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Abstract

Background: Integrating artificial intelligence (Al) in healthcare settings has the potential to benefit clinical decision-making. Addressing chal-
lenges such as ensuring trustworthiness, mitigating bias, and maintaining safety is paramount. The lack of established methodologies for pre-
and post-deployment evaluation of Al tools regarding crucial attributes such as transparency, performance monitoring, and adverse event
reporting makes this situation challenging.

Objectives: This paper aims to make practical suggestions for creating methods, rules, and guidelines to ensure that the development, testing,
supervision, and use of Al in clinical decision support (CDS) systems are done well and safely for patients.

Materials and Methods: In May 2023, the Division of Clinical Informatics at Beth Israel Deaconess Medical Center and the American Medical
Informatics Association co-sponsored a working group on Al in healthcare. In August 2023, there were 4 webinars on Al topics and a 2-day
workshop in September 2023 for consensus-building. The event included over 200 industry stakeholders, including clinicians, software develop-
ers, academics, ethicists, attorneys, government policy experts, scientists, and patients. The goal was to identify challenges associated with
the trusted use of Al-enabled CDS in medical practice. Key issues were identified, and solutions were proposed through qualitative analysis and
a 4-month iterative consensus process.

Results: Our work culminated in several key recommendations: (1) building safe and trustworthy systems; (2) developing validation, verification,
and certification processes for AI-CDS systems; (3) providing a means of safety monitoring and reporting at the national level; and (4) ensuring
that appropriate documentation and end-user training are provided.
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Discussion: Al-enabled Clinical Decision Support (Al-CDS) systems promise to revolutionize healthcare decision-making, necessitating a com-
prehensive framework for their development, implementation, and regulation that emphasizes trustworthiness, transparency, and safety. This
framework encompasses various aspects including model training, explainability, validation, certification, monitoring, and continuous evaluation,
while also addressing challenges such as data privacy, fairness, and the need for regulatory oversight to ensure responsible integration of Al

into clinical workflow.

Conclusions: Achieving responsible Al-CDS systems requires a collective effort from many healthcare stakeholders. This involves implement-
ing robust safety, monitoring, and transparency measures while fostering innovation. Future steps include testing and piloting proposed trust
mechanisms, such as safety reporting protocols, and establishing best practice guidelines.

Key words: clinical decision support; artificial intelligence; clinician Al competencies; patient safety; algorithmic transparency.

Introduction

In the early stages of clinical informatics, clinical decision
support (CDS) systems were some of the earliest applications
of computers in healthcare."* The integration of computing
technology into medical practice in the 1960s and 1970s
facilitated the advent of computer-assisted decision-making
in areas ranging from antibiotic selection to the management
of acid-base imbalances.> The subsequent decline in memory
costs and the doubling every 2 years of computational
capacity led to the expansion of hospital-wide CDS systems
through the 1980s and 1990s. This period was characterized
by the emergence of more sophisticated expert systems, such
as the Quick Medical Reference,* DXPlain,” and ILIAD,®
designed to augment clinical diagnosis. Efforts like Rind's
renal failure studies sought to institute real-time clinical
alerts.” Refining algorithms and integrating detailed patient
data, including prior serum creatinine levels, age, and concur-
rent medications, improve CDS recommendations' precision
and contextual relevance.

Early CDS could provide advice on making a diagnosis or
picking a therapy. They accomplished this through algo-
rithms, which could be comprehended using logistic regres-
sion, recursive partitioning, and other mathematical and
computational methods. Yet the underlying data used to train
these systems was rarely exposed for review. It was difficult,
if not impossible, to tell if a system was trained on a dataset
with intrinsic bias. However, the ability to cause harm by
mistake in use or output due to bias was largely constrained
by the limited availability of these systems to a relatively
small set of individuals who knew how to use them and the
patients they treated.

By the early 1990s, it was recognized that further transpar-
ency was needed. Miller and Gardner® provided an extremely
comprehensive review of the domain that outlined the vari-
ous levels of complexity and risk associated with decision
support systems of the day. They provided a comprehensive
approach to document a variety of parameters of complexity,
which, in turn, reflected the degree of review and oversight
that would be needed to ensure the safe deployment and use
of such systems. The evolution of systems and the democra-
tization of data led to the growth of CDS deployment.

By 2017, Labkoff and Sittig identified challenges to main-
taining the safety and quality of data used in CDS in clinical
care.” They argued that there should be ongoing oversight
and a way for patients who have suffered harm due to the use
of CDS to report these issues to a clearinghouse at the federal
level. With the dramatic growth in the capabilities and diver-
sity of AI-CDS, the need for such a reporting mechanism to
promote the safety, transparency, and trust of these systems
is now even more urgent.

Today, we are witnessing an ongoing expansion in
machine learning and artificial intelligence (Al) capabilities.

Notably, with the introduction of large language models in
November of 2022, interest in integrating Al into CDS was
rekindled. The 2023 HIMSS conference showcased the prolif-
eration of Al in healthcare systems, an exhibition unparal-
leled in previous years.

However, the historical challenges of algorithm develop-
ment, validation, and deployment, including the representa-
tiveness of the training data, have been amplified in the
current landscape. Today, despite privacy concerns, the crea-
tion and utilization of extensive datasets for training AI-CDS
systems are commonplace. Similar to their predecessors, these
systems may harbor latent biases that are extremely difficult
to account for. The ease of acquiring vast training datasets in
the modern era exacerbates the challenges previously encoun-
tered, necessitating heightened scrutiny of AI-CDS systems'
training data and deployment mechanisms. Additionally,
there is even less transparency in how decisions, advice, and
recommendations are made. Because there is often no way to
decipher the pathway to a given recommendation, the sys-
tems that produce them are often called “black boxes.”

While established methodologies, such as randomized con-
trolled trials (RCTs), have been used to evaluate the effective-
ness and safety of traditional CDS systems,'® these
approaches may not be sufficient for Al-enabled CDS (Al-
CDS). The dynamic nature of Al algorithms, which can
evolve and adapt over time through continuous learning and
model updates, introduces the challenge of model drift. As a
result, new evaluation approaches are needed to assess the
performance, safety, and robustness of AI-CDS systems
throughout their lifecycle, accounting for potential changes
in model behavior.

Generative Al technologies and extensive language models
(LLMs) like ChatGPT represent a significant advancement
over traditional machine learning approaches. Traditional
machine learning models typically rely on structured datasets
and are designed to perform specific tasks, such as classifica-
tion or regression, based on predefined features. These models
require labeled data and often involve feature engineering to
optimize performance. The critical differences between LLMs
and traditional machine learning approaches include LLMs
are trained on extensive, diverse datasets from various sources,
while traditional models use smaller, domain-specific datasets.
LLMs utilize unsupervised learning to understand language
patterns and generate text, whereas traditional models rely on
supervised learning with labeled data. LLMs can generate new
text based on input prompts, making them versatile, while tra-
ditional models are designed for specific predictive tasks.
LLMs use large, undisclosed datasets, complicating bias
assessment, whereas traditional models allow for more
straightforward bias evaluation and mitigation.

Regulatory and professional bodies, such as the Food and
Drug Administration (FDA),"! American Medical Association
(AMA),"> World Health Organization (WHO),"? European
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Commission in collaboration with the European Medicines
Agency (EMA),'* and AMIA,"® have established initial frame-
works to evaluate and monitor Al systems for “fitness for
purpose,” efficacy, safety, and fairness. The term “fitness for
purpose” refers to the ability of an Al system to effectively and
efficiently fulfill the specific task or purpose for which it was
designed. This includes the system’s accuracy and speed and its
adherence to ethical standards such as fairness, transparency,
and respect for privacy. Prior literature'® examined algorithm
auditing methodologies and protocols for tailoring traditional
clinical evaluation approaches to Al. However, difficulties per-
sist in comprehensively assessing AI-CDS tools outside limited
research contexts.!”'® Moreover, healthcare stakeholders
urgently need coordinated action to implement layered Al gov-
ernance solutions to address issues across the entire AI-CDS
lifecycle,"” including relevant ethical and social issues, not least
privacy, transparency, accountability, and equity.

Recent publications have emphasized the importance of
addressing algorithmic bias,”®?! fairness** issues, and the
need for explainable AI and interpretability*® in healthcare
applications. Moreover, researchers have focused on develop-
ing and applying evaluation and validation methodologies to
assess the performance and safety of Al-enabled CDS
systems. Studies have also explored the organizational, tech-
nical, and human factors** that influence the adoption of Al-
enabled CDS. There is a need to achieve consensus for the
evaluation of Al for CDS. This paper will provide the find-
ings and recommendations of a detailed consensus process
with a broad range of stakeholders to ensure that AI-CDS is
safer, more effective, and more equitable in a way that repre-
sents the multiple viewpoints of the key stakeholder groups.

Materials and methods

During the summer of 2023, in partnership with the Ameri-
can Medical Informatics Association (AMIA), the DCI Net-
work,?® a consortium created by the Division of Clinical
Informatics (DCI) at Beth Israel Deaconess Medical Center
(BIDMC), convened and created a working group focused on
Al in healthcare. We prepared 4 antecedent webinars on “Al
in Healthcare” that covered topics including (a) Bioethics and
Religion, (b) Patient perspectives, (c) Real-world Data and
the Regulatory Perspective, and (d) Risk management, Trust,
and Liability.*®

A month later, we convened a cross-functional, interdisci-
plinary team involving over 200 experts from government,
standards organizations, private industry, ethicists, patients
and advocates, religious leaders, clinical informaticians, and
regulators, gathered through 4 webinars and a 2-day live con-
sortium at the Harvard Medical School in September 2023.%”
Over these 2 days, the group heard from multiple speakers
and, later, broke out into working groups. We focused on 3
specific domains of how Al is being deployed in the health-
care ecosystem: (1) a patient’s viewpoint on how they are
using Al in their healthcare journeys; (2) how Al is impacting
CDS; and (3) how Al is being used to create, enrich, and use
real-world data/evidence. The participants were tasked with
identifying challenges, proposing strategies, and creating key
goals to ensure that AI-CDS can be built, used, and evaluated
safely, efficiently, and equitably in the context of both the
work that has been done in the field, as well as how to
address current-day and future challenges presented by the
democratization of AI-CDS systems. The sub-groups

developed rapid brainstorming methods and group discus-
sions to develop the core ideas and challenges. Over the next
4 months, a sub-group of the team (the authors) met in
weekly online discussion meetings to develop consensus rec-
ommendations presented in this paper. The group used a Del-
phi approach to iterate on the core challenges and the
consensus approaches for how they should be prioritized and
addressed. This paper summarizes the findings and recom-
mendations of this process and the implications for the

healthcare field.

Results

Governance of these interconnected issues requires multi-
pronged initiatives around transparency, training, and infra-
structure from developers, regulators, and healthcare delivery
organizations. The key findings are shown in Table 1 and can
be grouped into 4 primary domains: (1) To build safe and
trustworthy systems by creating a systematic approach to a
“nutrition label”; (2) Validation and verification (ie, certifica-
tion of AI-CDS systems)—create a systematic approach to
testing and validation; (3) Safety monitoring and reporting—
the creation of an AI-CDS reporting center for adverse events;
and (4) Documentation and end-user training—provide com-
prehensive and certified training for professional and lay
users of AI-CDS.

Recommendations
Building safe and trustworthy systems

Each domain in Table 1 can be reflected in the various stages
of the AI-CDS development lifecycle. Figure 1 presents a vir-
tuous cycle, leveraging design thinking concepts in software
development to visualize the stated challenges.”® Several
frameworks have been proposed for AL>**° This illustration
outlines a typical development and deployment lifecycle. By
using trusted standards for system development, we can
ensure that best practices are adhered to, that systems can
support interoperability, and facilitate workflow integration.

Integration into existing systems: the role of international
consensus standards
One way to drive trust in AI-CDS in clinical care is to provide
a framework and standards to promote transparency and
interoperability. To facilitate the consistent adoption of such
tools, healthcare standards development organizations (ie,
HL7, IEEE, EN TC 251 - Technical Committee on Health
Informatics Europe, and International Organization for
Standardization [ISO] Technical Committee 215) should
strive to define specifications around required fields, formats,
and APIs for data and metadata access and use. The unique
Al Identifier (UAII) label (see below) could be adapted as a
new class within the HL7 FHIR standard, enabling seamless
integration with other clinical and research data. Other col-
laborative efforts tapping into diverse expertise have success-
fully propagated terminology system standards like
SNOMED CT through SNOMED across care settings.>'***
However, establishing standards alone is insufficient to
gain the necessary trust in AI-CDS, especially as these systems
may eventually undertake tasks such as prescribing medica-
tions without human oversight. Although this scenario is not
yet a reality, it represents a conceivable future direction for
AI-CDS. Incorporating  these unattended  AI-CDS
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Table 1. Key challenges identified by the consensus group (listed in alphabetical order).

Core concept

Challenge

Adverse events

Bias

Credibility and explainability
Documentation and transparency

Generalizability and portability

Inaccurate inferences

Integration

User competency

Validation and certification

Veracity of results

Lack of real-time monitoring and reporting to enable aggregation, analysis, and alerts around
potential safety issues.

Al algorithms and subsequent recommendations may reflect both dataset and development biases
due to the following;:

1) Differential representation of race, gender, socioeconomics, clinical subpopulations, and
health disparities in datasets.
2) Inaccurate design assumptions due to experiential or other biases by designers, developers,
or users.
3) Failure to consider the values and preferences of the patient.
4) Differential coding of data due to different local conventions or interpretations of coding
standards leads to inaccurate or inappropriate data aggregation and analysis.
Current Al systems provide limited explanations or citations for their reasoning.
Insufficient clarity regarding the provenance of biases in training data, model development, and
real-world testing procedures may undermine the credibility and adoption of Al tools.
The specificity of the clinical context and the data used for training may limit generalizability.
Application to new or evolving scenarios can lead to unpredictable results in other settings.
Inadequately constrained Al models may provide false or unsupported recommendations. Inad-
equately constrained Al models refer to those Al systems that lack sufficient limitations or rules in
their design and operation. These models may not have the necessary restrictions to guide their
learning process effectively. This leads to overfitting, where the model learns the training data too
well and performs poorly on new, unseen data.
Interoperability challenges may hamper Al integration with data sources and clinician workflows;
they can affect the ability to get data in and make recommendations actionable.
“Users” primarily refers to clinicians interacting with the Al-enabled Clinical Decision Support
(AI-CDS) systems. Ensuring clinicians have the necessary competencies to use these systems effec-
tively is crucial for patient safety and the system's overall efficacy. Inadequate training or demon-
strated competency in assessing recommendations and deploying AI-CDS risks patient harm and
distrust.
Frequent model retraining on new data, which is required to prevent model “drift,” creates mov-
ing targets for validation, benchmarking, and auditing.
The existing regulatory apparatus is not equipped for the technical and governance challenges of
near real-time review, re-evaluation, and certification.
Variability in recommendations or detection of Al errors from an AI-CDS will erode confidence in
the system. Establish clear criteria for veracity based on rigorous testing, validation, and continu-

ous performance monitoring.

interventions within existing EHRs without sufficient testing
and trust will open new, complex trust challenges.

Clinical integration and decision partnerships
For sustainable, safe, and effective adoption of AI-CDS in
healthcare settings, it must be part of the clinical workflow
and integrated seamlessly into HIT, such as EHRs, clinical
information systems, personal health records, and patient
portals. AI-CDS should also help diminish documentation
challenges prevalent in EHR systems today.>3*

Such systems should be designed to provide user-friendly
summaries for both clinicians and patients and support docu-
mentation encompassing:

* The goal and specific questions asked of the Al

* The Al-generated response.

* Whether or not a clinician reviewed and agreed with the
recommendation.

* The date and time when the system was used.

* Any references needed to clarify how and when the system
was used.

Equity

The WHO defines equity as the absence of unfair, avoidable,
or remediable differences among groups of people, whether
those groups are defined socially, economically, demographi-
cally, or geographically, or by other dimensions of inequality

(eg, sex, gender, ethnicity, disability, or sexual orientation).**

Moreover, such disparities often originate in historical and
systemic care delivery contexts, clinical research, and evi-
dence generation.

As such, in developing and adopting AI-CDS in healthcare,
it is essential to contextualize it as a facilitator as well as a
potential barrier to equitable healthcare delivery.>*=*® To
avoid creating and perpetuating new dimensions of dispar-
ities, individual researchers, agencies, professional bodies,
and the government have proposed various frameworks for
ensuring health equity is considered in all innovations,
including those driven by AI/ML.**-*°

An article by the Research Triangle Institute summarizes the
8 primary health equity frameworks and measures that inform
how health equity performs across the Institute for Health
Improvement (IHI), the Robert Wood Johnson Foundation
(RWJF), the Centers for Medicare and Medicaid Services
(CMS), the National Committee for Quality Assurance
(NCQA), and the Joint Commission International (JCI). Con-
cepts such as “Inclusion by design’*! and “algorithm vigilance’,**
among others, enhance fairness in system development, deploy-
ment, and evaluation. As part of the concept of Inclusion by
Design, the Global Future Council on Artificial Intelligence for
Humanity designed an Inclusive Al Lifecycle.** This provides a
systems view of embedding the goal of equity in all steps of the
Al development lifecycle and mapping both the builder and
stakeholder/governance ecosystem.
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Human-Centered System Development

4. User Training
Competence

Feedback

3. Monitoring and
Reporting

A Safety b
\_ Monitoring /
R o

Figure 1. Human-centered Al development cycle.

Themes across these equity frameworks include the
following:

* Governance and organizational support
There are business, moral, and health imperatives for
making equity a strategic and foundational goal of all
projects or programs in healthcare, which requires strong
organizational support and governance.*?

* Data management
AI-CDS systems depend on the datasets used to train the
algorithms and make recommendations. Furthermore, sev-
eral data characteristics should be assessed and docu-
mented to guide model developers and users, including
provenance, representation, context, and assumptions.**

* Development and Implementation Team Requirements

* Assessment of disparities and social determinants of
health: One must understand how sociodemographic
determinants of health may affect outcomes and
implement appropriate detection and mitigation
strategies.

Inclusive stakeholder/community engagement: Must

be multidisciplinary (ie, clinical, technical, operational,

and end-users). All stakeholders should be involved in
problem definition, validation, and deployment plan-

ning throughout the Al development cycle (Figure 1).

* Diverse workforce: The workforce should be diverse
across multiple dimensions of identity, ideally repre-
senting the population on which the model is intended
to be deployed as clinicians or patient end-users.
Diversification in teams could provide varied perspec-
tives on population samples that are considered

/ (Spemﬁcation(s)‘:\

Governance and
Accountability

\ a— /

\_Certification /

1. Building Safe and
Trustworthy

\Systems

/ \
| Development )

\/ Testing and \\1
\_ Validation /
- 4

2. Verification,
> Validation and
Certification

representative diverse views on ethical principles,
enhancing the accuracy of model development and
mitigating the risks of introducing implicit bias into
such systems.
* Audit and evaluation of health outcomes
It is crucial to monitor and assess models, recommenda-
tions, and outcomes considering various forms of identity
and social factors, such as race, socioeconomic status,
health literacy, insurance coverage, etc. These factors
should improve over time as the technology is developed
and used (Figure 1).

We recommend incorporating best practices and principles
from health equity frameworks* and research through the
entire AI-CDS (Figure 1) system lifecycle to reduce disparities
and promote equitable care.*®

Verification, validation, and certification

“Verification” refers to ensuring the accuracy, reliability, and
safety of Al algorithms designed for medical applications,
including rigorous testing and assessment of the AI’s per-
formance against predefined benchmarks. Data validation
assesses the quality and completeness of the data used to train
and test the Al model; algorithmic validation assesses the
model’s ability to produce consistent and accurate results;
and clinical validation evaluates the efficacy and reliability of
the results in a clinical context.

Certification refers to having the AI-CDS’ output (recom-
mendations) evaluated against some agreed-upon standard
from either a standards development organization or regula-
tory body. Certification helps to ensure that the system meets
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Table 2. Verification, validation, and certification issues for verification of AI-CDS.

Model training * Documentation of data origins and characteristics is critical to the credibility of advice or direction provided

by these systems

Identification and documentation of known biases in the training datasets:

* Type of data (eg, EHR data, claims data)
* Its origin, where it was collected (facility, geography), and the nature of the population from which it

was gathered (demographics)

* Any known intrinsic biases in the training data (eg, limited population demographics)

Explainability*”
Use-case dependency

Identification of training methods (eg, deep learning, supervised learning, unsupervised learning, etc)
How have the decisions and recommendations been reached?
Virtually all AI-CDS systems are optimized for a particular use case and population. Results may be unpre-

dictable if applied to different use cases or populations.

Veracity of results
system.

End-user training

Variability in recommendations or detection of Al errors from an AI-CDS will erode confidence in the

The ability to interpret results will depend on the operator’s knowledge, experience, and training. Proper

training should be clearly defined and repeated annually or in response to system updates and changes.

some known standard of accuracy, which helps foster trust.
Table 2 identifies additional verification, validation, and cer-
tification issues that must be addressed to verify that AI-CDS
provides trusted results.

AI-CDS documentation

One of the first recommendations from our working group
was creating a transparency label for AI-CDS systems called
the Unique Al Identifier (UAII). Its purpose is to address trust
and enhance transparency by disclosing relevant aspects of
such systems. The UAII is similar to a nutrition, implantable
device, or medical product label. It provides vital metadata
needed to use AI-CDS systems safely, responsibly, and with
accountability. It also provides a complimentary means of
maintaining a certification cycle for a given system under
review.

We recommend a set expiration of certification when a
UAII must be reviewed, along with any data about the sys-
tem’s use, performance, adverse events, or other outcomes.

Sendak et al*® suggested one example of such a label in
2020. This was modeled after the medical label. In addition
to Sendak’s recommendations, our consensus working group
had additional fields to be considered for the UAII, as found
in Table 3.

Monitoring and reporting

To ensure safe use of AI-CDS, there is a need for the creation
of a National Healthcare AI-CDS Safety Reporting Clearing-
house. The FDA maintains the MedWatch system as a clear-
inghouse for adverse event reporting for biologics,
prescription and over-the-counter drugs, combination prod-
ucts, medical devices, special nutrition products, cosmetics,
and food.’® This system enables medical professionals and
others to report adverse events promptly and comprehen-
sively. The system also provides real-time safety information
alerts via a subscription email list. The FDA is also involved
with Al in post-market surveillance of Software as a Medical
Device (SaMD).’! However, some important questions
remain.>”> The FDA also maintains the MAUDE®? for track-
ing issues, specifically with medical devices. Having some-
thing similar for AI-CDS event reporting would be the next
logical step.

An AI-CDS clearinghouse must facilitate and standardize
reporting of unexpected or adverse events that stem from
using Al-enabled CDS and must become part of the public

record. Adequate funding should be provided so the agency
can monitor and report the reported information.

User competence (training)

End-users require training as with any new medical guideline,
device, procedure, or medical therapy. As AI-CDS becomes
mainstream, system- and tool-specific training of end users is
critical for overall safe use, regardless of whether or not it
resides inside otherwise familiar EHR systems.

Health professions educators should define new competen-
cies for using AI-CDS in clinical practice, and these training
requirements should be incorporated into medical education
programs at all levels and evolve with the technology.’* We
propose that, as part of the UAII process, developers, manu-
facturers, and content authors specify appropriate training
requirements for users. This should include competencies
such as the context of the model, assumptions made, and the
model’s limitations. The actual training should be up to
experts in adult education to provide such training and
certification.

Our working group recommends creating a similar set of
constructs and a parallel system for training requirements,
which should be mandatory (depending on the application’s
envisioned end users—for clinicians or laypeople) and docu-
mented and monitored as part of overall risk mitigation and
legal/compliance constructs.

Discussion

AI-CDS promises to transform healthcare decision-making,
necessitating investments in transparency, monitoring, and
oversight. This consensus analysis establishes a framework
emphasizing trustworthy systems, verification, validation,
certification, monitoring, reporting, documentation, and
training. Key concepts include Unique Al Identifier labels
(UAII), model training, explainable Al, result veracity, and
adverse event reporting.

In recognizing that some failures of CDS systems are
inevitable, it is essential to design them to be as fail-safe as
possible. This involves comprehensive testing and validation,
user-centered design, and a layered decision-making process
to ensure reliability and safety. Predictable errors such as
data entry inaccuracies, algorithm bias, clinical context mis-
matches, and model drift can be mitigated through strategies
such as automated data entry, continuous bias assessment,
incorporating contextual data, and regular model updates.
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Table 3. Key fields to be included in the UAII, in descending order of importance to the clinician.

Optimal use case

Descriptions of circumstances and situations where the model can be best used.

Information about training
data and potential biases

A comprehensive review of the data used to train the system, encompassing information on how and
where it was obtained, population, location, care setting (if appropriate), and date range. Any known

imbalances or biases are to be listed. Measures taken to clean the data: how missingness was
addressed, how representativeness was evaluated, how the data were de-biased or the effects of bias
controlled for, and how new data types were incorporated.

Duration of certification

Systems should be certified for use for a finite time to ensure they continue providing valid, accurate,

and safe recommendations. All systems should be revalidated after system or training data updates.
Adaptive Al systems and those that self-modify must be reviewed and calibrated regularly to correct

any drift.
Version information

Clear identification of the current version number or other means of version identification must be

provided and refreshed during updates. Version disclosure should not be limited to the software but
to the data and the training data.

Conflict of interest disclosures
Limitations and warnings

Standard processes for conflict-of-interest disclosures should apply to all system developers.
The UAII should enumerate any known limitations and warnings regarding domains of use, use

cases, and any other information that could influence overall use or interpretations.

Algorithms employed
Validation and certification

Disclosures about the types and sources of algorithms employed by the AI-CDS.
The UAII should show evidence of how the system was tested and how the results of those tests were

validated, including unexpected outcomes.

Recommended training

Any prerequisites needed to certify the user should be disclosed in the UAIL

For instance, if a licensed cardiologist should be the only person using an AI-CDS system, UAII
should make this clear. Conversely, if it can be used by untrained end-users (ie, patients, laypersons),
that too should be clearly described.*’

By implementing these guidelines, we can enhance the inte-
gration of CDS into clinical care, thereby improving patient
safety and the overall efficacy of clinical decision-making.

These new systems can be modified in many ways, ranging
from updates to training algorithms to updating their training
datasets. A system to test the continued validity and credibil-
ity of recommendations after these changes is essential. Even
small changes in these systems can potentially affect how
they arrive at recommendations. The current regulatory tools
at our disposal are not sufficiently agile to meet these
challenges.

Evaluation of AI-CDS efficacy and safety traditionally
relies on randomized controlled trials (RCTs), cohort, and
case-control studies. However, the dynamic nature of non-
deterministic algorithms requires new approaches. Unique to
AI-CDS, there must also be capped autonomy levels (eg, at
what point, if ever, does the software become autonomous,
not requiring human intervention and confirmation).

Phased-in changes to medical education curricula and com-
petency testing for Al use in clinical environments will be
needed. Patients' understanding and reaction to these systems
also require careful consideration. Operationalizing these rec-
ommendations involves overcoming socio-technical barriers
to explainability and encouraging transparent developer
behaviors while avoiding overly restrictive policies.

Al systems' modifiability necessitates continuous validity
testing. Current regulatory tools may lack the agility to
address these challenges effectively. Documenting intrinsic
biases in Al models is crucial for informed utilization. Under-
lying disparities existing today in the real world have the
potential to be promulgated in Al training models.>> Correct-
ing embedded, intrinsic bias in existing real-world data may
be impossible. However, documenting such issues (in the
UAI) is essential to informing appropriate utilization—or
when not to use such models.>”

Public policy support is crucial for the proposed frame-
work's consistent implementation. This may involve execu-
tive orders, federal regulations, or legislation. The FDA has
developed a framework for Software as Medical Device

(SaMD) and has considered regulating AI-CDS output since
2019 and has already developed a framework for using
SaMD as CDS’® but challenges persist regarding Al decision-
making explainability.’”

Al systems currently do not consistently provide a plausible
explanation as to how or why recommendations are given
(ie, “black box” system). As demonstrated with Meaningful
Use, Stage 2 in 2012,°® there is a need to provide the rationale
to its recommendations.”” While voluntary UAII creation
might lead to uneven adoption, mandating UAII publication
could promote widespread use. However, a balance is needed
between standardization and avoiding innovation-stifling
mandates.

The slow process of the development of national laws and
policies requires more pragmatic approaches that could be
implemented sooner. Industry self-regulation through Stand-
ards Development Organizations such as HL7, IEEE, and
1SO® could drive consistent adoption of transparency tools
such as UAIL Standardizing specifications for data fields, for-
mats, and APIs could enable seamless integration with clini-
cal and research data. While collaborative efforts have
successfully propagated standards like SNOMED CT, chal-
lenges remain, as seen with varying implementations of HL7
2.x by different vendors.®'+%2

AI-CDS tools introduce new challenges in medical infor-
matics, particularly in ensuring trust.®> While UAII labels are
helpful, trust requires rigorous validation and verification.
Standard methods may not account for issues like model drift
post-launch. A multi-layered approach should combine inter-
nal testing under varied use cases and ongoing monitoring
(eg, using the UAII above label to complement adverse event
reporting).’> Conversely, there is a risk of over-reliance on
AI-CDS recommendations, as observed in some studies.®*

Legal and liability challenges are currently being debated,
especially with respect to autonomous AI CDS.®° CDS was
faced with similar questions and addressed them best by
clearly stating that there was a human in the loop.®® What
happens if clinicians trust Al too much and are asked to jus-
tify decisions based on logic they don’t understand? What
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happens if no human is in the loop, such as with autonomous
AI? Much of this remains to be examined, let alone decided.

The cliché “data is the new oil” highlights data’s impor-
tance in powering Al, akin to oil’s role in traditional indus-
tries. However, it also underscores the privacy risks
associated with data used in Al systems. As these systems
evolve, the need for robust data privacy measures intensifies.
Thus, the phrase serves as a reminder of data’s dual role in
Al: a valuable innovation driver and a potential privacy risk.
New legislation like the European Al Act®” and the USA’s
Whitehouse Blueprint,®® for an AI Bill of Rights may help to
improve privacy and safety. However, frameworks like the
one proposed in this paper are needed to guide the develop-
ment and evaluation of AI-CDS systems so they comply with
the various emerging regulations.

Fairness in algorithmic CDS systems is complex, with vari-
ous metrics often leading to conflicting results. The choice of
fairness metric should align with the specific clinical purpose.
For example, equalized odds may be prioritized in diagnos-
tics, while predictive parity might be essential for treatment
recommendations. To navigate these complexities, we recom-
mend context-specific evaluation, stakeholder engagement,
hybrid approaches balancing multiple metrics, and maintain-
ing transparency and flexibility. These principles can ensure
fairness in CDS systems is tailored to clinical applications,
enhancing equity and efficacy in patient care.

Data privacy and the balance between data dissemination
and model quality are crucial in Al-enabled CDS systems.
While disseminating healthcare data can enhance Al model
performance, it raises patient privacy and data security con-
cerns. Federated learning offers a potential solution by train-
ing Al models on decentralized data. However, implementing
federated learning in healthcare presents challenges, including
standardized data format requirements, potential model bias,
and computational resource needs. Researchers, healthcare
institutions, and policymakers must carefully balance data
privacy and Al model quality, constructing robust frame-
works for responsible data sharing and federated learning
application in healthcare.

Records scattered across multiple EHR systems and in vari-
ous formats complicate AI-CDS integration. Proposed solu-
tions include adopting healthcare data standards like HL7
FHIR; developing advanced data integration strategies; inves-
ting in data mapping to convert unstructured data; imple-
menting pilot programs; and fostering collaboration among
stakeholders to create a supportive ecosystem for AI-CDS
integration.

Re-certification and evaluation of Al systems for CDS are
crucial for ongoing efficacy and safety. Al models may expe-
rience “drift” over time due to changes in data distribution,
training data updates, self-modifications, or patient popula-
tion shifts. Regular review, calibration, and revalidation are
necessary to correct drift and maintain accuracy. Certifying
systems for finite periods ensures periodic reassessment, safe-
guarding against outdated or erroneous recommendations.
These processes are integral to Al's responsible deployment
and maintenance in healthcare.

Al-enabled CDS systems require a rigorous approval proc-
ess overseen by regulatory bodies like the FDA before effec-
tive monitoring and adverse event reporting can be
implemented. This process includes early FDA dialogue, com-
prehensive clinical validation studies with RCTs, in-depth
risk assessment and mitigation strategy development, detailed

approval submission with all validation data and risk assess-
ments, and post-market surveillance for monitoring real-
world performance and identifying adverse events through
continuous monitoring and reporting mechanisms.

In summary, Al tools are poised to transform medicine by
integrating into CDS. As Al technologies proliferate, their full
integration into clinical workflow and healthcare delivery is
inevitable. Urgent standardization of frameworks, implemen-
tation of guiding principles, and establishment of best practi-
ces are needed to safeguard medical practice and patient
outcomes. Given the prevalence of preventable adverse events
in hospital admissions,®® we are optimistic that AI-CDS can
lead to better outcomes we are optimistic that AI-CDS can
significantly improve healthcare outcomes.

Conclusion

The speed and breadth by which Al can impact CDS have
become more significant due to data availability, computing
power, and new LLMs; however, the risks have never been
higher for unvalidated systems. In this paper, we provided
specific and pragmatic approaches to improve how we evalu-
ate AI-CDS to improve safety, efficacy, and equity. This proc-
ess for reaching a consensus among many stakeholders laid
out practical building blocks and infrastructure oversight to
help the responsible use of Al in clinical decision-making set-
tings. By embracing collaborative governance through princi-
ples including (1) building trustworthy and safe systems; (2)
verification, validation, and certification; (3) monitoring and
reporting; and (4) user competence, healthcare systems can
benefit from improved efficiency, accuracy, and consistency
while mitigating risks from rapidly evolving algorithms.
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