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Abstract: Analysis of RNA by deep-sequencing approaches has found widespread application in
modern biology. In addition to measurements of RNA abundance under various physiological condi-
tions, such techniques are now widely used for mapping and quantification of RNA modifications.
Transfer RNA (tRNA) molecules are among the frequent targets of such investigation, since they
contain multiple modified residues. However, the major challenge in tRNA examination is related to
a large number of duplicated and point-mutated genes encoding those RNA molecules. Moreover,
the existence of multiple isoacceptors/isodecoders complicates both the analysis and read mapping.
Existing databases for tRNA sequencing provide near exhaustive listings of tRNA genes, but the
use of such highly redundant reference sequences in RNA-seq analyses leads to a large number
of ambiguously mapped sequencing reads. Here we describe a relatively simple computational
strategy for semi-automatic collapsing of highly redundant tRNA datasets into a non-redundant
collection of reference tRNA sequences. The relevance of the approach was validated by analysis of
experimentally obtained tRNA-sequencing datasets for different prokaryotic and eukaryotic model
organisms. The data demonstrate that non-redundant tRNA reference sequences allow improving
unambiguous mapping of deep sequencing data.

Keywords: tRNA; reference sequence; deep sequencing; RNA modifications; epitranscriptome; tRNA
pool; quantification

1. Introduction

Transfer RNA molecules (tRNAs) are essential adaptors in mRNA decoding, whereby
these small ncRNA species are in charge for implementation of the genetic code at the
molecular level [1,2]. These RNAs are heavily modified during post-transcriptional matu-
ration steps [3,4] and, in consequence, analysis of these RNA species is of particular interest
both for studies of mRNA translation [5,6], and for analysis of their epitranscriptomic
modifications [7–9]. tRNAs are relatively abundant in the cell and represent ~10–15% of
the total RNA content, depending on the organism [10]. Due to the presence of multiple
species of similar size, and even similar sequence, isolation of individual tRNA species
for analysis is possible, but relatively laborious. The most efficient methods are based on
specific hybridization of complementary biotinylated DNA oligonucleotide, followed by
affinity separation and specific elution [11,12]. Alternative methods of tRNA analysis, such
as microarrays or microscale thermophoresis, give excellent results in quantification of dif-
ferent species in a pool [13,14], but are not high throughput techniques. Taking all of these
considerations into account, the use of deep sequencing has become the most popular way
for analysis of tRNA species, their relative abundance, and also their modification profiles.
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Analysis of tRNAs by deep sequencing is rather straightforward and may be per-
formed directly from total RNA. For better efficiency, the tRNA population may be frac-
tioned either by size selection (on agarose or polyacrylamide gels) or by selective extraction
from cells [12]. Depletion of rRNA by Ribo-ZeroTM or equivalent “subtractive” meth-
ods to obtain tRNA enriched fraction can be used as well [12]. Library preparation is
performed either by direct ligation of adaptors [15,16] to 5’- and 3’-ends of tRNA (such
ligation protocol is also implemented in the majority of small RNA kits for library prepara-
tion) [8], or by primer extension using 3′-end ligated tRNA and tagging of the resulting
cDNA [17–19]. In some protocols, preliminary fragmentation of tRNAs is used for analysis
(e.g., in Hydro-tRNASeq and RiboMethSeq protocols) [20–22].

Whatever protocol is chosen for library preparation from tRNA fractions, the resulting
sequencing reads have to be processed by alignment to the appropriate reference sequence,
to allow meaningful biological interpretation. Thus, a major challenge in tRNA sequencing
consists in construction of such precise and unambiguous alignment for further counting
of tRNA reads and/or analysis of their post-transcriptional modifications.

Multiple approaches were proposed as alignment strategies for tRNAs. Existing
tRNA-oriented databases (the most popular are gtRNAdb [23] and tRNAdb-CE 2011 [24]),
collect already published information and also propose prediction of tRNA genes in
multiple species, generally using tRNAScan-SE [25,26]. These sources of information are
extremely helpful, but, as a reference sequence, they propose either full genomic datasets
of all tRNA genes or non-redundant collection of all possible tRNA species found (and
predicted) in the genomic DNA. These reference sequences are certainly complete, but their
direct use in bioinformatic analyses leads to numerous ambiguously (multiply) aligned
reads. On the other hand, databases collecting experimental data on already sequenced
tRNAs (MODOMICS [27], tRNAdb [28] and also T-psi-C database [29]) propose only
validated sequences of existing and presumably most abundant tRNA species, however,
for many reference/model organisms this information is scarce or simply not available
(e.g., Arabidopsis thaliana or Deinococcus radiodurans).

These limitations have so far prevented a generalized approach or common reference
sequence for routine tRNA analysis by deep sequencing. Published analytical pipelines
either use full genomic collection of tRNA species [7,8] (or better, non-redundant collections
where identical species are already collapsed) [6,9] or apply rather laborious and multistep
analytical pipelines involving alignment to full genomic DNA and extraction of mapped
tRNA reads by coordinates, with subsequent collapsing of identical sequences at that
stage [15,16,22,30,31]. These approaches give excellent results, but have been applied only
to limited number of living species. Moreover, such complex multistep pipelines are not
truly compatible with one another, precluding a direct comparison of the reported results.
Furthermore, they are not suitable for routine analysis of tRNA pools in biomedical projects
or for analysis of tRNA modification profiles when multiple species are involved.

We propose a simple and reproducible algorithm as a tool for semi-automatic analysis
of tRNA datasets starting from full and redundant genomic references identified by tRNA-
ScanSE. The dataset, downloaded as fasta file (*.fa) from gtRNAdb or tRNAdb-CE 2011
was first collapsed in full automatic mode, to obtain a non-redundant tRNA reference.
This reference may be used to extract all tRNA-related reads from experimental tRNA
sequencing data. Full non-redundant tRNA reference was further analyzed in a semi-
automatic way, to collapse closely related tRNA sequences in a single tRNA reference. The
distance for collapsing into a unique entry is proposed by the algorithm and modified or
validated by the user after visual inspection of the pairwise Levenshtein distance heatmap.
These optimized non-redundant reference sequences were validated using experimental
data available for several model living species and can be employed for routine analysis of
tRNAs and their modifications.
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2. Materials and Methods
2.1. Library Preparations

All deep sequencing tRNA libraries were prepared using the same protocol, imple-
mented in the RiboMethSeq procedure [20,32]. Total RNA (or size-selected tRNA fraction)
was subjected to fragmentation under strong alkaline conditions (10–15 min in 50 mM
bicarbonate buffer pH 9.2 at 96 ◦C). Fragments were de-phosphorylated at the 3′-end and
re-phosphorylated at the 5′-end to insure their compatibility with a direct adapter ligation
step. Further steps were performed using the NEBNext Small RNA kit (E7330L) following
the manufacturer’s recommendations. Quality of the libraries was assessed by HS DNA
chip (Bioanalyzer 2100 Agilent). Sequencing of 50 nucleotides of the insert was performed
in single-read SR50 mode on HiSeq 1000 Illumina sequencer. Target number of raw reads
was 10–25 million, depending on the source of RNA (see Supplementary Table S1 for the
exact number of sequencing reads used for analysis). Both total RNA and enriched tRNA
fractions can be used for tRNA analysis, however, sequencing of total RNA should be done
at much higher depth, to obtain sufficient amount of reads for all tRNAs. Since tRNAs
represent ~5–15% of total RNA, ~10 times higher sequencing coverage is generally required
in such cases.

2.2. Computations
2.2.1. tRNA Reference Sequence

Analysis of tRNA reference sequences was performed in R-studio with R version 3.5.3
and R packages seqinr and msa. Initial tRNA sequences (mature reference sequences) were
downloaded from gtRNAdb (http://gtrnadb.ucsc.edu/GtRNAdb2/index.html), intron-
containing sequences were not included in the analysis. No modification of the reference
(except U->T conversion to get standard DNA *.fasta file) was performed prior to down-
stream analysis. Conserved 3’-CCA tRNA sequence was not introduced at this stage since
3’-CCA can be already encoded in genomic sequences, such as in Escherichia coli, and thus
included in the sequences from gtRNAdb. However, this is not the case for Homo sapiens,
and many other eukaryotes. In most complex cases like for Bacillus subtilis, some tRNA
genes encode 3’-CCA while the others do not. This prevents the automatic addition of
3’-CCA to the reference sequence and a manual verification of tRNA cloverleaf structure
and alignment is mandatory.

The first step of analysis consists in the collapsing of identical sequences by a selection
according to the amino-acid’s specificity, since “unexpected” anticodons (see definition
in gtRNAdb) are relatively rare and eventual existence of such anticodon-mutated tRNA
species is verified at the final treatment step. Identical sequences are identified and merged
together (non-duplicated tRNA reference/Step1) in a fully automatic mode (see Figure 1A).

The second step aims to identify closely related tRNA species and collapse them into
a unique consensus sequence, replacing ambiguous nucleotides by the nucleotide found
in majority of sequences or by N, if the number is equivalent. We decided not to intro-
duce International Union of Pure and Applied Chemistry (IUPAC) codes for ambiguous
DNA residues since these codes are not systematically interpreted by popular alignment
algorithms (such as Bowtie/Bowtie2 [33] used in this work). Collapsing into clusters
is performed in semi-automatic mode, and a heatmap showing calculated Levenshtein
distances between sequences is displayed to help the user to define the appropriate number
of clusters. The script suggests the optimal number of distant clusters (with default max
distance of 8 substitutions), but, if required, this number can be overridden by manual
entry of a more appropriate value. Such manual correction is optional for the majority
of simple bacterial and lower eukaryote tRNA references, but was found to be necessary
for very complex clusters found for tRNA genes in higher eukaryotes. If the number of
clusters to create is erroneously selected too low, the tRNA sequences, forced to merge in
the same cluster, but still distant more than 10 substitutions are removed and stored in the
“Removed sequence” file.

http://gtrnadb.ucsc.edu/GtRNAdb2/index.html
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Figure 1. Strategy to create and validate a tRNA reference sequence. Panel (A)—collapsing of
tRNAScan-SE predicted tRNA genes in non-duplicated (non-redundant) tRNA reference followed
by further optimization (Step 2) by merging of closely related sequence (distance ≤ 8 by default).
Further improvements may be introduced in a manual mode, by analysis of residual redundant
mapping. Panel (B)—experimental analysis and validation of proposed tRNA reference sequences.
Raw sequencing reads obtained in SR50 mode are trimmed and first filtered by alignment to rRNA
reference sequence of the organism. Non-mapped reads are aligned to Step 1 (non-redundant) tRNA
sequences. Mapped reads are re-aligned to Step 2, optimized reference and % of total and unique
mapping are calculated. Finally, non-mapped Step 2 reads are re-analyzed by alignment to Step 1
reference, to get “missing tRNAs”.

After collapsing to clusters, a final heatmap is created for visual inspection and
verification, sequences are re-annotated to use only the amino acid identity and anticodon
sequence, isoacceptors/isodecoders with the same anticodon are numbered sequentially.

Calculation scripts were tested for 20 organisms listed in the Table 1, Step 1 for merging
identical sequences worked in all tested cases, Step 2 failed only when the number of fully
identical sequences was > ~100, due to the excessive length of fasta file header, not accepted
by R package seqinr.

When the semi-automatic clustering of tRNA sequences was not sufficient to obtain
<10–15% of multiply mapped reads after analysis of real tRNA datasets, tRNA reference was
manually inspected and redundant isoforms creating ambiguous mapping were removed
or collapsed in a single entry.

Finally, if not present in the genomic tRNA sequences, 3’-CCA end was manually
added to the reference, to improve alignment quality in an end-to-end mode with sequenc-
ing reads issued from mature CCA-containing tRNA species. If present, anticodons with
A34NN sequence were replaced by G34NN since A->I conversion at position 34 creates the
residue behaving as G in base pairing.
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Table 1. tRNA reference datasets for selected model organisms.

Organism Domain

“High
Confidence

Set”
gtRNAdb 1

Step1
Non-

Redundant
tRNA Set

Step2
Optimized

“Collapsed”
tRNA Set

(d = 8)

Step3
Validated

“Optimized”
tRNA Set

Plasmodium falciparum 3D7 E 45 45 40
Sulfolobus acidocaldarius N8 A 50 50 33

Haloferax volcanii DS2 A 52 46 46
Staphylococcus aureus subsp. aureus NCTC 8325 B 59 43 31

Leishmania major strain Friedlin (ASM272v2) E 82 49 44
Bacillus subtilis subsp. subtilis str. 168 B 86 50 35 33

Escherichia coli str. K-12 substr. MG1655 B 89 48 41 39
Candida albicans A20 E 129 50 41

Candida albicans WO-1 E 146 73 58
Schizosaccharomyces pombe 972h- E 171 60 44

Saccharomyces cerevisiae PW5 E 171 47 42
Candida glabrata CBS 138 E 189 45 38

Candida tropicalis 121 E 203 70 57
Saccharomyces cerevisiae P301 E 226 49 37
Saccharomyces cerevisiae S288c E 275 54 38 38

Drosophila melanogaster (BDGP Rel. 6/dm6) E 290 76 37
35 (d = 10) 34

Homo sapiens (GRCh37/hg19) E 416 177 61
45 (d = 10) 43

Bombyx mori (Domestic silkworm
ASM15162v1) E 435 115 44

Arabidopsis thaliana (TAIR10 Feb 2011) E 580 139 48 43
Zea mays B73 (RefGen_v4 AGPv4) 771 191 70

Strongylocentrotus purpuratus (S. purpuratus)
Mar. 2015 Spur_4.2) E 931 192 61

Xenopus_tropicalis_v9.1 E 3010 245 68
1 Table is sorted in ascending order of predicted “high-confidence” tRNA genes (source gtRNAdb). Bolded and underlined values shows
the minimal and maximal values.

2.2.2. Alignment of the Experimental Datasets to Reference tRNA Sequences

Available experimental datasets obtained for total RNA or enriched tRNA fractions
were treated by the same analytical pipeline. Demultiplexing and trimming was done
without option for removal of potential PCR duplicates, since this is not appropriate
for large datasets generated from relatively short reference sequence (here, collection
of tRNAs). Raw reads were trimmed using Trimmomatic version 0.32 [34], using the
following parameters (minLen 8 nt, maxLen 50 nt, single-end mode, stringency 7 (with
these parameters the sequence of adapter over 10 nt is detected and removed). Taking into
account very short cumulated reference sequence (maximum 250 sequences of 75–90 nt only,
so <15 kb) minLen of 8 nt is, in principle, sufficient for unambiguous mapping. However,
in practical, a proportion of very short reads may be still ambiguously aligned. Only reads
<40 nt were selected for analysis to make sure that used raw reads are not contaminated
by residual adapter sequence. Alignment of short reads was first performed to complete
rRNAs sequence of the organism, since rRNAs are always dominating RNA species in total
RNA and, very frequently, even in presumably ‘enriched’ tRNA fraction. Alignment was
done by Bowtie2 v.2.2.4 [33], in sensitive (-D15-R2-N 0-L10-i S,1,1.15) end-to-end mode (no
soft-trimming). Reads, non-aligned to rRNA sequences, were retained for further analysis,
aligned to the non-duplicated tRNA reference/Step 1 sequences and all aligned reads were
conserved (“tRNA-mapped reads”). Unique and multiply mapped reads for each tRNA
were counted. The second tRNA alignment of all “tRNA-mapped reads” was done with an
optimized tRNA reference (Step2 sequences), with the same Bowtie2 parameters. Unique
and multiply mapped reads by tRNA were counted. Reads, non-aligned to optimized
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reference sequence, were conserved and re-aligned to non-duplicated tRNA reference/Step
1 sequences to identify tRNA species ‘missing’ in the optimized reference.

2.3. Practical Guidelines for Optimization of the Reference tRNA Sequences

For practical analysis of tRNA dataset for an organism, we suggest the following pipeline:

1. Collapse full genomic tRNA dataset in collection of non-redundant sequences (auto-
matic mode, Step 1).

2. Verify the number of non-duplicated sequences (Step 1), numbers of <60 indicate
almost non-redundant dataset, higher values are indication of ambiguous redundant
sequences.

3. Use the distance of 8 nt for genomic datasets of <250 tRNA genes (<60 Step 1 sequences)
and the distance of 10 nt for larger genomic references. There may be intermediate
cases for organisms having between 250 and 300 tRNA genes.

4. Verify the number of optimized (Step2) sequences, values close to 40 (or less) are
indication of a good quality non-redundant reference, while numbers > ~50 mean still
complex and potentially redundant tRNA collection.

5. Validate the optimized (Step 2) reference with experimentally obtained tRNA dataset.
If proportion of uniquely mapped reads is still <90%, repeat collapsing in Step 2 with
increased distance threshold.

3. Results
3.1. A Two-Steps Algorithm for tRNA Analysis

Depending on the complexity of the organism and the level of duplication, a full
genomic tRNA reference sequence may be relatively simple (<100 tRNA genes in many bac-
teria and archaebacteria), of intermediate complexity (~120–250 tRNA genes in many
bacteria and lower eukaryotes), or extremely complex with over 550 tRNA genes in
H. sapiens/Mus musculus, A. thaliana and other higher eukaryotes (Table 1 and Supple-
mentary Figure S1) [35]. This increased complexity generally results from duplication of
the existing tRNA genes occasionally featuring point mutations in non-essential regions
and not from the appearance of new and thus very different tRNA species [14,36]. In
simple and intermediate cases, elimination (or collapsing them into one sequence) of re-
dundant (fully identical) tRNA species is generally sufficient to obtain appropriate tRNA
reference and further semi-automatic step to find and merge tRNA isodecoders with a
limited number of point mutations is rather straightforward (Figure 1).

3.2. Analysis of Simple tRNA References (<100 tRNA Genes)

For common bacterial species, the proposed approach was validated using tRNA
references for E. coli and B. subtilis. The full genomic E. coli tRNA reference contains
89 tRNA genes (source gtRNAdb). Fully identical duplicated genes were found and
collapsed, creating a non-redundant tRNA dataset of 48 tRNA sequences (“Step1”, see
Table 1). Further collapsing of closely related tRNA species with the maximal distance of 8
substitutions gave an optimized tRNA reference of 41 tRNA genes. The representativeness
of tRNA anticodons was verified and compared to the initial full dataset. All anticodons
were found to be correctly represented, except for tRNAAla (GGC) and tRNAAla (TGC)
which were merged in a single entry tRNAAla (NGC) with 7 substitutions and two tRNAThr

(CGT) isodecoders, which were maintained, since relatively distant (see Supplementary
Data). The optimized reference sequence for E. coli contains all tRNA species reported in
MODOMICS and tRNAdb and is similar to the one used previously for tRNA modification
analysis [21].

Similarly, collapsing of the full tRNA gene set from B. subtilis (86 sequences) gave
43 non-redundant tRNA sequences at the first step and 35 optimized tRNA references
with a maximum of 8 allowed substitutions. The resulting optimized reference is fully
representative for all used codons and adds 11 additional tRNA isoacceptors compared to
MODOMICS/tRNAdb reference databases.
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Additional tests with other bacterial species demonstrated that semi-automatic col-
lapsing is sufficient to obtain highly optimized tRNA references in such cases (see Table 1).
The minimal number of retained tRNA genes is 31 (which is close to anticipated mini-
mum required for correct mRNA decoding), and the average is about 40 species in low
complexity genomic reference (<100 tRNA genes).

3.3. tRNA References of Intermediate Complexity (<300 Genes)

Collections of tRNA gene reference sequences of intermediate complexity are found in
lower eukaryotes or representative insect species, such as Saccharomyces cerevisiae (275 tRNA
genes in full genomic reference) or Drosophila melanogaster (total of 290 tRNA genes). For
S. cerevisiae, an automatic merging of identical tRNAs reduced the number of tRNA se-
quences to 54 species and further optimization by collapsing of sequences with minimal
distance of eight substitutions reduced this number to 38. Three closely related tRNA
pairs showing very short distance (3–4 substitutions only, tRNASer (CGA/TGA), tRNAGlu

(CTC/TTC) and tRNAGln (CTG/TTG)) were merged together, the other codons are repre-
sented as in the full genomic tRNA dataset. All sequences listed in MODOMICS/tRNAdb
are present in the optimized reference sequence, but this last reference contains 10 supple-
mentary tRNA species compared to MODOMICS /tRNAdb.

For the D. melanogaster reference (290 tRNA genes), collapsing of fully identical se-
quences gave 76 tRNA genes and further optimization reduced this number to 37 represen-
tative sequences. This list will be further reduced to 34 (see Section 3.5 and Supplementary
Material, Section “Detailed description of modifications in final tRNA references” for more
details). All sequences listed in MODOMICS/tRNAdb are also present in this reference
and it contains 20 additional tRNA sequences.

Analysis of other genomes from this group showed that the minimal number of tRNA
genes retained in optimized references is close to 35, while the maximum increases to
about 60, indicating considerable diversity (see Table 1). Noteworthy, the numbers of tRNA
species in non-redundant reference and in the optimized one are not directly proportional
to a total number of tRNA genes in the genome.

3.4. Highly Complex tRNA References (>400 Genes)

Higher eukaryotic genomes contain substantial numbers of tRNA genes (see Table 1),
mostly due to duplicated sequences and multiple point mutants. Depending on the genome
build, human tRNA reference sequence lists >400 tRNA genes, even more tRNA sequences
were found in the C. elegans worm genome (568 in “high confidence set”, gtRNAdb) and the
A. thaliana plant genome has 580 sequences in “high confidence set”. Even after collapsing
of identical tRNA sequences, the residual non-redundant tRNA reference remains very
large (>150 non-identical tRNA genes). However, these genes form large clusters of related
sequences. Here we analyzed H. sapiens and A. thaliana tRNA genes in more detail, since
human tRNAs were in a large proportion directly sequenced in the past and included
in MODOMICS and tRNAdb, while only very limited information exists on the tRNAs
from A. thaliana. The human non-redundant tRNA reference has 177 non-identical tRNA
genes, while collapsing with the default 8 nt distance gave 61 entries in Step2 Optimized
sequences. Despite a larger genomic tRNA gene collection (590 sequences), A. thaliana
tRNA genes were found to be less diverse, leading to only 133 entries in non-redundant
Step1 collection and 48 after Step2 (see Table 1).

The algorithm was also tested for highly complex models, like plant Z. mais (770 tRNA
genes) and frog X. tropicalis, where >3000 tRNA genes were found. Collapsed reference
contains, respectively, 191 and 245 non-redundant tRNA species, while “optimized dataset”
uses only 70 and 68 representative tRNA sequences (Table 1).

3.5. Validation of the Optimized tRNA Reference Sequences

For an experimental validation we selected six representative tRNA reference sequences:
two from bacterial, common model organisms E. coli and B. subtilis, respectively, from Gram−
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and Gram+ groups, and four from eukaryotic species showing rather variable number of
tRNA genes in the genome and optimized tRNA references: S. cerevisiae, D. melanogaster,
H. sapiens and A. thaliana (see Table 1, in red). For each organism, RiboMethSeq-like datasets
were prepared for 6–20 samples, from total RNA, or from size-selected tRNA fraction.
Alignment statistics for analyzed datasets is shown in Table S1.

Raw trimmed reads were cleaned up from rRNA contamination and aligned first to
non-duplicated (non-redundant) full tRNA reference (Step 1, see Figure 1B). Mapped reads
were extracted and used for further analysis by alignment to an optimized tRNA reference
(Step 2). In both cases uniquely and multiply mapped reads were counted, globally, as well
as by individual tRNA.

The results shown in Figure 2 (and Supplementary Figure S2) demonstrated that for
all species tested, >92–95% of total tRNA reads were still aligned to optimized reference
(“Aligned Step 2”), showing that collapsing to clusters did not reduce alignment quality.
However, the proportion of the uniquely mapped reads increased very drastically with
Step 2 reference sequences, with concomitant decrease of ambiguous multiple mapping
(Figure 2, compare uniquely and multiply aligned for Step 1 and Step 2). In the best cases,
the residual multiple mapping was <5%, and routinely <10% for simple tRNA references.
Only minor further adaptations were necessary to remove/manually collapse residual
sequences with ambiguous mapping from E. coli, B. subtilis, and A. thaliana references
(indicated in red on Figure 2 and described in Supplement, Section “Detailed description
of modifications in final tRNA references”).

However, when the standard distance of eight substitutions was applied to human
and drosophila tRNA references, residual ambiguous mapping was still quite substantial
(>15%) (see Supplementary Figure S2). This is certainly related to the excessive number of
rather similar but non-merged tRNA sequences. Thus, we explored a semi-automatic fusion
with an increased number of allowed substitutions (up to 10). Manual correction of the
suggested cluster number was systematically required for such analysis. The final reference
for H. sapiens contained only 45 sequences, instead of 61 for a maximal distance of eight
substitutions (see Table 1). Similarly, the drosophila tRNA reference sequence was reduced
to 35 unique entries. Analysis of uniquely and multiply mapped reads from experimental
datasets showed substantial improvement compared to the previous reference sequence
with n = 8 as maximum distance. The proportion of multiply mapped reads decreased to
~10–12%, which was considered acceptable (see Figure 3).

Inspection of multiply mapped reads showed that only tRNALeu, tRNALys and
tRNAArg in the D. melanogaster dataset still showed substantial multiple mapping (shown
in red, Figure 3). For the human reference, this was the case for pairs of tRNALeu, tRNAArg,
one tRNATyr and tRNAAla/tRNAVal (Figure 3). These cases were manually inspected
to find the origin of such ambiguous mapping. Both in D. melanogaster and in human,
two tRNALeu isoacceptors were found well represented in the RNA-seq data and showed
very similar sequences at the 5′- and 3′-extremities but differed in the anticodon loop
(Supplementary Figure S3 and information in the Supplementary Data). Human tRNATyr

3
reads were rather scarce compared to two other tRNATyr isoacceptors and thus tRNATyr

3
was removed from the curated reference sequence. Finally, tRNAVal

3 (encoded by the
unique gene tRNA-Val-AAC-6-1) differs from tRNAAla

1 only at 10 positions and appeared
to be an anticodon (missense suppressor) mutant of tRNAAla

1. Thus, this tRNAVal
3 was

also removed from the final reference sequence list.
Final manually curated reference sequences for six model organisms now include the

3′-CCA end, and all anticodon A34 residues were replaced by G since A34 is systematically
converted to inosine (I) [37], which behaves as G in base pairing. Alignment results of full
tRNA reads to curated references are shown in Table 2.
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optimized tRNA set (Step 2) for four model species, with a maximum distance of eight substitutions.
Panels (A–D) show analysis of Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae and Arabidopsis
thaliana tRNA references, respectively. Boxplot on the left shows the proportion of tRNA sequencing
reads aligned to Step 2 reference (“Aligned Step 2”) and proportions of uniquely and multiply
mapped reads at both steps. Red dashed lines indicate the 12.5% level. The increase of unique
mapping events and the decrease of multiple mapping events are shown by arrows. Barplots at the
right represent unique and multiple mapping by tRNA species at Step 2, in proportion to total and in
absolute number of sequencing reads obtained by tRNA, expressed as proportion to total number of
mapped reads. tRNAs showing excessive proportion of ambiguous mapping are shown in red.
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Figure 3. Alignment results for non-duplicated (non-redundant) tRNA reference (Step1) and opti-
mized tRNA set (Step 2) for two complex model species, maximal distance used is 10 substitutions.
Panels (A,B) show analysis of Drosophila melanogaster and Homo sapiens tRNA references, respectively.
Boxplot on the left shows the proportion of tRNA sequencing reads aligned to Step2 reference
(“Aligned Step 2”) and proportions of uniquely and multiply mapped reads at both steps. Red
dashed line indicates 12.5% level. Increase of unique mapping and decrease of multiple mapping is
shown by arrows. Barplots at the right represent unique and multiple mapping by tRNA species
at Step2, in proportion to total and in absolute number of sequencing reads obtained by tRNA,
expressed as proportion to total number of mapped reads. tRNAs showing excessive proportion of
ambiguous mapping are shown in red.

Table 2. Alignment of full tRNA reads dataset to manually curated tRNA references (Step 3).

Organism tRNA Gene
Number % of Aligned Reads Uniquely Aligned

Reads 1
Multiply Aligned

Reads 1

Escherichia_coli_str_K-
12_substr_MG1655 39 95.87 ± 0.26 95.95 ± 0.23 4.05 ± 0.23

Bacillus_subtilis_subsp_subtilis_str_168 33 94.89 ± 0.91 93.93 ± 0.38 6.07 ± 0.38
Saccharomyces_cerevisiae_S288c 38 84.93 ± 6.61 98.52 ± 0.27 1.48 ± 0.27

Arabidopsis_thaliana_TAIR108feb2011 43 85.93 ± 2.34 94.08 ± 0.93 5.92 ± 0.93
Drosophila_melanogaster_BDGP6_dm6 34 83.67 ± 2.36 86.88 ± 2.36 13.12 ± 2.36

Homo_sapiens_GRCh37hg19 43 90.08 ± 0.70 89.15 ± 0.92 10.85 ± 0.92
1 Normalized to the total number of aligned reads.
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4. Discussion
4.1. Merging of Similar tRNA Genes in a Single Reference Sequence

Highly redundant RNA sequences issued from gene duplication and sequence muta-
tions are difficult targets for extensive and unambiguous bioinformatic analysis of deep
sequencing data, since short sequencing reads obtained in many popular protocols do not
allow to distinguish between these very similar species. Transfer RNA (tRNA) populations
in most organisms are well-studied examples. Most bacterial species have 60–80 tRNA
encoding genes, and this number increases rapidly with genome complexity. Most complex
(from a tRNA gene-centered point of view) eukaryotic species may contain >5000 dupli-
cated and point-mutated tRNA genes. After removal of duplicates, over 100 (or even more)
distinct sequences are still present. Analysis of such extremely complex mixtures requires
unambiguous mapping, which is only possible with long sequencing reads. Only reads over
30–40 nt in length are truly unique enough to be precisely mapped to a given RNA sequence.
However, such reads are relatively rare in the case of tRNA isoacceptors/isodecoders,
which are of 75–90 nt in length only and heavily modified, preventing, in most cases,
trouble-free read-through by reverse transcriptase (RT). tRNA-demethylation protocols
(e.g., demethylase tRNA sequencing, DM-tRNA-Seq, AlkB-facilitated RNA methylation
sequencing, ARM-Seq, etc.) improve efficiency of primer extension, but do not remove
all RT-blocking modified nucleotides. Thus, tRNA deep sequencing data are known to
by heavily biased, with preferential amplification of only certain tRNA species [13]. Up
to now, no general approach allowing rapid analysis of tRNA deep sequencing data was
established in the community, and so far, every new organism required particular attention
and almost manual inspection of numerous tRNA sequences.

In this work, we propose a generalized approach to reduce the complexity of tRNA
reference sequences, intended to be used for reads mapping. The first, most evident, step
consists in removal of all duplicated tRNA genes of exactly identical sequence. This step
is efficient and allows reducing complexity very considerably. However, such automatic
removal of duplicates does not provide unambiguous mapping reference, since point-
mutated variants persist. Such non-redundant reference is suitable for mapping of long
(preferentially full size) tRNA reads, obtained without RNA fragmentation [15,16]. Unfor-
tunately, such non-fragmented tRNA libraries are highly biased due to certain tRNA modi-
fications resulting in abortive (incomplete) cDNA fragments. Alternative approaches using
tRNA fragmentation are more efficient, since fragments may be devoid of RT-arresting
modifications; however, shorter sequencing reads are obtained in such cases [22]. This is
also a feature of the RiboMethSeq protocol, which is now extensively used for analysis
of tRNA 2′-O-methylations [20,21]. Other protocols, such as AlkAnilineSeq for detection
of m7G/m3C/D/ho5C [38] and HydraPsiSeq for pseudouridine mapping and quantifica-
tion [39], also result in relatively short tRNA reads.

To obtain unambiguous reads mapping, which may ultimately be used for both
tRNA quantification and modification analysis, we propose to group (merge) closely
related species into a single entry, replacing “ambiguous” mutated nucleotides by most
frequent nucleotide or by N. Even if the use of IUPAC nucleotide code seems to be more
appropriate, such nucleotides are considered as N by many alignment utilities (Bowtie2,
STAR, BWA) [40,41]. The number of N nucleotides should be limited, to reduce ambiguous
mapping, but not become too small, since otherwise closely related species will lead to
multiple mapping events. Empirically, N = 7–8 maximum (10% of the tRNA length) was
found to be suitable for the majority of simple tRNA references (bacteria/archaea/lower
eukaryotes), while 10–11 substitutions have to be allowed for more complex cases, such as
human and drosophila tRNAomes.

4.2. Representativeness of Optimized tRNA Datasets

In order to check if such reduced tRNA reference datasets remain representative,
anticodon compositions of full and optimized datasets were compared (see Supplementary
Materials). In general, when some apparent loss of rarely used tRNA anticodons was found,
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manual inspection revealed that those correspond to rare tRNA isoacceptors (encoded
by genes with low copy number) and represent point mutant of major tRNA isoacceptor.
These conversions are generally limited to tRNAs decoding the same amino acid, with an
exception of one human tRNAVal (AAC), which is in fact derived from tRNAAla (NGC) by
a limited number of mutations, including two in the anticodon. Interestingly, this tRNAVal

(AAC) is most likely behaving as a missense suppressor in vivo since it retains a G3*U70
base pair and a discriminator nucleotide A73, two well-known identity determinants for
aminoacylation by alanine tRNA-synthetase [42].

Analysis of several experimentally available tRNA datasets showed that only minor
fractions (<10%) in these whole collections of tRNA reads were not aligned to the optimized
reference sequence (Supplementary Figure S4) and, thus, the representativeness of the
reduced reference was clearly maintained.

4.3. Known Limitations and Troubleshooting

Counting of tRNA reads and comparative studies of tRNA expression are possible
with a reduced/optimized reference; however, if only one particular tRNA isoacceptor
has to be quantified, the best approach would be to use a non-redundant tRNA dataset
and to select only (rare) uniquely mapped reads for a given tRNA. Analysis of tRNA
modification with a reduced dataset is based on the assumption that all species in the group
have identical tRNA modification profiles, independently from the presence of a point
mutation. This assumption is generally relevant, since mutations occur mainly in the tRNA
regions, which are not known to be extensively modified; however, this may not be true
for some essential tRNA anticodon positions (N34, for example). In such cases, inspection
of nucleotide proportion (e.g., by Integrative Genomics Viewer (IGV) visualization or
mismatch calculation from mpileup format) may be of interest to determine the proportion
of really expressed tRNA variants. In extreme cases, preliminary evaluation of tRNA
expression using non-redundant datasets may be required, followed by the analysis of only
major expressed tRNA isoforms. However, this complex two-step methodology cannot be
applied in an automatized routine analysis.

5. Conclusions
Applications in Analysis of tRNA Expression and Modifications

Since currently used approaches for tRNA analysis by deep sequencing suffer from
multiple and thus very ambiguous mapping of tRNA reads, we foresee multiple practical
applications of the proposed general approach for tRNA reference sequences. Unified
and straightforward analysis of tRNA deep sequencing data is still lacking in the field.
Quantification of tRNA pool and modulations of its composition under stress or in dis-
ease represent one of the major applications. One other major field that will certainly
benefit from these improvements is analysis of epitranscriptomic tRNA modifications
(2’-O-methylation, pseudouridine, m7G/m3C, D and others), important for adaptation of
cellular translational machinery in stress or disease. With some minor adaptations, similar
computational and validation approaches can be also applied for simplification of other
highly redundant collection of RNA genes, e.g., rRNA and snRNA sequences.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/1/81/s1, Figure S1 Number of genomic tRNA genes detected by tRNAScanSE (source
gtRNAdb). Genomes (~250 in total) were randomly chosen to provide representative selection for
Archaea (35 genomes), Bacteria (150 genomes) and Eukaryota (65 genomes). Only tRNA genes
corresponding to 20 standard amino acids were considered. Panel A represents global distribution
(number of tRNA genes in log10 scale), panel B—same data sorted by Kingdom. Panel C shows
the number of tRNA genes in non-redundant (blue) and in optimized (Step2) references (red), in
function of the total number of tRNA genes in genomic reference. Panel D, E and F show distribution
by Kingdom and phyla/groups. Figure S2: Alignment results for non-duplicated (non-redundant)
tRNA reference (Step1) and optimized tRNA set (Step2) for D. melanogaster and H. sapiens references,
maximal distance used is 8 substitutions, Figure S3: Sequences of tRNA species showing excessive

https://www.mdpi.com/2073-4425/12/1/81/s1
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ambiguous mapping for D. melanogaster and H. sapiens references, Figure S4: Barplots representing
unique and multiple mapping by tRNA species for final manually curated tRNA references (Step3).
Table S1: Characteristics of deep sequencing datasets used for analysis.

Author Contributions: Conceptualization, F.P. and Y.M.; software, F.P.; investigation, F.P. and V.M.;
writing—original draft preparation, Y.M.; writing—review and editing, V.M. and M.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by FRCR EpiARN project from Grand Est Region to Y.M. and
SPP1784, HE 3397/14-2 from DFG to M.H., and JPND “RNA NEURO”/Bmbf 01ED1804 to M.H. This
work was performed in the framework of EPITRAN COST initiative (CA16120).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All scripts, supplementary data, as well as non-redundant and op-
timized datasets are available from GitHub (https://github.com/FlorianPichot/tRNA_reference_
construction).

Acknowledgments: We thank M. Kristen for the critical reading of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Berg, M.D.; Brandl, C.J. Transfer RNAs: Diversity in form and function. RNA Biol. 2020, 1–24. [CrossRef] [PubMed]
2. Lei, L.; Burton, Z.F. Evolution of Life on Earth: tRNA, Aminoacyl-tRNA Synthetases and the Genetic Code. Life 2020, 10, 21.

[CrossRef]
3. Phizicky, E.M.; Hopper, A.K. tRNA biology charges to the front. Genes Dev. 2010, 24, 1832–1860. [CrossRef]
4. Hori, H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014, 5, 144. [CrossRef] [PubMed]
5. Wilusz, J.E. Controlling translation via modulation of tRNA levels. Wiley Interdiscip. Rev. RNA 2015, 6, 453–470. [CrossRef]

[PubMed]
6. Pinkard, O.; McFarland, S.; Sweet, T.; Coller, J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation.

Nat. Commun. 2020, 11, 4104. [CrossRef]
7. Clark, W.C.; Evans, M.E.; Dominissini, D.; Zheng, G.; Pan, T. tRNA base methylation identification and quantification via

high-throughput sequencing. RNA 2016, 22, 1771–1784. [CrossRef]
8. Cozen, A.E.; Quartley, E.; Holmes, A.D.; Hrabeta-Robinson, E.; Phizicky, E.M.; Lowe, T.M. ARM-seq: AlkB-facilitated RNA

methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 2015, 12, 879–884. [CrossRef]
9. Warren, J.M.; Salinas-Giegé, T.; Hummel, G.; Coots, N.L.; Svendsen, J.M.; Brown, K.C.; Drouard, L.; Sloan, D.B. Combining

tRNA sequencing methods to characterize plant tRNA expression and post-transcriptional modification. RNA Biol. 2020, 1–15.
[CrossRef]

10. Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Processing of rRNA and tRNA. In Molecular Cell
Biology, 4th ed.; W. H. Freeman: New York, NY, USA, 2000.

11. Drino, A.; Oberbauer, V.; Troger, C.; Janisiw, E.; Anrather, D.; Hartl, M.; Kaiser, S.; Kellner, S.; Schaefer, M.R. Production and
purification of endogenously modified tRNA-derived small RNAs. RNA Biol. 2020, 1–12. [CrossRef]

12. Kanwal, F.; Lu, C. A review on native and denaturing purification methods for non-coding RNA (ncRNA). J Chromatogr B Analyt
Technol. Biomed. Life Sci. 2019, 1120, 71–79. [CrossRef] [PubMed]

13. Jacob, D.; Thüring, K.; Galliot, A.; Marchand, V.; Galvanin, A.; Ciftci, A.; Scharmann, K.; Stock, M.; Roignant, J.-Y.;
Leidel, S.A.; et al. Absolute quantification of noncoding RNA by microscale thermophoresis. Angew. Chem. Int. Ed. Engl. 2019.
[CrossRef] [PubMed]

14. Coughlin, D.J.; Babak, T.; Nihranz, C.; Hughes, T.R.; Engelke, D.R. Prediction and verification of mouse tRNA gene families. RNA
Biol. 2009, 6, 195–202. [CrossRef] [PubMed]

15. Shigematsu, M.; Honda, S.; Loher, P.; Telonis, A.G.; Rigoutsos, I.; Kirino, Y. YAMAT-seq: An efficient method for high-throughput
sequencing of mature transfer RNAs. Nucleic Acids Res. 2017, 45, e70. [CrossRef] [PubMed]

16. Erber, L.; Hoffmann, A.; Fallmann, J.; Betat, H.; Stadler, P.F.; Mörl, M. LOTTE-seq (Long hairpin oligonucleotide based tRNA
high-throughput sequencing): Specific selection of tRNAs with 3’-CCA end for high-throughput sequencing. RNA Biol. 2020, 17,
23–32. [CrossRef] [PubMed]

17. Hauenschild, R.; Tserovski, L.; Schmid, K.; Thüring, K.; Winz, M.-L.; Sharma, S.; Entian, K.-D.; Wacheul, L.; Lafontaine, D.L.J.;
Anderson, J.; et al. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids
Res. 2015, 43, 9950–9964. [CrossRef]

18. Tserovski, L.; Marchand, V.; Hauenschild, R.; Blanloeil-Oillo, F.; Helm, M.; Motorin, Y. High-throughput sequencing for 1-
methyladenosine (m(1)A) mapping in RNA. Methods 2016, 107, 110–121. [CrossRef]

https://github.com/FlorianPichot/tRNA_reference_construction
https://github.com/FlorianPichot/tRNA_reference_construction
http://doi.org/10.1080/15476286.2020.1809197
http://www.ncbi.nlm.nih.gov/pubmed/32900285
http://doi.org/10.3390/life10030021
http://doi.org/10.1101/gad.1956510
http://doi.org/10.3389/fgene.2014.00144
http://www.ncbi.nlm.nih.gov/pubmed/24904644
http://doi.org/10.1002/wrna.1287
http://www.ncbi.nlm.nih.gov/pubmed/25919480
http://doi.org/10.1038/s41467-020-17879-x
http://doi.org/10.1261/rna.056531.116
http://doi.org/10.1038/nmeth.3508
http://doi.org/10.1080/15476286.2020.1792089
http://doi.org/10.1080/15476286.2020.1733798
http://doi.org/10.1016/j.jchromb.2019.04.034
http://www.ncbi.nlm.nih.gov/pubmed/31071581
http://doi.org/10.1002/anie.201814377
http://www.ncbi.nlm.nih.gov/pubmed/30892798
http://doi.org/10.4161/rna.6.2.8050
http://www.ncbi.nlm.nih.gov/pubmed/19246989
http://doi.org/10.1093/nar/gkx005
http://www.ncbi.nlm.nih.gov/pubmed/28108659
http://doi.org/10.1080/15476286.2019.1664250
http://www.ncbi.nlm.nih.gov/pubmed/31486704
http://doi.org/10.1093/nar/gkv895
http://doi.org/10.1016/j.ymeth.2016.02.012


Genes 2021, 12, 81 14 of 14

19. Zheng, G.; Qin, Y.; Clark, W.C.; Dai, Q.; Yi, C.; He, C.; Lambowitz, A.M.; Pan, T. Efficient and quantitative high-throughput tRNA
sequencing. Nat. Methods 2015, 12, 835–837. [CrossRef]

20. Marchand, V.; Blanloeil-Oillo, F.; Helm, M.; Motorin, Y. Illumina-based RiboMethSeq approach for mapping of 2’-O-Me residues
in RNA. Nucleic Acids Res. 2016, 44, e135. [CrossRef]

21. Marchand, V.; Pichot, F.; Thüring, K.; Ayadi, L.; Freund, I.; Dalpke, A.; Helm, M.; Motorin, Y. Next-Generation Sequencing-Based
RiboMethSeq Protocol for Analysis of tRNA 2’-O-Methylation. Biomolecules 2017, 7, 13. [CrossRef]

22. Gogakos, T.; Brown, M.; Garzia, A.; Meyer, C.; Hafner, M.; Tuschl, T. Characterizing Expression and Processing of Precursor and
Mature Human tRNAs by Hydro-tRNAseq and PAR-CLIP. Cell Rep. 2017, 20, 1463–1475. [CrossRef] [PubMed]

23. Chan, P.P.; Lowe, T.M. GtRNAdb 2.0: An expanded database of transfer RNA genes identified in complete and draft genomes.
Nucleic Acids Res. 2016, 44, D184–D189. [CrossRef] [PubMed]

24. Abe, T.; Ikemura, T.; Sugahara, J.; Kanai, A.; Ohara, Y.; Uehara, H.; Kinouchi, M.; Kanaya, S.; Yamada, Y.; Muto, A.; et al.
tRNADB-CE 2011: tRNA gene database curated manually by experts. Nucleic Acids Res. 2011, 39, D210–D213. [CrossRef]
[PubMed]

25. Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic
Acids Res. 1997, 25, 955–964. [CrossRef]

26. Zou, Q.; Guo, J.; Ju, Y.; Wu, M.; Zeng, X.; Hong, Z. Improving tRNAscan-SE Annotation Results via Ensemble Classifiers. Mol.
Inform. 2015, 34, 761–770. [CrossRef]

27. Boccaletto, P.; Machnicka, M.A.; Purta, E.; Piatkowski, P.; Baginski, B.; Wirecki, T.K.; de Crécy-Lagard, V.; Ross, R.; Limbach, P.A.;
Kotter, A.; et al. MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018, 46, D303–D307.
[CrossRef]

28. Jühling, F.; Mörl, M.; Hartmann, R.K.; Sprinzl, M.; Stadler, P.F.; Pütz, J. tRNAdb 2009: Compilation of tRNA sequences and tRNA
genes. Nucleic Acids Res. 2009, 37, D159–D162. [CrossRef]

29. Sajek, M.P.; Woźniak, T.; Sprinzl, M.; Jaruzelska, J.; Barciszewski, J. T-psi-C: User friendly database of tRNA sequences and
structures. Nucleic Acids Res. 2020, 48, D256–D260. [CrossRef]

30. Hoffmann, A.; Fallmann, J.; Vilardo, E.; Mörl, M.; Stadler, P.F.; Amman, F. Accurate mapping of tRNA reads. Bioinformatics 2018,
34, 1116–1124. [CrossRef]

31. Torres, A.G.; Reina, O.; Stephan-Otto Attolini, C.; Ribas de Pouplana, L. Differential expression of human tRNA genes drives the
abundance of tRNA-derived fragments. Proc. Natl. Acad. Sci. USA 2019, 116, 8451–8456. [CrossRef]

32. Galvanin, A.; Ayadi, L.; Helm, M.; Motorin, Y.; Marchand, V. Mapping and Quantification of tRNA 2’-O-Methylation by
RiboMethSeq. Methods Mol. Biol. 2019, 1870, 273–295. [CrossRef] [PubMed]

33. Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [CrossRef] [PubMed]
34. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.

[CrossRef] [PubMed]
35. Fujishima, K.; Kanai, A. tRNA gene diversity in the three domains of life. Front. Genet. 2014, 5, 142. [CrossRef]
36. Wald, N.; Margalit, H. Auxiliary tRNAs: Large-scale analysis of tRNA genes reveals patterns of tRNA repertoire dynamics.

Nucleic Acids Res. 2014, 42, 6552–6566. [CrossRef]
37. Chen, P.; Qian, Q.; Zhang, S.; Isaksson, L.A.; Björk, G.R. A cytosolic tRNA with an unmodified adenosine in the wobble position

reads a codon ending with the non-complementary nucleoside cytidine. J. Mol. Biol. 2002, 317, 481–492. [CrossRef]
38. Marchand, V.; Ayadi, L.; Ernst, F.G.M.; Hertler, J.; Bourguignon-Igel, V.; Galvanin, A.; Kotter, A.; Helm, M.; Lafontaine, D.L.J.;

Motorin, Y. AlkAniline-Seq: Profiling of m7 G and m3 C RNA Modifications at Single Nucleotide Resolution. Angew. Chem. Int.
Ed. Engl. 2018, 57, 16785–16790. [CrossRef]

39. Marchand, V.; Pichot, F.; Neybecker, P.; Ayadi, L.; Bourguignon-Igel, V.; Wacheul, L.; Lafontaine, D.L.J.; Pinzano, A.; Helm, M.;
Motorin, Y. HydraPsiSeq: A method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 2020.
[CrossRef]

40. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef]

41. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast
universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef]

42. Lovato, M.A.; Chihade, J.W.; Schimmel, P. Translocation within the acceptor helix of a major tRNA identity determinant. EMBO J.
2001, 20, 4846–4853. [CrossRef] [PubMed]

http://doi.org/10.1038/nmeth.3478
http://doi.org/10.1093/nar/gkw547
http://doi.org/10.3390/biom7010013
http://doi.org/10.1016/j.celrep.2017.07.029
http://www.ncbi.nlm.nih.gov/pubmed/28793268
http://doi.org/10.1093/nar/gkv1309
http://www.ncbi.nlm.nih.gov/pubmed/26673694
http://doi.org/10.1093/nar/gkq1007
http://www.ncbi.nlm.nih.gov/pubmed/21071414
http://doi.org/10.1093/nar/25.5.955
http://doi.org/10.1002/minf.201500031
http://doi.org/10.1093/nar/gkx1030
http://doi.org/10.1093/nar/gkn772
http://doi.org/10.1093/nar/gkz922
http://doi.org/10.1093/bioinformatics/btx756
http://doi.org/10.1073/pnas.1821120116
http://doi.org/10.1007/978-1-4939-8808-2_21
http://www.ncbi.nlm.nih.gov/pubmed/30539563
http://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
http://doi.org/10.3389/fgene.2014.00142
http://doi.org/10.1093/nar/gku245
http://doi.org/10.1006/jmbi.2002.5435
http://doi.org/10.1002/anie.201810946
http://doi.org/10.1093/nar/gkaa769
http://doi.org/10.1093/bioinformatics/btp324
http://doi.org/10.1093/bioinformatics/bts635
http://doi.org/10.1093/emboj/20.17.4846
http://www.ncbi.nlm.nih.gov/pubmed/11532948

	Introduction 
	Materials and Methods 
	Library Preparations 
	Computations 
	tRNA Reference Sequence 
	Alignment of the Experimental Datasets to Reference tRNA Sequences 

	Practical Guidelines for Optimization of the Reference tRNA Sequences 

	Results 
	A Two-Steps Algorithm for tRNA Analysis 
	Analysis of Simple tRNA References (<100 tRNA Genes) 
	tRNA References of Intermediate Complexity (<300 Genes) 
	Highly Complex tRNA References (>400 Genes) 
	Validation of the Optimized tRNA Reference Sequences 

	Discussion 
	Merging of Similar tRNA Genes in a Single Reference Sequence 
	Representativeness of Optimized tRNA Datasets 
	Known Limitations and Troubleshooting 

	Conclusions 
	References

