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Abstract: In the past two decades, great progress has been made in the aspects of fabrication and
application of ordered mesoporous metal oxides. Ordered mesoporous metal oxides have attracted
more and more attention due to their large surface areas and pore volumes, unblocked pore structure,
and good thermal stabilities. Compared with non-porous metal oxides, the most prominent feature is
their ability to interact with molecules not only on their outer surface but also on the large internal
surfaces of the material, providing more accessible active sites for the reactants. This review carefully
describes the characteristics, classification and synthesis of ordered mesoporous metal oxides in detail.
Besides, it also summarizes the catalytic application of ordered mesoporous metal oxides in the field
of carbon dioxide conversion and resource utilization, which provides prospective viewpoints to
reduce the emission of greenhouse gas and the inhibition of global warming. Although the scope of
current review is mainly limited to the ordered mesoporous metal oxides and their application in the
field of CO2 catalytic conversion via heterogeneous catalysis processes, we believe that it will provide
new insights and viewpoints to the further development of heterogeneous catalytic materials.

Keywords: design and fabrication strategy; ordered mesoporous metal oxides; heterogeneous catalyst;
carbon dioxide; catalytic conversion

1. Introduction

The porous materials have been widely investigated and applied in many fields owing to their
outstanding structural properties. According to the definition of International Union of Pure and
Applied Chemistry (IUPAC), porous materials can be categorized into three types: microporous
materials (pore size < 2 nm), mesoporous materials (2–50 nm) and macroporous materials (pore size
> 50 nm) [1]. The most famous member of the family of microporous materials is zeolite, which has
narrow and uniform pore size distribution due to its crystallographic pore system. However, zeolites
exhibit serious mass transfer limitations when involving large reactant molecules. So far, attempts
to improve the diffusion of reactants to catalytic centers have mainly focused on reducing the size of
zeolite crystals, increasing the pore size of zeolite, and constructing additional mesoporous systems in
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microporous crystals [2–5]. An important research topic is to expand the pore size to the mesoporous
range, allowing larger molecules to enter the porous system [6,7].

The development of mesoporous materials in nanometer range is beneficial to industrial process.
Meanwhile, the uniform and adjustable mesopores provide enough monodisperse pore space for
macromolecules, breaking through the size limitation of traditional microporous materials, and have
advantages in catalysis, adsorption, separation, and drug and Deoxyribose Nucleic Acid (DNA)
transfer [8–10]. In the early 1990s, Japanese scientists and Mobil’s scientists invented ordered
mesoporous silica materials, respectively, which aroused great interest in this field [1,11,12]. Ordered
mesoporous materials with adjustable surface area, different pore types, uniform nano-skeleton,
abundant composition, periodically arranged monodisperse mesoporous space show great potential
in many aspects [13]. Compared with zeolite, ordered mesoporous materials can be directly used as
catalysts and promise better catalytic activity. In the Sections 3.1 and 3.2, the syntheses of ordered
mesoporous metal oxides by soft template method and hard template method will be reviewed in
detail. Many researchers employed hard template method to fabricate ordered mesoporous carbon
modified by lanthanide, ordered mesoporous Co3O4 and iron-nitrogen co-doped ordered mesoporous
carbon-silicon nanocomposite (Si-Fe/NOMC) [14–16]. Xiao et al. [17] synthesized ordered mesoporous
carbon materials from sugars by a modified soft template method. Han et al. [18] synthesized ordered
mesoporous WO3/ZnO (OM-WO3/ZnO) using the soft template method. Compared with ordered
mesoporous non-metal oxide materials, the ordered mesoporous metal oxides are widely investigated
in the field of energy conversion and storage, catalysis, sensing, adsorption and separation due to high
specific surface area and ordered pore structure. Therefore, the design and fabrication of the ordered
mesoporous metal oxides have been the research focus.

Climate change is considered to be one of the greatest environmental threats of our current
globe [19]. Continuously increased concentrations of greenhouse gases in the atmosphere are widely
believed to be the main driver of current climate change in the form of global warming [20]. The carbon
dioxide capture and utilization (CCU) and carbon dioxide capture and storage (CCS) have the same
goals but CCU also provides additional economic benefits that can be used to offset the cost of CO2

capture [21].
As a typical renewable compound, CO2 is attractive in the manufacture of commodity chemicals,

fuels, and materials since CO2 is an abundant, non-toxic, nonflammable, typically renewable,
and easily available synthon in organic synthesis. In recent years, various processes of thermochemistry,
electrochemistry, photocatalysis and biology directly convert CO2 into value-added chemicals such as
methanol, methane, carbon monoxide and formic acid. From both the economic and environmental
point of view, one of the key points to achieve the efficient conversion of CO2 is the effective activation
of CO2 through the highly active catalytic system [22]. It is necessary to use a highly efficient catalyst to
obtain acceptable conversion and yield [4]. In recent ten years, ordered mesoporous metal oxides have
received more and more attention for the catalytic conversion of CO2 because of their excellent textural
properties and outstanding performances of CO2 activation [23]. Compared with the traditional silica
based mesoporous zeolite supports, the ordered mesoporous metal oxides not only could be used
as the catalyst supports but also could be directly used as the catalysts for the catalytic reactions,
demonstrating great superiority.

In this review, we mainly analyzed the synthesis and properties of ordered mesoporous metal
oxides, providing an effective basis for their stronger stability and higher catalytic activity. The role of
ordered mesoporous metal oxides in the catalytic conversion of carbon dioxide is also reviewed to
reduce carbon dioxide emission into the atmosphere through various chemical processes, such as CO2

hydrogenation to methanol, CO2 reforming of methane, CO2 methanation, synthesis of dimethyl ether,
and reverse water–gas shift. It can be used to highlight the potential trend for future development in
this area. In this review, the development progresses of the ordered mesoporous metal oxides and
their applications in the field of CO2 catalytic conversion in recent years are carefully summarized and
the future development trends are also prospected.
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2. Types of Ordered Mesoporous Materials

Mesoporous material refers to the porous material with pore size between micropore and
macropore, typically between 2 and 50 nm. According to IUPAC classifications, mesoporous materials
can be ordered or disordered in nature. The pores of the ordered mesoporous material are arranged
uniformly [1]. Generally, the ordered mesoporous materials can be simply classified into non-metal
oxide materials and metal oxide materials.

2.1. Ordered Mesoporous Non-Metal Oxide Materials

The ordered mesoporous non-metal oxides can be classified into silica-based mesoporous materials
and carbon-based mesoporous materials according to the texture of the skeleton. The following is
a brief introduction to these two types of mesoporous materials.

Silica is the most abundant type of mesoporous material, both in structure and morphology. In 1992,
the M41S (MCM for Mobil Composition of Matter) series was synthesized by Mobil Corporation using
a cationic surfactant as a template, which including a two-dimensional hexagonal phase MCM-41 with
a space group of p6mm and cubic MCM-48 with a space group la3d [1]. In 1993, FSM-16 (Folded Sheet
Material) mesoporous silica material was synthesized by a sol-gel process using long-chain alkyl
trimethyl quater as a template agent, which opened the chapter of ordered mesoporous materials [24].
Zhao et al. [25] used a block copolymer as a template to synthesize a series of ordered mesoporous
silica based zeolites with tetraethyl orthosilicate (TEOS) as the silica source under acidic conditions,
and its pore size was adjustable in the range of 2 nm to 30 nm. El-Safty et al. [26] synthesized a class
of well-defined highly ordered mesoporous silica materials (HOM) using nonionic surfactant Brij56
(C18EO10) as template. For silica-based mesoporous materials, they do not have active centers and
are greatly limited in practical applications. However, the mesoporous material has an easily doped
amorphous skeleton and a modifiable inner and outer surfaces. Transmission electron microscopy
(TEM) were used to analyze the morphology and particle size of HOM monolithic silica, as shown in
Figure 1 [26]. Nandiyanto et al. [27] successfully prepared spherical mesoporous silica particles with
adjustable pore size in the nanometer range by organic template method.
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The porous carbon materials have many excellent properties such as good electrical conductivity,
strong skeleton rigidity, and a large specific surface area. These characteristics make the researches on
porous carbon materials enduring. The synthesis of porous carbon materials can be roughly divided
into hard template method and soft template method [28,29]. Many highly ordered mesoporous
resin and carbon materials were synthesized by evaporation-induced self-assembly (EISA) method.
Figure 2 shows the synthesis process of ordered mesoporous carbon materials by EISA [30]. Graphitized
mesoporous carbon materials combine many excellent properties and have attractive applications
in electrochemical energy storage [31]. Fu et al. [32] used a hexamination and resorcinol as a carbon
source to form a novel soft template method for magnetic ordered mesoporous carbon (Fe3O4-OMC)
using a one-pot hydrothermal method using F127 as a template. Ryoo et al. [33] used mesoporous
silica molecular sieve as template to synthesize ordered carbon molecular sieves exhibiting Bragg
diffraction of X-ray lines. Such carbon replicas consist mainly of nanorods (line) arrays (especially
ordered mesoporous carbons with a two-dimensional hexagonal structure) so that research works
on graphitization has basically been carried out around the hard template method. Juarez et al. [34]
successfully synthesized ordered mesoporous carbon (OMC) with silica/triblock copolymer/sucrose
composite as raw material under sulfuric acid.
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2.2. Ordered Mesoporous Metal Oxide Materials

Ordered mesoporous metal oxides have promising applications in many fields due to their
structural regularity, adjustable pore size, and high specific surface area [13]. Up to now, many ordered
mesoporous metal oxides such as Co3O4 [35–37], TiO2 [38,39], WO3 [40,41], Al2O3 [42–44], ZrO2 [45–47],
CeO2 [48–50], NiO [51,52], Cr2O3 [53,54], Sm2O3 [55], In2O3 [2,56], and UO2 [57] have been successfully
synthesized. Although some ordered mesoporous metal oxides have been successfully synthesized,
the structural stability and thermal stability still demand further improvement. The recent research
progresses in the field of ordered mesoporous metal oxides are carefully summarized as below.

Antonelli et al. [58] first synthesized mesoporous titania molecular sieves by an improved sol-gel
method. Because of its good thermal stability, high specific surface area, ordered pore structure,
adjustable pore size within a certain range, and easy modification of the surface, mesoporous TiO2

can effectively enhance its functions in photocatalysis and photoelectric conversion, showing a broad
application prospect in the treatment of sewage, air purification, solar cell materials, nano-material
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microreactors, and biological materials [59]. Zhang et al. [60] found that it is necessary to add
acetylacetone during the hydrolysis process because acetylacetone as a complexing agent can inhibit
the hydrolysis rate of the titanium source, thus preventing the rapid formation of precipitates and
favoring the formation of ordered mesoporous structures. Hu et al. [61] used EISA method to improved
sol-gel and obtained titanium dioxide samples. They found that the constant volatilization of solvents
and inorganic acids also enhances the polycondensation between inorganic particles. Zhang et al. [62]
synthesized N-doped ordered mesoporous titania by simple solvent evaporation induced aggregating
assembly (EIAA) method. Liu et al. [39] synthesized ordered mesoporous TiO2 hollow microspheres
with highly crystalline thin shells. Figure 3 is a TEM image of ordered mesoporous TiO2 prepared
after calcination.
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Sulfuric acid zirconia (SZ) has potential application value in the fields of hydrocracking and
hydroisomerization as highly effective solid acid catalyst, but the specific surface area of traditional
of SZ is low so that its catalytic efficiency is not high. Therefore, mesoporous ZrO2 synthesized by
a surfactant template route with high specific surface area has attracted great interests of the scientists
in catalytic field [63,64]. Reddy et al. [65] used Zr(SO4)2 as the zirconium source and long-chain
quaternary ammonium salt surfactant as template to synthesize hexagonal or layered mesoporous
zirconia according to the electrostatic mechanism of ‘S+X−I+’. They found that the nature of the
surfactant, crystallization temperature and crystallization time are the main factors affecting the
synthesis of mesoporous ZrO2. Knowles et al. [66] synthesized a high specific surface mesoporous
ZrO2 in an alkaline medium (PH = 11.4–11.7) to obtain a mesoporous ZrO2 powder. Its interplanar
spacing d is independent of the length of the hydrocarbon chain of the surfactant, and the surface
spacing d of the calcined sample is approximately linear with the length of the hydrocarbon chain of
the surfactant. Zelcer et al. [67] prepared ordered mesoporous ZrO2 films by evaporation induced
self-assembly. Figure 4 is a TEM image of ordered mesoporous ZrO2 prepared with different surfactants
after calcination at 623 K. Large ordered mesoporous domains were observed in all polymer template
samples [67].

As a functional material, tungsten trioxide (WO3) has been widely used in the fields of catalysis,
electrochromism, energy storage of electrode materials and microwave materials [68]. In order to
expand the practical application range of tungsten trioxide as a photocatalyst, it is an effective method
to construct a mesoporous structure in which a tungsten trioxide material is designed into a regular
structure with a large specific surface area. Ulrike et al. [69] firstly synthesized a series of ordered
mesoporous metal oxides including WO3. It was found that potential of hydrogen (PH) value control
is the most important factor affecting the mesoporous structure of WO3. The optimum PH value for
synthesizing the hexagonal phase structure is about 4 to 8, and when the PH value is greater than 9,



Materials 2019, 12, 276 6 of 28

the synthesized mesoporous WO3 has two sets of layered coexisting structures. Zhu et al. [70] attempted
to synthesize WO3 with a pore structure by surface modification using mesoporous silica (SBA-15)
as a template, but eventually only WO3 nanowires were obtained. Subsequently, many literatures
reported the use of phosphotungstic acid as a tungsten source and mesoporous silica (KIT-6) as a hard
template. The ordered mesoporous tungsten trioxide with a specific surface area and a large pore size
is prepared by using tungsten trioxide to crystallize at a high temperature in the mesopores of KIT-6
and then removing the template with Hydrogen Fluoride (HF) [71–73]. Feng et al. [74] prepared highly
ordered mesoporous WO3 film by employing a template-assisted peroxopolytungstic acid sol–gel
method. The TEM images of WO3 films are presented in Figure 5.Materials 2018, 11, x FOR PEER REVIEW  6 of 30 
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Alumina is a well promising catalytic material widely used in petroleum, chemical and other
industries. The traditional microporous alumina catalysts have the disadvantages of causing clogging
of the pores due to coking in the practical application processes, thereby rapidly deactivating. Therefore,
synthesizing mesoporous alumina with large pore diameter is of great significance for reducing coking
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on the catalyst surface, blocking pores, and prolonging catalyst life. Bagshaw et al. [75] synthesized
mesoporous alumina molecular sieves with a worm-like pore structure and a specific surface area of
500 m2/g using an electrically neutral polyoxyethylene ether nonionic surfactant as a template and
aluminum alkoxide as an aluminum source for the first time. Compared to other metal oxides, the
alumina surface contains a large number of Lewis acid sites, so that the surface acidity can be regulated.
The synthesis of materials is related to the pH value of the mixed gels. With different template agents,
the specific surface area and average pore size of the synthesized mesoporous alumina vary greatly,
which was summarized in Table 1.

Table 1. Surface area and average pore size of mesoporous alumina with different surfactants [76].

Template Surfactant Formula Pore Size/(nm) Surface Area/(m2·g−1)

Tergitol 15-S-9 C11-15[PEO]9 3.3 490
Tergitol 15-S-12 C11-15[PEO]12 3.5 425

Triton X-114 C8Ph[PEO]8 3.6 445
Pluronic 64L [PEO]13[PPO]30[PEO]13 2.4 430
Pluronic P123 [PEO]20[PPO]69[PEO]20 10.3 487

Caproic C5COOH 2.1 530
Lauric acid C11COOH 1.9 710
Stearic acid C17COOH 2.1 700

CTMABr C16N(CH3)4Br 10 407
CTMAB+palmitic acid C16N(CH3)4Br +C15COOH 2.7 810

The activity of alumina with different crystal forms is different, with γ-type alumina having
the highest activity. It is beneficial for applications such as catalysis, adsorption and separation [77].
Yuan et al. [78] used the solvent volatilization-induced self-assembly method for the first time to prepare
highly ordered mesoporous γ-Al2O3. TEM images of γ-Al2O3 are displayed in parts a and b of Figure 6
with the corresponding fast Fourier transform (FFT) patterns [78]. At high temperature, the specific
surface area of mesoporous γ-Al2O3 decreases, which will affect its industrial application [79].
The structure of the alumina will change, and it will gradually transform into inactive α-Al2O3.
Therefore, how to suppress its transformation and to improve the thermal stability of mesoporous
alumina has been a problem that people are keen to solve. The introduction of other metals oxides is
one of the most effective methods for improving the thermal stability of alumina.
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3. Synthetic Method of Ordered Mesoporous Metal Oxides

The core of synthetic ordered mesoporous metal oxide is how to “make holes” in order at
nano-scale [80]. The precursor and the template material cooperate with each other to build an
ordered composite structure at a mesoscopic scale through some interaction force. In this composite
structure, the target components can be converted to three-dimensionally interconnected and rigid
skeletons by a certain chemical method. The template material can be removed by certain methods,
thus the mesoporous material of the template structure on the nanometer scale can be obtained.
According to the different template materials used, the synthesis of mesoporous metal oxides can be
generally categorized into soft template method and hard template method. The technological process
of synthesizing ordered mesoporous materials by soft template method and hard template method can
be clearly observed from Figure 7 [81], which will be discussed in detail as the following part.
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3.1. Soft Template

Soft template is constructed by the polymerization of surfactant molecules. During the process of
studying the synthesis of mesoporous materials by the soft template method, many scientists proposed
a variety of synthesis mechanisms for preparing ordered mesoporous materials using soft template
methods [82]. As shown in Figure 8, the cooperative self-assembly and “true” liquid–crystal templating
processes are two main strategies to effectively synthesize ordered mesostructures [83]. In 1994,
the Stucky group reported for the first time the synthesis of ordered mesoporous metal oxides such as
WO3, Nb2O5, Fe2O3 using the soft template method (cationic surfactants and anionic surfactants) [69].
Compared with the silica-based mesoporous material, the mesoporous metal oxide material has poor
thermal stability because the surfactant tolerant temperature is low during hydrothermal synthesis.
This results in incomplete skeleton condensation of synthetic mesoporous materials and skeleton
collapse after high temperature treatment.

The degree of polycondensation of inorganic species to form a stable intermediate product
could be increased after going through hydrothermal, aging and other processes. After washing,
filtration, and drying, an organic–inorganic composite precursor is obtained. Further calcining or
solvent extraction to remove the surfactant can give mesoporous materials [82].
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3.1.1. Type of Soft Template Agent

During the synthesis of ordered mesoporous materials, it is critical to choose suitable template
agents. The type and nature of template agents have a great influence on the formation of ordered
mesoporous structures. It can even change the synthetic route of the reaction system. The surfactants
used in the synthesis of ordered mesoporous materials can be either cationic, anionic, or nonionic [84].

A mesoporous material is formed by charge matching between the ionic surfactant and the
inorganic source. Ionic surfactants can be used for the synthesis of aqueous systems. The main synthesis
mechanisms are I−S+, I+S−, I+X−S+, I−M+S− (S = surfactant, I = inorganic species, X− = intermediate
anion, M+ = intermediate cation) [85]. Cationic surfactants include long-chain alkyl quaternary
ammonium salts such as cetyltrimethylammonium chloride (CTAC) and cetyltrimethylammonium
bromide (CTAB). Anionic surfactants are classified into sulfonate and sulfate ester according to their
hydrophilic groups. Danumah et al. [86] prepared a silica molecular sieve with medium and large pore
structure using cetyl trimethylammonium chloride/cetyl trimethylammonium hydroxide (CTMAC/OH)
and emulsion particles as template. Yada et al. [87] synthesized mesoporous alumina by homogenous
precipitation of urea and sodium dodecyl sulphonate. It is believed that the surfactant dodecyl
sulphonic acid initially forms a lamellar mesophase [87]. The distance between layers is determined by
the amount of surfactant. After the surfactant forms the lamellar mesophase, the lamellar mesophase
is transformed into a hexagonal shape as the urea is further hydrolyzed by the inter-layer shrinkage
and the action of Al–OH groups between the adjacent aluminum atoms. Cabrera et al. [88] studied the
synthesis route of mesoporous alumina. In the aqueous phase, cetyltrimethylammonium bromide is
used in combination with triethanolamine. The ratio of surfactant, water and triethanolamine can be
adjusted during the synthesis to adjust the pore size between 3.3 and 6.0 nm. This method has been
extended to the synthesis of other mesoporous metal oxides. This process is very effective for adjusting
the aperture size, but its repeatability is poor. Vaudry et al. [89] discussed the use of anion synthesis of
mesoporous alumina route, the use of stearic acid as a structure-directing agent, synthesis in ethanol,
formamide, chloroform or ether medium, aluminum alkyl alkoxide as aluminum source. The specific
surface area of the ordered mesoporous alumina prepared after calcination ranges from 500 to 700 m2/g.
The pore size distribution is within 2 nm and the orderliness is relatively good [90]. Holloand et al. [91]
used sodium dodecyl sulfate (SDS) as a template to synthesize aluminum phosphate mesoporous
materials in two steps. Tran et al. [92] synthesized ordered mesoporous manganese oxides by soft
template CTAMnO4. Zhao et al. [93] prepared ordered mesoporous TiO2 materials via a sol-gel route
using sodium dodecyl benzene sulfonate (SDBS) surfactants as soft templates.

Nonionic surfactants are structurally oriented, self-assembled, and highly adaptable. They are
widely used in the synthesis of ordered mesoporous materials with ordered frameworks and pore
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structures. Nonionic surfactants synthesize mesoporous materials through hydrogen bonding between
organic templates and inorganic sources. Non-ionic surfactants mainly consist of polyepoxides such
as polyethylene oxide (PEO), polypropylene oxide (PPO). Block copolymer surfactants are mainly
composed of epoxide blocks of different chain lengths. Yang et al. [94] used a block copolymer
with different chain lengths such as EO20PO70EO20, EO106PO70EO106, EO75BO45 to prepare a series
of mesoporous metal oxides such as Ta2O5, WO3 and TiO2. Zhao et al. [95] showed that highly
ordered mesoporous silica structures of different shapes were successfully synthesized by using alkyl
polyoxyethylene oligomers and polymerized block copolymers in acidic media [95]. Bagshaw et al. [96]
used PPO, PEO as a surfactant to synthesize mesoporous materials such as alumina and silica.
This surfactant can be used for mesoporous material synthesis in non-aqueous media [97]. Compared
with ethanol, the pore size can be adjusted by the number of functional groups of the surfactant.
Shan et al. [98] used triethylene glycol (TEG) as a template and prepare ordered mesoporous alumina
by hydrolyzing aluminum isopropoxide. Wang et al. [99] successfully synthesized ordered mesoporous
TiO2 with crystal walls by soft membrane method.

3.2. Hard Template

The hard template method, firstly reported by Ryoo et al with the synthesis of ordered mesoporous
carbon (CMK-1) [33], is considered as an important way to synthesize mesoporous metal oxides.
Most holes and walls of the hard template are in the size of 2–50 nm. Therefore, the pores of the
resulting materials are also located in the mesoscale range. Different with the soft template method,
the hard template method uses a porous solid material with a fixed mesoscopic structure as a template,
which is a process of assembly and growth of a precursor in a confined space [100]. This controlled
synthesis within a rigid framework generally does not require strict control of the hydrolysis and
polycondensation of the precursor. Therefore, this method is particularly suitable for the synthesis
of some mesostructured materials that are difficult to synthesize in the sol-gel process. At the same
time, precursors can grow and crystallize at relatively high temperatures due to the confinement of
rigid channels. Therefore, the method further extends the skeleton composition of the mesoporous
material. The hard template method for the synthesis of mesoporous metal oxides involves four major
synthesis steps [101]. They are the synthesis of templates, the loading of precursors, the conversion
of precursors, and the removal of templates [102]. These four steps have important effects on the
synthesis of ordered mesoporous metal oxides. Loss of control in any procedure can lead to the failure
in copying the ordered mesoscopic structure of the template. Therefore, we need to carefully consider
each link and choose the best solution to synthesize the target material. Hard template selection can be
considered in the following four aspects. First, the connectivity of the template mesoporous wall is the
key. Second, the surface properties of the template tunnel are also important in some cases. Third,
the composition of the hard template skeleton is critical for the synthesis of certain special materials.
Fourth, after considering the above three conditions. According to actual demands, people can control
the template’s aperture size, wall thickness, and select templates with different macro topography.
Thus, a series of inverse replication materials with different structures and properties are synthesized.
During the entire hard template synthesis process, the loading of the precursor is the most critical step
in the replication of the ordered mesostructure.

3.2.1. Mesoporous Silica as a Template

Up to date, several mesoporous silica (such as SBA-15, KIT-6, FDU-12, and SBA-16) have been used
as hard templates for the synthesis of mesoporous crystals [25,103]. The ordered mesoporous metal oxides
have been synthesized using those silica templates including Cr2O3 [104], Co3O4 [35,105], In2O3 [106,107],
NiO [51,52,108], CeO2 [49,109], WO3 [74,110], Fe2O3 [111], Fe3O4 [112], and MnO2 [113,114].

The silica template can be easily removed with the etching of HF or concentrated NaOH solution.
The former is generally carried out at room temperature and can be completely removed by one
treatment. The latter is safer but generally requires repeated treatment at higher temperatures (353 K)
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to remove most of the silica. It mainly depends on the chemical stability of the target product in both
solutions. The most typical example of the synthesis of mesoporous materials using mesoporous silica
as a template is the synthesis of mesoporous carbon. Ryong Ryoo et al. [33] first used MCM-48 as
a template to synthesize mesoporous carbon (CMK-1) using sucrose as a carbon source. Using the same
method, they synthesized the hexagonal CMK-3 using SBA-15 as a template [115]. In the synthesis
of mesoporous metal oxides, Laha et al. [116] successfully synthesized mesoporous cerium oxide
materials with high thermal stability using mesoporous silica as a template and inorganic cerium
chloride salts as precursors. In order to study the morphology and pore structure, their TEM images are
shown in Figure 9. The cerium oxide exhibits a high similarity to the cubic Ia3d symmetry over a long
range [116]. Compared with the synthesis of mesoporous carbon, the difficulty in synthesizing metal
oxides in this way is that the inorganic precursor is more difficult to enter into the pores of mesoporous
silica. As a result, the precursor’s pore occupancy is very low. Shang et al. [117] prepared ordered
mesoporous CoFe2O4 by nanocasting method using mesoporous silica SBA-15 as hard-template.
For the same purpose, Tian et al. [118] used microwave etched mesoporous silica as a template to
synthesize a series of mesoporous metal oxides such as Co3O4, In2O3, Cr2O3, Mn3O4, CuO, NiO,
and CeO2. The mesoporous silica treated with microwave method not only removes the surfactant but
also leaves a rich hydroxyl group in the mesopores. The hydrophilic hydroxyl groups in the pores
facilitate the entry of hydrophilic inorganic salt precursors. Therefore, the synthesized material has
good continuity [119]. In general, highly ordered mesoporous silica is the promising hard template for
obtaining highly ordered non-silica mesoporous materials.
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Figure 9. TEM images of the template-free CeO2 samples: (a) synthesized with cubic Ia3d silica
template, and (b) 2D hexagonal p6mm template. This figure has been adapted from a previous
reference [116].

3.2.2. Mesoporous Carbon as a Template

Using mesoporous carbon as a hard template to the synthesis of mesoporous materials is also
an effective method [120]. The hard template method has strong universality, and the mesoporous
structure of the target material can be controlled by selecting a hard template with different structures.
In addition, the mesoporous silica used in the hard templating method has high thermal stability.
It can withstand high temperatures and crystallizes most of the metal oxides on its surface to obtain
mesoporous metal oxides with high crystallinity [121]. The metal ions in the soft template method are
sensitive to humidity during hydrolysis and polymerization, and the products are often amorphous
and have poor thermal stability [122]. However, the hard template method uses sodium hydroxide or
hydrofluoric acid to remove the template and the synthesized mesoporous metal oxide must have
strong acid-base resistance. The preparation process is complicated, and a mesoporous metal oxide is
prepared by first synthesizing a mesoporous silica hard template and then removing the template [123].
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The carbon template is mainly removed by calcining in air. For target substances that are easily
oxidized by air at high temperatures, carbon templates can be removed at high temperatures by
oxygen [124]. Mesoporous carbon materials are generally obtained by the hard template method to
replicate ordered mesoporous silica. Therefore, using mesoporous carbon as a template to the synthesis
of mesoporous materials is actually a two-step nanoreplication technique. This method of producing
mesoporous silica is economically unworthy. However, this provides us with a new method for the
synthesis of mesoporous materials. Mesoporous carbon can be used as a hard template to synthesize
new silica based mesoporous materials [125–127]. Kim et al. [128] synthesized mesoporous silica
(HUM-1) using CMK-1 (replicated from MCM-48) as a template. The resulting mesoporous material
is different from the above SBA-15 derived from CMK-3. The mesoporous structure of HUM-1 and
MCM-48 is obviously different and this mesoporous silica material HUM-1 cannot be obtained through
the traditional surfactant template pathway.

4. Catalytic Application of Mesoporous Metal Oxides in Catalytic Conversion of CO2

The cumulation of carbon dioxide in the atmosphere is widely recognized as the main cause
of global warming, which may pose a huge threat to human living environment and human beings.
Climate change experts recommend that it should be developed and utilized as soon as possible so as
to effectively manage carbon dioxide within the limits of the atmosphere. The chemical conversion of
carbon dioxide into useful products and fuels, such as CH3OH, CO, CH4, and dimethyl ether (DME),
is considered as an attractive CO2 recovery method to control its emission into the atmosphere [129,130].

Due to the large specific surface area, developed pore structure and wide pore size, ordered
mesoporous metal oxides have been considered as promising catalyst candidates for the catalytic
conversion of CO2. In recent years, many scholars have achieved a series of promising and excellent
results in this field. Here we briefly review the application of mesoporous metal oxides as catalysts in
the catalytic conversion of CO2 via heterogeneous catalysis process.

4.1. CO2 Hydrogenation to Methanol

In the past two decades, CO2 has been used as a substitute for CO in methanol production and CO2

hydrogenation to methanol has been widely recognized as an effective CO2 utilization method [131].
Under certain conditions, the methanol formed by the hydrogenation process of atmospheric CO2 is
considered to be the most economical way to alleviate the greenhouse effect caused by the significant
increase in CO2 concentration. It is mainly because that methanol is not only an important chemical
intermediate to produce some chemicals such as formaldehyde and acetic acid, but also an excellent
fuel due to its cleaner emissions in comparison with other fossil fuels [132].

In the CO2 hydrogenation process, the main reaction is the formation of methanol and the reverse
water–gas-shift reaction is a side reaction [133]:

Formation of methanol:

CO2(g) + 3H2(g)→ CH3OH(g) + H2O(g) 4H298 K = −90.70 kJ/mol (1)

Reverse water–gas-shift reaction:

CO2(g) + H2(g)→ CO(g) + H2O(g) 4H298 K = +41.1 kJ/mol (2)

The methanol production is an exothermic reaction, in which the number of reactive molecules
is reduced. Therefore, the decrease in temperature and the increase in pressure favor the reaction
of thermodynamic analysis. However, considering the reaction rate and the chemical inertness of
CO2, an increase in the reaction temperature (>513 K) favors the activation of CO2, which in turn
forms methanol. The reverse water gas shift reaction results in additional hydrogen consumption and
a reduction in methanol production. The formation of a large amount of water has an inhibitory effect
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on the active metal, resulting in deactivation of the catalyst. Therefore, the hydrogenation of CO2 to
methanol requires a more selective catalyst to avoid the production of unwanted by-products [134].

Most methods of conversion require huge amounts of energy and lengthy procedures and
complex instrumentation, owing to the fact that the CO2 molecule is inherently very stable
and inert. However, the simple, less cumbersome and cost-effective method of CO2 conversion
based on photo-catalytic reduction has become quite attractive. In photo-catalytic CO2 reduction,
the electron-hole pairs generated on the surface of a semiconducting photo-catalyst mediates
photo-oxidation and photo-reduction reactions that result in the desired end product [135].

Gondal et al. [2] synthesized ordered mesoporous indium oxide nanocrystal (m-In2O3) by
nanocasting technique, in which highly ordered mesoporous silica (SBA-15) was used as structural
matrix. The results showed that the introduction of mesoporosity in indium oxide, and the consequent
enhancement of positive attributes required for a photo-catalyst, transformed photo-catalytically
weak indium oxide into an effective photocatalyst for the conversion of CO2 into methanol.
Richardson et al. [136] prepared Mn and Cu doped titanium dioxide by sol-gel method and obtained
different nanocomposites for CO2 conversion to methanol. Compared to commercial catalysts, the band
gap of Mn and Cu doped TiO2 is less than 3 eV. Due to the rapid transport of excited state electrons to
the metal dopant, the coupling between Mn and Cu is achieved, which enhances the ability of CO2

photocatalytic reduction to methanol.

4.2. CO2 Reforming of Methane (CRM)

CH4 and CO2 are rich in natural resources. Therefore, it is important to convert these two molecules
into high-value added compounds [137]. The reaction of CO2 reforming of CH4 to produce syngas
(i.e., CO + H2) can be used in chemical energy transfer systems as well as in the production of liquid
fuels [138]. In the absence of water, reforming can be carried out with carbon dioxide instead of water
to form a syngas having a lower H2/CO ratio.

CO2(g) + CH4(g)→ 2CO(g) + 2H2(g) 4H298 K = +274.3 kJ/mol (3)

For the CRM reaction catalysts, most of the VIII family metal catalysts were investigated, including
non-precious metal Ni and Co based catalysts and noble metal catalysts [139]. The Ni-based catalysts are
considered to be potential catalysts for CRM reactions because of their low cost and high catalytic activity.
Under CRM reaction conditions, the rapid deactivation of catalyst caused by thermal agglomeration
and surface coke of metal active centers are major obstacles to industrialization. It was reported that the
Ni clusters in small size have good abilities to inhibit coke formation [139]. The ordered mesostructures
can provide the gaseous reactants with more accessible metallic active centers than traditional catalysts,
thus preforming higher catalytic activity. In addition, the confinement effect of mesopores can effectively
inhibit the thermal sintering of Ni nanoparticles and promise better catalytic stability [140]. In recent
years, Xu et al. have carried out a series of systematic researches and successfully synthesized the
ordered mesoporous metal oxides such as Co-Ni-MO (M = Mg, Ca)-Al2O3 [141], CoO-MO (M = Mg,
Ca)-Al2O3 [142], xCoyNi-Al2O3 [139], Ni/-CexZry [143], Ni/CaO-Al2O3 [144] and NiO-CaO-Al2O3 [145]
by EISA strategy and used as catalysts or catalytic supports for CRM reactions. TEM characterizations
of the ordered mesoporous Al2O3 (OMA) further confirmed the existence of ordered mesoporous
channels. The images are shown in Figure 10. Kim et al. [146] prepared mesoporous Ni-Mgx-Al2O3

(NMA) catalyst by modified EISA method and evaluated its catalytic performance. Since MgO
has a strong Lewis basicity and promotes CO2 activation, the M-NMA catalyst is more resistant
to carbon formation than the non-promoted catalyst. Compared with the Ni/Al2O3 catalyst (NA),
the M-NMA catalyst has a larger surface area and a narrower pore size distribution [147]. The catalysts
with excellent long-term stability are considered to be the most important concern in the field of
CRM reactions. As shown in Figure 11a,b, these ordered mesoporous catalysts showed almost no
significant deactivation of activity [141]. Besides, it is believed that the mesoporous ceria-zirconia solid
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solution carriers could activate CO2 and finally participate in the process of CRM reaction and carbon
elimination via their redox properties so that it could be considered as a series of promising catalyst
carriers for CRM. This typical process was expressed in Scheme 1. Xu et al. [143] prepared mesoporous
nanocrystalline Ce-Zr solid solution with different Ce/Zr ratios by improving the evaporation induced
self-assembly strategy. The results shown that the sample with the Ce/Zr ratio of 50/50 and the Ni
loading amount of 7 wt% or 10 wt% has the highest catalytic activity.
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4.3. CO2 Methanation

Natural gas is considered as a potential source of energy due to its clean nature. Therefore,
the conversion of carbon dioxide to methane can not only reduce greenhouse gas emissions
but also develop carbon dioxide. Compared with the production of hydrocarbons and alcohols,
CO2 methanation is more thermodynamic favorable because of its strong exothermic properties [148].

CO2(g) + 4H2(g)→ CH4(g) + 2H2O(g) 4H298 K = −165.0 kJ/mol (4)

Catalytic supports have a significant effect on the high dispersion of metal active sites, which
greatly promotes the activation and dissociation of H2 molecules. Therefore, a material having a large
surface area, a large pore volume, and a clear channel such as a mesoporous metal oxide can be used
as a carrier or catalyst for the CO2 methanation catalyst [149,150]. Compared with the traditional
supported catalysts, ordered mesoporous catalysts can inhibit the sintering of active metal nanoparticles
in a certain space due to their superior confinement effect [5,6]. The ordered mesoporous materials
generally have relatively high surface areas, which facilitates the high dispersion of the active metal
and increases the activity of the catalyst [151,152].

Previous studies on CO2 methanation catalysts have focused on the loading of Ru, Rh, Ni and
Pd on the catalyst. However, their high prices and high hydrogenation temperature (>573 K) limit
the application of precious metal catalysts in catalytic hydrogenation of CO2 [153,154]. The Ni-based
non-precious metal catalysts have the advantages of low cost and high catalytic activity [155].
The disadvantage of Ni-based catalysts is that they are greatly inclined to sinter during the reaction.
Thereby, effectively inhibiting the thermal sintering of the metal Ni nanoparticles under the conditions
of CO2 methanation has become the challenge and research focus in this field.

Xu et al. successfully synthesized NiO-OMA [149], OMA-xCoyNi [156], OMA-10NixCa [157],
OMA-10NixMg [158], and OMA-10Ni3Re (Re = La, Ce, Sm and Pr) [159], which would be used in the
CO2 methanation reaction. The conversion of CO2 on the OMA-10Ni and OMA-10Ni5Mg catalysts is
also much higher than the 10Ni/Al2O3 catalyst, especially in the low temperature. Owing to the excellent
textural properties of the ordered mesoporous catalysts, the gaseous reactants are easily to diffuse
toward the accessible metallic Ni active site. The effects of reaction temperature on the catalytic activity
and selectivity of OMA-10Ni, OMA-10Ni5Mg and 10Ni/Al2O3 were investigated in Figure 12 (1) and
(2) [158]. Liu et al. [160] used the EISA method to prepare ordered mesoporous Ni-Co/Al2O3 (NCOMA)
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catalysts for CO2 methanation. The ordered mesoporous 10N3COMA catalyst has high activity with
the maximum CO2 conversion rate of 78% and the CH4 selectivity of 99% under specific conditions
(673 K, 0.1 MPa, 10,000 mL·g−1

·h−1). The results showed that the Co species could significantly increase
the H2 uptake and the catalyst showed high stability and superior anti-sintering property due to the
confinement effect of the ordered mesostructure. The CO2 photoreduction is also considered as an
effective route to produce CH4. Wang et al. [99] combined the evaporation-induced self-assembly
process with the two-step calcination process to successfully synthesize ordered mesoporous TiO2 with
crystalline walls. Ordered mesoporous TiO2 has higher CH4 production efficiency and better CO2

photoreduction stability than the disordered mesoporous counterpart. The superior performance of
ordered mesoporous TiO2 for CO2 photoreduction may be due to the limited spatial effects of ordered
mesoporous structures. In the ordered mesoporous structure, the mass transfer of gas molecules is
more stable than that of disordered mesoporous structures.Materials 2018, 11, x FOR PEER REVIEW  17 of 30 
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4.4. Synthesis of Dimethyl Ether (DME)

DME is considered as a kind of future fuel, especially as a diesel alternative. DME has higher
thermal efficiency compared to conventional fuels. Besides, it also does not emit sulfur oxides or soot.
In addition, DME can be used as a raw material for a range of chemicals such as oxygenates, olefins,
and hydrocarbon fuels (gasoline, aviation fuel). Therefore, DME will become a very important clean
fuel in the view of sustainable development, which will help the effective management of the future
energy [161]. The hydrogenation of CO2 or syngas can produce DME. Generally, this reaction can be
divided into two steps. The first step is the synthesis of methanol from carbon dioxide or synthesis gas
under the action of a catalyst. In the second step, methanol is dehydrated on the catalyst to produce
DME. The following are the main reactions that occur during the synthesis of DME from CO2/H2

gas mixtures.
Methanol synthesis reaction:

CO2(g) + 3H2(g)→ CH3OH(g) + H2O(g) 4H298 K = −49.4 kJ/mol (5)
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Methanol dehydration reaction:

2CH3OH(g)→ CH3OCH3(g) + H2O(g) 4H298 K = −23.4 kJ/mol (6)

It can be seen from the above reactions (5) and (6) that the synthesis of DME by CO2/H2 involves
methanol synthesis and methanol dehydration [162–164].

Thus, many bifunctional (or mixed) catalytic systems contain metal sites for the hydrogenation of
CO2 and acid sites for the continuous dehydration of alcohols to ethers, especially in the reaction of
syngas directly synthesizing DME. Both the active site of the solid acid and the active site of the metallic
copper are related to the catalytic activity [165,166]. Ham et al. [167] uses the evaporation induced
self-assembly method (EISA) to synthesize ordered mesoporousγ-Al2O3. In the direct synthesis of DME
from syngas, the catalytic activity and stability was improved because the amount of copper crystals
accumulated was small. The copper nanoparticles form a strong interaction with the acidic sites on the
surface of ordered mesoporous Al2O3 through the formation of CuAl2O4 interface which provides
some effective acidic sites for DME methanol dehydration. The highly dispersed Cu nanoparticles have
a strong interaction at the rich acidic sites of the ordered mesoporous Al2O3, which greatly improves
the stability of the catalyst and the DME selectivity. The TEM image of Cu/mesoAl is displayed in the
Figure 13 [167]. Dehydration of methanol is the second step of the conversion of CO2 to dimethyl ether.
Luan et al. [168] successfully prepared high surface area mesoporous γ-Al2O3, which was used for
dehydration of dimethyl ether and helped convert CO2 to dimethyl ether.
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4.5. CO2 Reverse Water Gas Shift (RWGS) Reaction

The reverse water gas shift reaction (RWGS) converts CO2 to CO, which can be further converted
into hydrocarbons by the Ficher–Tropsch synthesis process. The RWGS reaction is another key reaction
in the field of catalytic hydrogenation of CO2, which has been considered as a promising candidate for
large-scale conversion of CO2 and renewable H2 [169,170]. The following is the main reaction in the
RWGS process.

CO2(g) + H2(g)→ CO(g) + H2O(g) 4H298 K = 41.1 kJ/mol (7)

Pt, Co, and Ni based catalysts have been widely investigated in the RWGS reaction [171–173].
The main problem with these catalysts is the progress of the methanation reaction, which will decrease
the selectivity of the RWGS reaction. The highly dispersed and small particle size metals are the key to
the preparation of highly active and highly selective RWGS catalysts [174].
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CeO2 is a typical rare earth metal oxide with a cubic fluorite structure. Under a reducing
atmosphere, the surface oxygen of CeO2 can be reduced and oxygen vacancies will be generated
subsequently. Oxygen vacancies play a key role in the catalytic reaction, especially in the catalytic
reduction of RWGS [175]. Dai et al. [176] synthesized the ordered mesoporous CeO2 by hard template
to carry out the RWGS reaction and compared it with non-porous CeO2. According to the TEM results
in Figure 14, the non-porous CeO2 (b), (c) catalysts have low porosity and small specific surface area,
which is disadvantageous for absorption and activation of reactant molecules. The ordered mesoporous
CeO2 (a) catalyst has a good ordered mesoporous structure to facilitate the adsorption and activation of
CO2 and H2 molecules. Therefore, ordered mesoporous CeO2 (a) catalyst has a good catalytic activity
in CO2 RWGS reaction [176].

The addition of other metal elements to the catalyst also can increase the catalytic activity of
the RWGS and the selectivity of the catalytic reaction [177]. The transition metal (Ni, Co, Fe, Mn,
Cu) can be dissolved in the CeO2 lattice to form a solid solution, generating oxygen vacancies [178].
Wang et al. [179] prepared a series of mesoporous Co-CeO2 catalysts with different Co contents by
colloidal solution combustion method and carried out the CO2 RWGS reaction. In the Co-CeO2-M
catalyst, the Co3O4 particles embedded in the pore walls were separated by fine CeO2 particles and
strongly interacted with CeO2. The results showed that the 5% Co-CeO2-M catalyst was provided
with the best catalytic performance for RWGS reaction. Dai et al. [180] prepared mesoporous M-CeO2

(M = Ni, Co, Fe, Mn, Cu) catalysts by hard template method and carried out CO2 RWGS reaction.
The CO2 RWGS reaction performance has a great relationship with the d orbital holes of the transition
metal. It can be seen from Figure 15 that on the NiCE, CoCE, FeCE, MnCE, CuCE, and CeO2 catalysts,
the conversion rate of CO2 increases as the reaction temperature increases.
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5. Conclusions and Perspective

There are many strategies for the design and preparation of ordered mesoporous catalysts. Ordered
mesoporous materials have attracted wide attention due to their rich unique properties, functions and
potential application prospects. In recent years, many achievements have been made in its synthesis
and structural characterization. The classification of ordered mesoporous materials, the synthesis of
ordered mesoporous metal oxides and their applications in catalytic conversion of carbon dioxide are
reviewed. It is believed that relevant scientists can obtain information on the synthesis, properties
and potential applications of these materials to facilitate their research. Ordered mesoporous metal
oxide materials are important components of catalytic materials and have the unique physicochemical
properties of metal oxides.

In recent years, a variety of ordered mesoporous metal oxides have been synthesized by soft
and hard template methods and their properties and applications investigated. The methods and
mechanisms for the synthesis of ordered mesoporous metal oxides by soft and hard template methods
have matured, but both methods have advantages and disadvantages. The advantages of the soft
template method are that the template cost is relatively low, the synthesis method is simple and
the conditions are mild. The main disadvantages are that the metal ions in the hydrolysis and
polymerization processes are relatively sensitive to moisture, and the products are often amorphous
and have poor thermal stability. The advantages of the hard template method are that it is universal
and the mesoporous structure of the target material can be controlled by selecting hard templates
with different structures. The disadvantage of the hard template method is that when the template is
removed with sodium hydroxide or hydrofluoric acid, the mesoporous metal oxide synthesized must
be resistant to strong acids and bases. The preparation process is cumbersome and complex.

Ordered mesoporous metal oxide can catalyze the conversion of carbon dioxide to value-added
chemicals and fuels. As a rich natural raw material, carbon dioxide has attracted great interests in
recent years. The key point to CO2 conversion is the activation of either CO2 or co-reactant at different
conditions, especially at low temperature. In this way, catalytic conversion of CO2 has been carried out
by different methodology, including CO2 reforming of methane to syngas production over catalysis,
CO2 hydrogenation for methanol synthesis by mesoporous catalyst, CO2 methanation over a Ni
based ordered mesoporous catalyst, synthesis of DME from CO2/H2 gas mixture, and CO2 reverse
water–gas shift. In the future research, not only should the catalytic conversion of CO2 be further
improved, but also the hydrothermal stability, chemical stability and environmental compatibility of
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ordered mesoporous metal oxide need to be greatly optimized. Meanwhile, for the wide application
of materials in industry, the cost of materials should be minimized and it is required to create new
ordered mesoporous metal oxide materials that are easy to be synthesized in large scale with low cost.
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