur at time ranges of milliseconds). Indeed, 
simulating realistic transition rates is still challenging with 
the currently available computational resources. In the cur-
rent work, we focus on simulating enough transition events 
that will allow us to characterize transition paths, or to treat 
very large systems.

Figure 7B shows two‑dimensional free energy surfaces  
in the dRMSCL/dRMSOP space. The dual‑basin simulations 
near the CL basin sample configurations very similar to 
those sampled in the single‑basin simulation, with the most 
populated configuration approximately overlapping with 
that in the single-basin simulation (shown as black circles). 
For the OP state, the most populated configuration is located 
closer to both the CL and the OP native states than the single 
basin simulations. This is likely due to the fact that under the 
single‑basin potential, fluctuations towards the opposite 
direction (excessive opening in the OP state) are larger than 
in the dual-basin where the two domains are held more 
tightly against each other.

An estimated path for the states transition can be detected 
in Figure 7B as the line connecting the two states. From the 
dRMS time‑series (Figs. 3 and 7A) it is apparent that coordi-
nates shift instantaneously without sampling intermediate 
states. Thus, the intermediate states visible in panel B are  
not states which were sampled during transitions, but rather 
fluctuations within each basin and the most probable path  

A robust method, such as the one presented here can be 
advantageous for constructing a suitable structure-based 
model.

Figure 6 presents free energy minima near each basin in 
the dRMSCL/dRMSOP space. The most populated configura-
tion near each basin (the configuration with the lowest free 
energy) does not penetrate the “intermediate region” (the 
grey area) for all but one simulation (in round 7 using 
C=−22.3). This indicates that the original native states are 
sampled accurately along all simulation rounds. Near the OP 
basin, most simulations sample configurations closer to the 
CL state than the native OP structure, whereas near the CL 
basin, simulations are spread evenly around the native con-
figuration.

Characterizing the behavior of the mixed potential in 
the extended sampling simulation

Figure 7 and Table 2 display various properties calculated 
for the 10 μs-long sampling simulations with Tmix,final and  
Cfinal. The time‑series of dRMSCL in Figure 7A displays fre-
quent transitions between the two states. The transition rate 
was calculated as 157 and 156 μs−1, showing an excellent 
convergence between the OP and CL simulations. The total 
number of transitions is above 1500 for both simulations, 
which is sufficient for accurately calculating properties which 
characterize the systems’ behavior. Maximal residence times 
were calculated as 115 and 160 ns for the OP and CL simu-
lations, respectively, constituting under 2% of the whole 

Figure 4 PMF vs. dRMSCL, presented for simulation rounds performed for determining the macro‑mixing parameters for GBP in the KBGo 
model. Panels representing each round correspond to those in Figure 3. Black curves (“MBAR”, for rounds 3 to 8) represent PMF for each param-
eter set (Tmix, C), estimated by the MBAR analysis performed using data from the previous round (PMFMBAR). Red (OP) and blue (CL) curves rep-
resent PMF calculated from simulation data of the current round (PMFsim). Keq values per each individual simulation are written on the right side of 
their respective PMF plots. For the three bottom simulations of round 1 the OP state was not sampled, thus Keq is not defined (marked as “#”). 
Encircled text represent Ksim values which satisfied the criterion for ending the MBAR-assisted search stage (round 7) and the Ksim values of the 
simulations with parameters selected as Tmix,final and Cfinal.
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tions is observed. MBAR‑assisted parameter determination 
was performed with 0.5 μs‑long simulations, where conver-
gence is not full. For obtaining a more accurate prediction of 
Keq, one should either increase the length of each individual 
MBAR‑assisted round simulation, or increase the number of 
MBAR‑assisted rounds while modifying the guessed param-
eters in smaller increments.

The effect of system and model on the mixing behavior
We also applied the procedure to GBP in the DoME 

model and to RBP in the KBGo and the DoME models. The 
number of required rounds and simulation times are shown 
for all four systems in Supplementary Tables S1 and S2.

Supplementary Figure S4A shows PMF plots for the 
10 μs-long simulations with Tmix,final and Cfinal for GBP and 
RBP in the KBGo and DoME models. The dual‑basin poten-
tial is asymmetric for all cases, with the OP basin higher in 
energy and broader than the CL basin. Ksim values close to 1 
imply equal populations between the two basins. We note 
the relation between the basins’ relative heights and the 
breadths where the narrower basin will be lower in energy in 
order to compensate for a smaller number of available con-
figurations. This effect is demonstrated in Supplementary 
Figure S4A in which PMFs of GBP (top) and RBP (bottom) 
are displayed, and the OP basin in RBP appears broader and 
higher in energy than the GBP OP basin.

The position of the two single-basin potentials relative to 
each other is controlled by the mixing parameters, which are 
optimized to produce the desired mixing behavior. However, 
the shapes of the individual basins are innate to the system 
and carried on from the single-basin potentials. As noted  
earlier, in RBP, the OP basin is broader than in GBP (Sup

is estimated as the line connecting the fluctuations. Below 
panel B, representative structures are shown for the OP and 
CL most populated configurations and for an intermediate 
state, represented by a configuration with dRMS values resid-
ing midway between the two native states.

Free energy landscapes of GBP [71] and RBP [72] 
obtained from simulations using all-atom force fields show 
two basins near the crystal structures with no intermediate 
states in between the basins. In this aspect, our model resem-
bles the results of the all-atom simulations.

Final Ksim values were 1.25 for both the OP and CL simu-
lations (Table 2), slightly above the MBAR‑predicted value 
of 0.96, but still within the allowed deviation range. Figure 
7C shows PMF plots for the sampling simulation after 0.5, 1, 
2, 4, and finally 10 μs. We observe that the OP and CL PMFs 
converge as the simulation time increases. Also, the tran
sition state becomes progressively more defined. It takes 
approximately 4 μs until full convergence of the two simula-

Figure 5 Ksim (A) and Ksim-KMBAR (B) for rounds 3-9 of the GBP 
KBGo parameter search (round numbers are according to the notation 
in Figure 3, round 9 is the 10 μs sampling simulations with Tmix,final,  
Cfinal). Each point represents calculated value from one simulation. Data 
from simulations starting from the OP and CL states are shown in red 
and blue, respectively. Horizontal lines represent the value of Ktarget (A), 
and the location of ‘0’ (B). For round 3 in B: four of the data points 
have a very large difference between the predicted KMBAR and simulated 
Ksim (−165, −163, −10.8, and −11.7) and are not shown in the figure.

Figure 6 Location of the free energy minima near the OP (bottom 
right) and CL (top left) basins. Data for different simulation rounds are 
shown in different colors. The gray area is the rectangle confined within 
2 Å from the bottom and the dRMS between the native structures from 
top (the “intermediate region”).
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Figure 7 Results for the 10 μs sampling simulations using the final macro‑mixing parameters for GBP with the KBGo model. A) Time‑series 
of dRMSCL for simulations starting from the OP (top) and the CL (bottom) states. B) Two‑dimensional PMF surfaces along dRMSCL (x‑axis) and 
dRMSOP (y‑axis). Black circles represent dRMS values of the most probable structures from the single‑basin simulations of the OP and CL states 
(structure closest to the free energy minimum near each basin). Representative structures are shown for the unbound (OP), bound (CL) for the frame 
closest to the free energy minimum of each basin, and for an intermediate state residing along the path connecting the end states. Domain coloring 
corresponds to Figure 1B. C) PMF vs. dRMSCL, calculated for 0.5, 1, 2, 4, and 10 μs along the sampling simulation.

Table 2 Properties calculated for 10 µs simulations of GBP in KBGo model  
using Tmix,final and Cfinal

Property OP simulationa CL simulationa

Ksim 1.25 1.25
Transition rateb,c, µs−1 157 156
dRMSnear,OP

b,d, Å 1.30 1.35
dRMSnear,CL

b,d, Å 1.40 1.74
Average residence timeb,c, ns 6.38±0.21 6.39±0.22
Maximal residence timeb,c, ns 115 160

a Initial structure from which the simulation started.
b �OP and CL states during the simulations assigned according to the native state to 

which the dRMS of the frame was smaller.
c Not including short transitions (<0.4 ns).
d �dRMS calculated at the minimum of free energy near each basin, with respect to the 

native structure of each basin.
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in the simulations for other proteins or protein complexes.

Conclusions
In this study, we have developed a scheme to determine 

parameters for exponential mixing dual‑basin Gō model 
potential using the MBAR analysis method. Using MBAR, 
we can perform fast iterations for predicting the behavior  
of a hypothetical simulation, reducing the total simulation 
time. We estimate that parameter searching can be acceler-
ated by at least three-fold using the procedure to the two 
protein systems. The systematic scheme for determining 
mixing parameters in dual-basin Gō model potential makes 
the CG MD simulation more powerful in future applications. 
The systematic scheme developed here is generally applica-
ble to the parameter determinations that are necessary in 
other types of simulations.
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